SOLUTIONS TO EXERCISES FOR

MATHEMATICS 133 - Part 8

Winter 2009

V. 7 : Non-Euclidean geometry in modern mathematics

1. We first consider the special case where $\mathbf{a}=\mathbf{0}$. In this case we have

$$
T(\mathbf{v})=\frac{r^{2}}{|\mathbf{v}|^{2}} \cdot \mathbf{v}
$$

so that $T(\mathbf{v})$ is a positive multiple of \mathbf{v} and $|T(\mathbf{v})| \cdot|\mathbf{v}|=r^{2}$.
We shall now use this to prove that $T(T(\mathbf{v}))=\mathbf{v}$ for all \mathbf{v} : If $\mathbf{w}=T(\mathbf{v})$, then it follows that $T(\mathbf{w})$ is a positive multiple of \mathbf{w}, and since the latter is a positive multiple of \mathbf{v}, it follows that $T(T(\mathbf{v}))=\mathbf{v}=T(\mathbf{w})$ is a positive multiple of \mathbf{v}. Also, we have

$$
|T(\mathbf{w})|=\frac{r^{2}}{|\mathbf{w}|}=\frac{r^{2}}{r^{2} /|\mathbf{v}|}=|\mathbf{v}|
$$

and if we combine this with the observation in the preceding sentence we see that $T(T(\mathbf{v}))=\mathbf{v}$.
We can use this to prove T is $1-1$ and onto as follows. If $T(\mathbf{x})=T(\mathbf{y})$, then if we apply T to both sides we see that $\mathbf{x}=\mathbf{y}$. Similarly, if we are given any vector \mathbf{w}, then the identity $T(T(\mathbf{w}))=\mathbf{w}$ shows that $\mathbf{w}=T(\mathbf{v})$ for some $\mathbf{v}($ namely, $T(\mathbf{w}))$. The identity at the end of the previous paragraph also shows that if $\mathbf{w}=T(\mathbf{v})$, then $T(\mathbf{w})=\mathbf{v}$, and conversely if $\mathbf{v}=T(\mathbf{w})$, then $T(\mathbf{v})=\mathbf{w}$. These conditions show that T is an inverse function to itself.

We now turn to the general case. If T_{0} is the map $T_{0}(\mathbf{x})=r^{2}|\mathbf{x}|^{-2} \mathbf{x}$ considered in the previous paragraph, then we have

$$
T(\mathbf{v})=\mathbf{a}+T_{0}(\mathbf{v}-\mathbf{a})
$$

and if we apply T twice we then obtain

$$
\begin{aligned}
T(T(\mathbf{v})) & =T\left(\mathbf{a}+T_{0}(\mathbf{v}-\mathbf{a})\right)
\end{aligned}=\mathrm{a}=\mathbf{a}+T_{0}\left(T_{0}(\mathbf{v}-\mathbf{a})\right)=\mathbf{a}+(\mathbf{v}-\mathbf{a})=\mathbf{v} .
$$

Since applying T twice again yields the identity, it follows as before that T must be its own inverse.
2. By the definitions we have

$$
T\left(\mathbf{v}=\frac{1}{|\mathbf{v}|^{2} \cdot \mathbf{v}}, \quad S(\mathbf{v})=\frac{r^{2}}{|\mathbf{v}|^{2} \cdot \mathbf{v}}\right.
$$

and therefore straightforward computation yields

$$
r T\left(r^{-1} \mathbf{v}\right)=r \cdot\left(\frac{1}{\left|r^{-1} \mathbf{v}\right|^{2}} \cdot r^{-1} \mathbf{v}\right)=r\left(\frac{1}{r^{-1}|\mathbf{v}|^{2}}\right) \mathbf{v}=\frac{r^{2}}{|\mathbf{v}|^{2}} \mathbf{v}=S(\mathbf{v})
$$

which is the identity we wanted to prove.
3. Following the hint, we split the argument into two cases.

CASE 1. The center of Γ_{1} is the origin, and the radius is k. - Then $\mathbf{v} \in \Gamma_{1}$ implies that $|\mathbf{v}|=k$ and hence $|T(\mathbf{v})|=1 / k$, so that $T \operatorname{maps} \Gamma_{1}=\Gamma(k, \mathbf{0})$ to $\Gamma_{2}^{\prime}=\Gamma(1 / k, \mathbf{0})$. It follows that $\Gamma_{2} \subset \Gamma_{2}^{\prime}$. Since

$$
k=\frac{1}{\left(\frac{1}{k}\right)}
$$

it follows that T also maps $\Gamma_{2}^{\prime}=\Gamma(1 / k, \mathbf{0})$ to $\Gamma_{1}=\Gamma(k, \mathbf{0})$. To see that the image of Γ_{1} under T is all of Γ_{2}^{\prime}, note that the identity $T(T(\mathbf{w}))=\mathbf{w}$ shows that every $\mathbf{w} \in \Gamma_{2}^{\prime}$ is the image under T of the point $T(\mathbf{w}) \in \Gamma_{1} . ■$

CASE 2. The center of Γ_{1} is some point $\mathbf{a} \neq \mathbf{0}$. - Once again let k be the radius of the circle. Since $\mathbf{0}$ does not lie on Γ_{1} it follows that the radius k is not equal to $k=|\mathbf{0}-\mathbf{a}|=|\mathbf{a}|$; this means that $q=|\mathbf{a}|^{2}-k^{2}$ is nonzero. If $\mathbf{v} \in \Gamma_{1}$ then we have

$$
k^{2}=|\mathbf{v}-\mathbf{a}|^{2}=|\mathbf{v}|^{2}-2 \mathbf{v} \cdot \mathbf{a}+|\mathbf{a}|^{2}
$$

so that $2 \mathbf{v} \cdot \mathbf{a}=|\mathbf{v}|^{2}+q$. It now follows that

$$
\begin{gathered}
\left|T(\mathbf{v})-q^{-1} \mathbf{a}\right|^{2}=\left|\frac{1}{|\mathbf{v}|^{2} \mid} \mathbf{v}-q^{-1} \mathbf{a}\right|^{2}= \\
\frac{1}{|\mathbf{v}|^{2}}+\frac{|\mathbf{a}|^{2}}{q^{2}}-\frac{2 \mathbf{v} \cdot \mathbf{a}}{|\mathbf{v}|^{2} q^{2}}
\end{gathered}
$$

If we now put everything over a common denominator and use our previously derived formula for $2 \mathbf{v} \cdot \mathbf{a}$, we find that the right hand side is equal to

$$
\frac{q^{2}+|\mathbf{v}|^{2}|\mathbf{a}|^{2}-|\mathbf{v}|^{2} q^{2}-q^{2}}{|\mathbf{v}|^{2} q^{2}}
$$

and if we simplify this we find that the quantity in question is equal to k^{2} / q^{2}. This means that the mapping T sends Γ_{1} to the circle Γ_{2}^{\prime} whose center is $\mathbf{b}=q^{-1} \mathbf{a}$ and whose radius is $m=|q|^{-1} k$.

The vector $\mathbf{0}$ also does not lie on Γ_{2}^{\prime} because

$$
m=|q|^{-1} k \neq|q|^{-1}|\mathbf{a}|=\left|q^{-1} \mathbf{a}\right|=|\mathbf{b}|
$$

and as in the preceding discussion $\mathbf{0}$ lies on a circle centered at \mathbf{b} only if the circle's radius is $|\mathbf{b}|$. Therefore we can apply the reasoning of the preceding paragraph to conclude that T maps Γ_{2}^{\prime} into the circle whose center is $p^{-1} \mathbf{b}=p^{-1} q^{-1} \mathbf{a}$ and whose radius is $|p|^{-1} m=|p|^{-1}|q|^{-1} k$. If we can show that $p=1 / q$, then it will follow that $T \operatorname{maps} \Gamma_{2}^{\prime}$ into the original circle Γ_{1}, and as in Case 1 we can use $T(T(\mathbf{w}))=\mathbf{w}$ to conclude that the image of Γ_{1} under T is all of Γ_{2}^{\prime}.

But now we have

$$
p=|\mathbf{b}|^{2}-m^{2}=\frac{|\mathbf{a}|^{2}}{q^{2}}-\frac{k^{2}}{q^{2}}=\frac{|\mathbf{a}|^{2}-k^{2}}{q^{2}}=\frac{q}{q^{2}}
$$

and since the right hand side simplifies to $1 / q$, we have completed the remaining step in the argument.
4. We first show that T maps the given circle to the given line. By definition, the circle Γ_{1} is defined by the equation $x^{2}+(y-b)^{2}=b^{2}$ and if we expand the left hand side we obtain the equivalent formulation $x^{2}+y^{2}-2 b y+b^{2}=b^{2}$; subtacting $b^{2}-2 b y$ from both sides shows that the circle is also defined by the equation $x^{2}+y^{2}=2 b y$. Therefore, if $(u, v)=T(x, y)$, then by definition we have

$$
(u, v)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)
$$

and if $(x, y) \in \Gamma_{1}$ then we may apply the equation at the end of the previous sentence to rewrite the right hand side as

$$
\left(\frac{x}{2 b y}, \frac{y}{2 b y}\right)=\left(\frac{x}{2 b y}, \frac{1}{2 b}\right) .
$$

Therefore the image of Γ_{1} lies on the horizontal line L defined by $y=1 /(2 b)$.
Suppose now that we are given $(u, v) \in L$, so that $v=1 /(2 b)$. We need to show that $(x, y)=$ $T(u, v)$ lies on Γ_{1}, which translates to the algebraic equation $x^{2}+y^{2}=2 b y$. Since

$$
(x, y)=T(u, v)=\left(\frac{u}{u^{2}+v^{2}}, \frac{v}{u^{2}+v^{2}}\right)
$$

and the definition of T implies that

$$
x^{2}+y^{2}=\frac{1}{u^{2}+v^{2}}
$$

if $v=1 /(2 b)$ we obtain the following:

$$
x^{2}+y^{2}=\frac{1}{u^{2}+(1 / 2 b)^{2}}=\frac{4 b^{2}}{4 b^{2} u^{2}+1}, \quad y=\frac{v}{u^{2}+v^{2}}=\frac{1}{2 b} \cdot \frac{4 b^{2}}{4 b^{2} u^{2}+1}
$$

Comparing these results, we see that $x^{2}+y^{2}=2 b y$ and therefore $T(u, v)=(x, y) \in \Gamma_{1}$, so that T sends points of Γ_{1} to points of L and vice versa. As in the proofs of preceding exercises, it follows that the images of Γ_{1} and L are L and Γ_{1} respectively.
5. The two circles meet at the two points $(1,0)$ and $(0,1)$. This seems obvious from the picture, and it follows algebraically by solving the simultaneous set of quadratic equations $x^{2}+y^{2}=1$ and $(x-1)^{2}+(y-1)^{2}=1$. The tangent lines to the first circle at the intersection points are $(1,0)+V$ and $(0,1)+H$, where V and H are the vertical and horizontal 1-dimensional vector subspaces spanned by $(0,1)$ and $(1,0)$ respectively. Similarly, the tangent lines to the second circle at the intersection points are $(1,0)+H$ and $(0,1)+V$. These follow because the tangent is perpendicular to the radius at the point of contact.

Next, let C and D be the two points where Γ_{1} meets the line $y=x$. The first coordinates of these points satisfy the equation $2(x-1)^{2}=1$, so that $x-1= \pm \frac{1}{2} \sqrt{2}$ and hence $x=1 \pm \frac{1}{2} \sqrt{2}$. The second coordinates are then given by $y=x$.

Let u and v be the two values for $x=y$. We claim that the lengths of the two vectors (u, u) and (v, v) are reciprocals of each other. Since the length of an arbitrary vector of the form (w, w) is $|w| \sqrt{2}$, it follows that the lengths of (u, u) and (v, v) are equal to

$$
\left(1 \pm \frac{1}{2} \sqrt{2}\right) \cdot \sqrt{2}=\sqrt{2} \pm 1
$$

so that the product of these two lengths is

$$
(\sqrt{2}+1) \cdot(\sqrt{2}-1)=1
$$

which is what we wanted to prove.
By the computations in the preceding discussion, we know that the points C and D are mapped to each other under the inversion map T. Since Γ_{1} does not contain the origin (because $\left.(0-1)^{2}+(0-1)^{2}=2 \neq 1\right)$, by Exercises 3 and 4 it follows that T maps Γ_{1} into a circle which contains the points $A=T(A), B=T(B), C=T(D), D=T(C)$. Now there is a unique circle containing the noncollinear points A, B, C, and since both Γ_{1} and its image contain all three of them it follows that Γ_{1} and its image must be the same circle.
6. (i) Start off by following the hint. The center $(c, 0)$ of the circle Γ_{1} must be the midpoint of the line segment joining $(a, 0)$ to $(b, 0)$, and by the formula for finding midpoints this is $\frac{1}{2}(a+b)$. On the other hand, the diameter $2 r$ of this circle is merely $b-a$, and hence $r=\frac{1}{2}(b-a)$. As noted in the statement at the end of the exercise, there are right angles at B and C if and only if $r^{2}+1=c^{2}$.

Since we have expressed r and c in terms of a and b, we can also write c^{2} and r^{2} in terms of these variables:

$$
c^{2}=\frac{b^{2}+2 a b+a^{2}}{4}, \quad r^{2}=\frac{b^{2}-2 a b+a^{2}}{4}
$$

Therefore we obtain the following formula for $c^{2}-r^{2}-1$:

$$
\begin{aligned}
c^{2}-r^{2}-1= & \frac{b^{2}+2 a b+a^{2}}{4}-\frac{b^{2}-2 a b+a^{2}}{4}-1= \\
& \frac{4 a b}{4}-1=a b-1
\end{aligned}
$$

It follows that $r^{2}+1=c^{2}$, which is equivalent to $c^{2}-r^{2}-1=0$, is satisfied if and only if $a b=1$, or in other words if and only if a and b are reciprocals of each other.
(ii) If $Y=(y, 0)$ where $y>0$, then by the first part of the exercise the circle with center $(c, 0)$ and radius r, where

$$
c=\frac{1}{2}\left(y+\frac{1}{y}\right), \quad r=\frac{1}{2}\left(\frac{1}{y}-y\right)
$$

will satisfy the specified conditions. More generally, if Y is an arbitrary point, then we may write it as $y(\cos \theta, \sin \theta)$ for some θ and some y satisfying $0<y<1$, and if we define r and c as before, then the circle with center $c(\cos \theta, \sin \theta)$ and radius r will have the desired properties.
(iii) This is similar to the last part of the proof of the previous exercise. Let Y be as before, and let $Z=T(Y)$. Then T maps B and C to themselves and switches Y and Z. Now the circle Γ_{1} does not contain the origin because $r \neq c$ (the difference $c-r$ is equal to y), so it follows that the image of Γ_{1} is also a circle which contains the given four points. Since there is only one such circle, it follows that Γ_{1} and its image must be the same

