
SOME BASIC RESULTS IN NEUTRAL GEOMETRY 
 

The purpose of this file is to provide details or references for proofs some results from Euclidean 

geometry which do not require the Fifth Postulate or equivalently Playfair’s Postulate  (P – 0)  

(i.e.,  the setting called  neutral geometry  in the course notes).  Specifically,  the results under 

consideration are listed on pages  243 – 246  of the course notes.  In some cases the proofs 
given earlier in the notes turn out to be valid in neutral geometry, and in a few other cases the 

proofs are given in the solutions to the exercises for Unit  V; for the sake of completeness we 

shall fill in all the remaining proofs.    Following the discussion in Unit  V, we use the numbering 
of results from previous units of the notes.  
 

Proposition  I I.2.4.  Suppose that  A,  B,  C,  D  are four distinct collinear points satisfying the 

conditions A∗B∗D  and  B∗C∗D.  Then A∗B∗C  and  A∗C∗D also hold.   
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Theorem  I I.2.5.   Let a,  b,  c be three distinct collinear points.   Then either  c ∈∈∈∈     (ab or 

else  c  ∈∈∈∈     (ab
OP

.   In the first case we have   
 

[ab  =  [ac,   [ab
OP

  =  [ac
OP

,  (ab  =  (ac,  and  (ab
OP

  =  (ac
OP

. 
 

In the second case we have   
 

[ab  =  [ac
OP

,   [ab
OP

  =  [ac,  (ab  =  (ac
OP

,  and  (ab
OP

  =  (ac.  
 

Proof.    The proof which appears in the notes is  NOT  valid in neutral geometry because it is 
based upon vector geometry, so we need to give an entirely new argument, which must be 
synthetic. 
 

First of all,  since exactly one of  a,  b,  c is between the other two, the definitions of the rays   

(ab  and   (ab
OP

  implies that  c  belongs to exactly one of these open rays. 
 

Suppose first that  c ∈∈∈∈     (ab.   Let  d  be a point such that  d∗a∗b,  so that  (ab  =  (ad
OP

 ,  (ad 

=  (ab
OP

,   [ab  =  [ad
OP

  and   [ad =  [ab
OP

.    The hypothesis on  c  implies that either  c  =  

b  or  a∗c∗b  or  a∗b∗c;  since the conclusion is trivial in the first subcase,  assume that one of 

the other two alternatives holds.  In each of these cases,  Proposition  I I.2.4   implies that  

d∗a∗c,  so that   (ac  =  (ad
OP

 ,  (ad =  (ac
OP

,   [ac  =  [ad
OP

  and   [ad =  [ac
OP

.     
 

Suppose now that  c ∈∈∈∈     (ab
OP

,   so that  c∗a∗b.   Then the definitions imply that   [ab  =  

[ac
OP

,   [ab
OP

  =  [ac,  (ab  =  (ac
OP

,  and  (ab
OP

  =  (ac.���� 
 

Proposition  I I.2.8.  Let  M  denote either a line  L  in a plane  P  or a plane  Q  in space.  
Then the following hold: 
 

1. If   A  and  B  are on the same side of  M  and  B  and  C  are on the same side of  M,  
then  A  and  C  are on the same side of  M. 

2. If   A  and  B  are on the same side of  M  and  B  and  C  are on opposite sides of  M,  
then  A  and  C  are on the same side of  M. 



3. If   A  and  B  are on opposite sides of  M  and  B  and  C  are on the same side of  M,  

then  A  and  C  are on opposite sides of  M. 
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Lemma  I I.2.10.  Let L  be a line in the plane, and let  M   be a line in the plane which meets 
L  in exactly one point.  Then M  contains points on both sides of L. 
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Proposition  I I.2.11.  Let  L  be a line in the plane, let  H1  and  H2   be the two half – planes 
determined by  L,  and let   M  be a line in the plane which meets  L  in exactly one point.  Then 

each of the intersections H1  ∩∩∩∩  M  and H2  ∩∩∩∩  M  is an open ray. 
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Proposition  I I.2.12.  Let L  be a line in the plane, let  M  be a line in the plane which meets 
L  in exactly one point  A,  and let  B  and  C be two other points on  M.  Then  B   and  C  lie 

on the same side of the line   L   if either A∗C∗B  or A∗B∗C  is true, and they lie on opposite 

sides of the line  L  if  B∗A∗C  is true. 
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Theorem  I I.2.13.  (Pasch’s “Postulate”)  Suppose we are given  ����ABC  and a line  L  in the 
same plane as the triangle such that  L  meets the open side  (AB)  in exactly one point.  Then 
either  L  passes through C  or else  L  has a point in common with  (AC)  or  (BC).  
 

The proof which appears in the notes is also valid in neutral geometry.���� 

 

Proposition  I I.3.1.    Let  A  and  B  be distinct points, and let  x  be a positive real number.  

Then there is a unique point  Y  on the open ray  (AB  such that  d(A, Y)   =   x.   Furthermore, 

we have  A∗Y∗B  if and only if  x <    d(A, B),  and likewise we have  A∗B∗Y  if and only if  x  >  

d(A, B). 
 

Proof.    This is worked out in Exercise  V.2.1(a).����   
 

Theorem  I I.3.5.  (Crossbar Theorem)   Let  A, B, C  be noncollinear points in  RRRR
2
,  and let  D  

be a point in the interior of  ∠∠∠∠CAB.  Then the segment  (BC)  and the open ray  (AD  have a 
point in common. 
 

Proof.    The proof which appears in the notes is  NOT  valid in neutral geometry because it is 
based upon vector geometry,  so we need to give an entirely new argument,  which must be 
synthetic.   
 

 
 



Let  E  be a point such that  E∗A∗C; observe that  E,  B,  C  are noncollinear,  and  A  lies on 

both  AD  and  (EC).  Therefore by Pasch’s “Postulate” the line  AD  must either pass through  
B  or else contain a point from one of   (EB)  or  (BC);  we want to show the third alternative 
holds, so we have to eliminate the other two possibilities. 
 
To see that  AD  does not pass through  B,  note that if it did then  A,  D  and  B  would be 

collinear, and since  D  lies in the interior of  ∠∠∠∠CAB  this cannot  happen. 
 

We next need to show that  AD  does not meet  (EB);  assume to the contrary that they have 

some point  F  in common.   By  Proposition  I I.2.12  the betweenness relation   E∗F∗B  

implies that  F  and  B  lie on the same side of  AC;  we shall denote this open half – plane by  

HHHH.   By  Proposition  I I.2.11   HHHH ∩∩∩∩  M  is an open ray,  and since  D  lies on  HHHH  this open ray 
must be  (AD.  Furthermore,  since  F  also lies in the intersection, it follows that  F  lies on  (AD.   
These observations in turn imply that  D  and  F  must lie on the same side  SSSS  of  AB,  while  

E∗F∗B  implies that  E  also lies on  SSSS  and since  D  lies in the interior of  ∠∠∠∠CAB  the same is 

true for  C; combining these, we have shown that  C,  D,  E,  F  all lie on  SSSS.   On the other hand,  

since  E∗A∗C  is true by construction,  Proposition  I I.2.12  implies that the points  E  and  C  

must lie on opposite sides of  AB,  and hence we have reached a contradiction.   The source of 
this contradiction is our assumption about the existence of the point  F,  and hence it follows that   
AD  does not meet  (EB)  and consequently must meet the other open side, which is  (BC),  at 
some point  G.    
 

To conclude the proof,  we must show that  G  also lies on  (AD.  Since  G  lies in  (BC)  it must 

belong to the interior of  ∠∠∠∠CAB,  so that  G  and  B  lie on the same side  HHHH  of  AC,  and a final  

application of   Proposition  I I.2.11   now shows that  G  must lie on the open ray  (AD.����  
 

Proposition  I I.3.6.  (Trichotomy Principle)   Let  A  and  B  be distinct points in  RRRR
2
, and let  

C  and  D  be two points on the same side of  AB .   Then exactly one of the following is true: 
 

(1)  D  lies on  (BC (equivalently, the open rays  (BC  and  (BD  are equal). 
 

(2)  D  lies in   Int ∠∠∠∠ABC. 
 

(3)  C  lies in   Int ∠∠∠∠ABD. 
 

Proof.    The proof which appears in the notes is  NOT  valid in neutral geometry  because it is 
based upon vector geometry,  so we need to give an entirely new argument, which must be 
synthetic.   
 

By the Plane Separation Postulate we know that exactly one of the following three statements is 
true:  
 

(1)  D  lies on  BC. 
 

(2)  D  lies on the same side of  BC  as  A. 
 

(3)  D  lies on the opposite side of  BC  as  A. 
 

In the first case we can apply   Proposition  I I.2.11   to conclude that  D  lies on  (BC,  and in 

the second case  D  lies in   Int ∠∠∠∠ABC  by the definition of the interior of an angle.   Thus it is 
only necessary to prove that the third case implies the third alternative in the conclusion of the 
proposition.   By the Plane Separation Postulate, in the third case we know that the line  BC  
and the open segment  (AD)  have a point  X  in common. 
 
 



 
 

Two applications of   Proposition  I I.2.12   now show that  X  lies in the interior of  ∠∠∠∠ABD.  
Since  C  and  D  are assumed to lie on the same side  SSSS  of  AB,  it follows that  X  must also lie 

on  SSSS.  Therefore  by  Proposition  I I.2.11   the intersection of  BC  and  SSSS  is an open ray 
containing  both  C  and  X, and this ray must also be contained in the side of  BC  containing  

A.  In particular, it follows that  (BC  =  (BX  lies in the interior  of  ∠∠∠∠ABD.���� 
 

Proposition  I I.3.7.  (Vertical Angle Theorem)   Let  A,  B,  C,  D  be four distinct points such 

that  A∗X∗C   and  B∗X∗D.   Then  |∠∠∠∠AXB|   =   |∠∠∠∠CXD|. 
 

The proof which appears in the notes is also valid in neutral geometry.����   
 

Theorem  I I.3.8.    Let  A,  B,  C,  D  be distinct coplanar points, and suppose that  C  and  D  

lie on the same side of  AB.   Then  |∠∠∠∠CAB|    <   |∠∠∠∠DAB|  is true if and only if  C  lies in the 

interior of  ∠∠∠∠DAB. 
 

Theorem  I I.4.1.  (Isosceles Triangle Theorem)   In  ����ABC, one has  d(A, B)  =   

d(A, C)  if and only if  |∠∠∠∠ABC|  =  |∠∠∠∠ACB| .  
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Corollary  I I.4.2.   In ����ABC,  one has  d(A, B)  =  d(A, C)  =  d(B, C)  (the triangle is 

equilateral) if and only if one has  |∠∠∠∠ABC |  =  |∠∠∠∠ACB|  =  |∠∠∠∠BAC|  (the triangle is 

equiangular) .  
 

The proof which appears in the notes is also valid in neutral geometry.���� 

 

Proposition  I I I.1.1.  Let  A,  B,  C  be noncollinear points, and suppose that  E  is a point 

such that   E∗A∗C  holds.  Then  AB ⊥⊥⊥⊥ AC  if and only if  |∠∠∠∠EAB|   =   |∠∠∠∠CAB|.  
 

The proof which appears in the notes is also valid in neutral geometry.���� 

 

Corollary  I I I.1.2.   Let  A,  B,  C  be noncollinear points, and suppose that D  and E  are 

points such that both  E∗A∗C  and B∗A∗D  hold.  Then  AB  ⊥⊥⊥⊥  AC  if and only if 
 

|∠∠∠∠CAB| =   |∠∠∠∠EAB|   =   |∠∠∠∠EAD|   =   |∠∠∠∠DAC |   =   90°°°°. 
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Proposition  I I I.1.3.    Let  L  be a line, let  A  be a point of  L,  and let  P  be a plane 

containing  L.  Then there is a unique line M  in P such that  A ∈∈∈∈     M  and  L  ⊥⊥⊥⊥  M.  
 

The proof which appears in the notes is also valid in neutral geometry.���� 

 

Proposition  I I I.1.4.    Let  L  be a line in the plane  P,  and let  A  be a point of  P   not  on L.  

Then there is a unique line M  such that   A  ∈∈∈∈     M  and L ⊥⊥⊥⊥ M.  



 

Proof.    The proof which appears in the notes is  NOT  valid in neutral geometry  because it is 
based upon vector geometry,  so we need to give an entirely new argument, which must be 
synthetic.   
 

 

 

Existence of a perpendicular.    Let  B  and  C  be two distinct points on  L,  and let  F  be a 

point on the side of  BC  opposite  A  such that  |∠∠∠∠FBC|   =   |∠∠∠∠ABC|.   Now let  D  be a point 

on  (BF  so that  d(D, B)  =  d(A, B);  since  A  and  D  lie on opposite sides of  L,  there is 

some point  E  where  (AD)  meets  L.   The proof splits into two cases,  depending upon 

whether or not  B  =  E.   
 

If  B  =  E  then we have  |∠∠∠∠DEC|   =   |∠∠∠∠AEC|,  and if we combine this with  A∗E∗D  then 

we find that  the two angles are right angles and  L  =  EC  is perpendicular to  AD,  proving the 

existence statement. 
 

Suppose now that  B  and  E  are distinct points.  Since  L  meets  AD  in  E, it follows that B 

does not lie on  AD  =  AE  =  DE,  which in turn implies that   ����ABE   ≅≅≅≅  ����DBE   by  SAS.   

The latter implies that  |∠∠∠∠DEB|   =   |∠∠∠∠AEB|,  and if we combine this with  A∗E∗D  then we 

find that  the two angles are right angles and  L  =  BE  is perpendicular to  AD.   
 

 Uniqueness  of  perpendiculars.    This portion of the proof relies upon  Theorem  I I I.2.1 (the 
Exterior Angle Theorem),  so we need to mention that the proof of the latter (given below) only 

depends upon results up to and including  Corollary  I I I.1.2.   
 

 
 

Suppose that  M  and  N  are two perpendiculars to  L  (in the given plane)  through the external 
point  A,  and let  B  and  C  be the points where  M  and  N  meet  L.   Let  D  be a point such 

that   B∗C∗D.  Then the Exterior Angle Theorem implies that   
 

90°°°° =   |∠∠∠∠ACD|   >   |∠∠∠∠ABC|   =   90°°°° 
 

and hence we have reached a contradiction.  The source of this contradiction is our assumption 
that there are two perpendiculars from  A  to  L,  and therefore there is only one perpendicular 

to  L  which passes through  A.����   
 

Corollary  I I I.1.5.    Suppose that  L,  M  and  N  are three lines in the plane  P  such that we 

have L ⊥⊥⊥⊥ M and  M ⊥⊥⊥⊥ N.  Then we also have  L || N.  
 

The proof which appears in the notes is also valid in neutral geometry.���� 

 



Proposition  I I I.1.7.   Let  A  and  B  be distinct points, let  P  be a plane containing them, 

suppose that  D  is the midpoint of  [AB],   and let M  be the unique perpendicular to   AB  at  D  

in the plane  P.  Then a point  X ∈∈∈∈     P  lies on M  if and only if d(X, A)  =  d(X, B).  
 

Proof.    Only one part of the proof which appears in the notes is valid in neutral geometry 
because it is based upon vector geometry;  namely, the case where  X  does not lie on the line  
AB.  Therefore we need to give an entirely new argument for the case in which  X  lies on  AB,  
and the new approach must be purely synthetic.  
 

By the Ruler Postulate there is a 1 – 1 correspondence between the points of  AB  and the real 

numbers  RRRR  such that if the points  X  and  Y on  AB  correspond to the real numbers  x  and  y  

respectively, then we have 
 

d (X, Y)     =    |x  –  y|. 
 

Choose  a  and  b  such that  A  and  B  correspond to  a  and  b  respectively.  Then the 

condition on  X  in the proposition translates into   |x  –  a|   =    |x  –  b|.   If we square both 

sides of this equation and subtract   x
2
  from each side, we obtain the equation  a

2
  –  2a x   =   

b
2
  –  2b x,  which can be rewritten in the form  a

2
  –  b

2
   =    2 x (a  –  b).   Since  A  and  B  

are assumed to be distinct, the numbers  a  and  b  are unequal and therefore we can solve the 

equation to conclude that   x  =  ½ (a  +  b),  which means that  X  must be the midpoint of  

(AB).   Conversely,  if  X  is the midpoint then  x  is given  as in the preceding sentence and we 

can easily check that   |x  –  a|   =    |x  –  b|.���� 
 

Lines and planes in space.     As indicated in the notes, one can prove several results on this 

topic without using Playfair’s Postulate  (P – 0)  or vector geometry,  and the list of examples 

include  Theorems  I I I.1.8,   I I I.1.9,  and  I I I.1.12.    Purely synthetic proofs of these results 
are given at the end of this document in a separate subsection;   none of these results will be 

needed in subsequent  discussions of plane geometry in this course. 
 

Theorem  I I I.2.1.  (Exterior Angle Theorem)    Suppose we are given triangle ����ABC,  and 

let D  be a point such that  B∗C∗D.  Then  |∠∠∠∠ACD|  is greater than  |∠∠∠∠ABC|  and  |∠∠∠∠BAC| .  
 

Proof.    The proof which appears in the notes is also valid in neutral geometry.   Since the 

Exterior Angle Theorem is used in the neutral – geometric proofs of some results from Section   

I I I.1,  we should mention that the proof of the Exterior Angle Theorem in the notes does not 

use anything from Section   I I I.1  of the course notes.���� 
 

Corollary  I I I.2.2.    If ����ABC  is an arbitrary triangle, then the sum of any two of the angle 

measures |∠∠∠∠ABC|,  |∠∠∠∠BCA|  and  |∠∠∠∠CAB|  is less than  180°°°°.   Furthermore, at least two 

of these angle measures must be less than  90°°°°. 
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Corollary  I I I.2.3.    Suppose we are given triangle  ����ABC,  and assume that the two angle 

measures  |∠∠∠∠BCA|  and  |∠∠∠∠CAB| are less than   90°°°°.  Let  D  ∈∈∈∈  AC  be such that  BD  is 

perpendicular to  AC.  Then   D  lies on the open segment  (AC).   
 

The proof which appears in the notes is also valid in neutral geometry.���� 



 

Corollary  I I I.2.4.    Suppose we are given triangle  ����ABC.  Then at least one of the 
following three statements is true: 
 

(1) The perpendicular from  A  to  BC  meets the latter in  (BC). 

(2) The perpendicular from  B  to  CA  meets the latter in  (CA). 

(3) The perpendicular from  C  to  AB  meets the latter in  (AB). 
 

The proof which appears in the notes is also valid in neutral geometry.���� 

 

Theorem  I I I.2.5.  Given a triangle  ����ABC,  we have  d(A, C)  >  d(A, B)  if and only if we 

have  |∠∠∠∠ABC |  >  |∠∠∠∠ACB | .  
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Theorem  I I I.2.6.  (Classical Triangle Inequality)    In  ����ABC,  we have the inequality    

d(A, C)   <    d(A, B)  +  d(B, C) .  
 

Proof.    This is worked out in Exercise  V.2.1(c).���� 
 

Proposition  I I I.2.10.  (Half of the Alternate Interior Angle Theorem)    Suppose we are 
given the setting and notation as in the notes.  If the measures of one pair of alternate interior 

angles are equal, then the lines  L  and  M  are parallel.  
 

The proof which appears in the notes is also valid in neutral geometry.���� 
 

Complement to the preceding result.   One obtains the same conclusion if the measures of 
one pair of alternate exterior angles are equal, or the measures of one pair of corresponding 
angles are equal.  
 

Sketch of proof.    The reasoning in the proof of  Corollary  I I I.2.12  shows that if the 
measures of one pair of alternate exterior angles or corresponding angles are equal, then the 
measures of one pair of alternate interior angles are equal, and hence one can apply  

Proposition  I I I.2.10  to conclude that  the lines  L  and  M  are parallel.���� 
 

Special case of the preceding results.   If two lines  L  and  M   are perpendicular to a third 

line, then they are parallel.���� 
 

Corollary  I I I.2.15.  (AAS Triangle Congruence Theorem)    Suppose we have two ordered 

triples of noncollinear points  (A, B, C)  and  (D, E, F)  satisfying   d(B, C)  =  d(E, F) ,  |∠∠∠∠ABC|  

=  |∠∠∠∠DEF| , and  |∠∠∠∠CAB|  =  |∠∠∠∠FDE| .  Then we have ����ABC  ≅≅≅≅  ����DEF.  
 

Proof.    This is worked out in Exercise  V.2.1(d).���� 

 
This congruence theorem turns out to be particularly important if we do not assume the 
Fifth Postulate;  for example, see the neutral – geometric proof of the Hypotenuse – Side 

Congruence Theorem (Proposition  V.2.1  in the notes). 

 

Proposition  I I I.3.1.    Suppose that  A,  B,  C  and  D  form the vertices of a convex 

quadrilateral.  Then the open diagonal segments  (AC)  and  (BD)  have a point in common.  
 

The proof which appears in the notes is also valid in neutral geometry.���� 



 
 

Lines and planes in space 
 
 

We shall now show that some results in Section  I I I.1   on  3 – dimensional geometry can be 

proved by purely synthetic methods without using Playfair’s Postulate.  
 

Theorem  I I I.1.8.    Suppose we are given a plane P  and a line L  not contained in  P such 
that L and P  meet at the point  X.  Suppose further that there are two distinct lines  M  and N  
in P such that  X  lies on both and L  is perpendicular  to both M  and N.  Then  L  is 
perpendicular  to P.     
 

A complete synthetic proof of this theorem is fairly complicated,  and we shall isolate two of the 
main steps as separate results.  
 

Lemma  I I I.1.8A.    Let  P  be a plane,  let  x  is a point in P,  and let  L,  M  and N  be 

distinct lines passing through  X.    Then there are points  E  ∈∈∈∈    L,   F  ∈∈∈∈    M,  and   G  ∈∈∈∈    M  

such that  E∗F∗G. 
 

 
 

Proof.    Let  A  and  C  be points of  L  such that  A∗X∗C,  and let  B  and  D  be points of  N  

such that  B∗X∗D.    Since the three lines are distinct, the line  M  contains a point  Y  on the 

same side of  N  =  BD  as  A;  since the three lines are distinct and meet at  X,  it follows that  

Y  does not lie on  L  =  XA.   Since  B  and  D  lie on opposite sides of  L  =  XA,  either the 

point  Y  lies in the interior  of   ∠∠∠∠AXB   or else it lies in the interior of  ∠∠∠∠AXD.    Let  E  be a 
point of  (XA,  and let  G  be a point on  (XB  or  (XD,  depending upon whether  Y  lies in the 

interior of   ∠∠∠∠AXB   or  ∠∠∠∠AXD;  for these choices of points we have  Y  ∈∈∈∈  Int ∠∠∠∠EXG.      

Therefore the Crossbar Theorem implies that there is a point  F  ∈∈∈∈  (EG)  ∩∩∩∩  (XY,  and the 

result follows because  M  =  XY.����  
 

Lemma  I I I.1.8B.    Let  P  be a plane,  let  A  and  E  be points on opposite sides of  P,  and 

suppose that  B  and  D  be points of  P  such that   d(A, B)  =  d(E, B)  and   d(A, D)  =   

d(E, D).   If  C  is a point such that  B∗C∗D,  then  d(A, C)  =  d(E, C). 
  

 



 

Proof.    Note that the Space Separation Postulate implies there is a point  X  ∈∈∈∈  (AE)  ∩∩∩∩  P.   

In a different direction,  the hypotheses and  SSS  imply that   ����ABD  ≅≅≅≅  ����EBD,  so that   

|∠∠∠∠EBC|  =  |∠∠∠∠ABC|.  The latter in turn implies that   ����ABC  ≅≅≅≅  ����EBC  by   SAS,  which 

further implies that  d(A, C)  =  d(E, C) .����    
 

Proof of Theorem  I I I.1.8.    Let  A  be a point of  L  different from  X,  and choose  E  such 

that  E  and  A  lies on opposite sides of  L,  with  A∗X∗E  and   d(A, X)  =  d(E, X).     
 

We need to show  that if  T  is a line in  P  which passes through  X,  then  L  is perpendicular to  
P;  since we know that  L  is perpendicular to  M  and  N,  we might as well assume that  T  is 

distinct from these two lines.   Therefore  Lemma   I I I.1.8A   implies there are points  B  ∈∈∈∈  M,  

C  ∈∈∈∈  T,  and  D  ∈∈∈∈  N  which are all distinct from  X  and satisfy  B*C*D. 
 

By the hypotheses,  both  XB  and   XD  lie in  P,  and both are perpendicular to  L  (at  X),   so 

that   |∠∠∠∠AXB|  =  |∠∠∠∠EXB|  =  |∠∠∠∠AXD|  =  |∠∠∠∠EXD|  =   90°°°°.   Therefore by  SAS  we 

have   ����AXB  ≅≅≅≅  ����EXB   and   ����AXD  ≅≅≅≅  ����EXD,  which in turn imply  d(A, B)  =  d(E, B)  

and   d(A, D)  =  d(E, D).    We can now apply  Lemma   I I I.1.8B   to conclude that   d(A, C)  

=  d(E, C)  also holds. 
 

The equation in the preceding sentence and  d(A, X)  =  d(E, X)  imply   ����AXC  ≅≅≅≅  ����EXC  by  

SAS,  which  in turn implies that  |∠∠∠∠AXC|  =  |∠∠∠∠EXC|.   The  betweenness relation  A∗X∗E   

and the Supplement  Postulate for angle measures then imply that  |∠∠∠∠AXC|  =  |∠∠∠∠EXC|  =   

90°°°°,   so that  L  =  AX  is perpendicular  to  T  =  XC.   Since  T  was arbitrary, this means 

that  L  must be perpendicular  to the plane  P.����  
 

We shall prove the next two results in the reverse of the order in which they appear in the notes. 
 

Theorem  I I I.1.12.     If  L  is a line and  X  is a point in space,  then there is a unique plane 
through  X  which is perpendicular  to L.  
 

Proof.    There are two cases, depending upon whether or not  X  lies on  L.  
 

Case I I I.1.12.1.    Assume that  X  lies on  L.   
 

Existence of a perpendicular plane.     We first claim that there are two planes  Q  and  R  
which intersect in the line  L.   The line  L  contains two points  A  and  B,  and there is some 
point  C  which does not lie on  L  because the latter is a proper subset of space.   Let  Q  be the 
unique plane containing   A,  B  and  C;  since  Q  is also a proper subset of space, there is 
some point  D  not on  Q.   Let  R  be the unique plane containing  A,  B  and  D.  Then the 

planes  Q  and  R  are distinct because  D  ∈∈∈∈  R  but  D  does not belong to  Q,  and therefore  

the intersection of  Q  and  R, which contains  A  and  B  and hence contains the entire line  L,  

must be equal to  L  =  AB. 
 

Let  M  and  N  be lines in the planes  Q  and  R  which are perpendicular to  L  and pass 

through  X.   These two lines are distinct, for if  M  =  N  then  Q  and  R  would both be planes 

which contain the same pair of intersecting lines and hence we would have  Q  =  R.  Next,  let  



P  be the plane determined by the intersecting lines  M   and  N.   Then  L  is perpendicular to 

two lines in  P  through  X,  and therefore by Theorem  I I I.1.8   the line  L  and the plane  P, 

which both pass through X,  must be perpendicular.����  
 

Uniqueness of the perpendicular plane.     Suppose that  Q  and  R  are two planes which 
contain  X,  and suppose that  L  is a line through   X  is perpendicular to both  Q  and  R.    
 

 
 

(Adapted from an illustration in A. M. Welchons, W. R. Krickenberger, 

and H. R. Pearson, Solid Geometry, Ginn,  Boston, 1959.) 
 

The planes  Q  and  R  have the point  X  in common,  so they also have a line, say  K,  in 
common.    Let  E  be a point on  Q  but not on K,  let  and P  be the unique plane containing  L  

and  E.  Then the intersection of  P  and  Q  is the line  XE  =  N;  since the intersection of  Q 
and  R  is the line  K, it follows that  N  is not contained in  R.   By construction  P  and  R  have 
the point  X  in common, so it follows that  P  and  R  intersect in some line  M; this line is 
distinct from  M  because  it is contained in  R  but  N  is not.    
 

By hypothesis the line  L  is perpendicular to the planes  Q  and  R,  and  therefore  L  is 
perpendicular to the lines  M  and  N.  All three of these lines pass through  X,  and by 
construction all three lie in  P.   Thus  M and  N  are both perpendiculars to  L  at  X  in the plane  
P;  however,  this contradicts the uniqueness of perpendiculars in a plane, which was shown in  

Proposition  I I I.1.3.    The source of this contradiction was the assumption that there were two 
planes through  X  which were perpendicular to the line L,  so there can be at most one such 

plane (and by the first half of the proof we know that there is at least one such plane).����  
 

Case I I I.1.12.2.    Assume that  X  does  NOT  lie on  L.   
 

Existence of a perpendicular plane.     Let  P  be the unique plane containing  L  and  X,  and 
let  M  be the unique  line in  P  which passes through  X  and is perpendicular to  L.  As in the 
proof of the first case there is a second plane  Q  which contains  L.  Let  N  be the unique  line 
in  Q  which passes through  X  and is perpendicular to  L.  Finally, let  R  be the unique plane 
containing the intersecting lines  M  and  N; note that  R  contains  X  because  M  does.  Since  

L  is perpendicular to both  M  and  N,  Theorem  I I I.1.8  implies that  L  is perpendicular to  R.  
 

Uniqueness of the perpendicular plane.     Suppose that  Q  and  R  are two planes which 
contain  X  such that  L  is perpendicular to both  Q  and  R.   Since  X  lies on both planes it 
follows that their intersection is a line which we shall call  K.  Let  C  and  E  denote the points at 
which  L  meets  Q  and  R.   The points  C  and  E  must be distinct, for otherwise  Q  and  R  

would be two planes through   C  =  E  which are perpendicular to  L  at that common point, 
contradicting  the first case of the theorem. 
 
 



 
(Also adapted from Welchons –  Krickenberger –  Pearson, Solid Geometry.) 

 

By the perpendicularity hypotheses, both  EX  and  CX  are perpendicular to  L,  and by 
construction both lie in the unique plane  P  which contains  L  and  X.  Since there is a unique 

perpendicular to  L  through  X  in the plane  P, it follows that  EX  =  CX,  and therefore the 

intersections of these lines with  L,  which are  E  and  C, must be the same.  This contradicts 
our previous conclusion about  C  and  E;  the source of this contradiction is our assumption that 
there are two perpendiculars to  L  through  X,  and hence there can be at most one 

perpendicular plane (and by the previous discussion there is at least one such plane).���� 
  

Before proceeding to the proof of Theorem  I I I.1.9  we shall derive one simple but important 
consequence of the previous theorem. 
 

Corollary  I I I.1.12A.     If  L  is a line in space,  X  is a point on  L,  and  P  is the plane 
perpendicular to  L  at  X,  then  P  contains  every line  M  which passes through  X  and is 
perpendicular  to L.  
 

Proof.    Let  N  =  XY  be a line in  P  passing through  X,  so that  L  is perpendicular to  N;  if  

M  and  N  are the same then the conclusion follows immediately, so assume that  M  and  N  

are distinct.   If  Q  is a plane containing the lines  M  and  N,  then  Theorem  I I I.1.8  implies 

that  L  is perpendicular to Q, and therefore the uniqueness conclusion of  Theorem  I I I.1.12  

shows that  P  =  Q,  which means that  M  must be contained in  P.���� 
 

Theorem  I I I.1.9.    If  P  is a plane and  X  is a point in space,  then there is a unique line 
through  X  which is perpendicular  to P.  
 

Proof.    There are again two cases, depending upon whether or not  X  lies on  P.  
 

Case I I I.1.9.1.    Assume that  X  lies on  P.  
 

Existence of a perpendicular line.     Let  XA  are  XB  be two lines in  P  through  X.  By   

Theorem  I I I.1.12   there are planes  Q  and  R  through  X  such that  Q  is perpendicular to  
XA  and  R  is perpendicular to  XB.   Since  X  is a common point of  Q  and  R,  the latter two 
planes intersect in some line  L.   By the definition of perpendicular planes,  the line  L  is 

perpendicular to both  XA  and  XB.   These two lines lie in  P,  and therefore  Theorem  I I I.1.8    

implies that   L  is perpendicular  to  P.����  
 

Uniqueness of the perpendicular line.     Suppose that  L  and  M  are two perpendiculars to  
P  at  X.   Let  Q  be the unique plane containing the intersecting lines  L  and  M.   Since  X  lies 
in both  P  and  Q,  their intersection is a line which we shall call  N.  The preceding statements 
imply that  L  and  M  are two lines in the plane  Q  which are perpendicular to  N,  and therefore  

Proposition  I I I.1.3   implies that  L  =  M,  a contradiction.  Therefore there is at most one line 

perpendicular to  P  at  X  (and by the previous discussion there is at least one such line).����  
 



Case I I I.1.9.2.    Assume that  X  does  NOT  lie on  P.   
 

Existence of a perpendicular line.     Since  P  contains at least three points, we know that  
there is some line  L  contained in  P.   If  Q  is the plane determined by  L  and  X,  then by  

Proposition  I I I.1.4   there is a unique line  XC  in  Q  such that  C  lies on  L  and  XC  is 
perpendicular to  L.   Let  M  be a line in  P  which is perpendicular to  L  and passes through  C 
(as in the drawing on the next page). 

 
(Also adapted from Welchons –  Krickenberger –  Pearson, Solid Geometry.) 

 

The point  X  does not belong to  M  because the latter is contained in  P  and the former is not, 

so by  Proposition  I I I.1.4   there is a point  E  on  M  such that  EX is perpendicular to M.   Let  
R  denote the plane containing  M  and  X.   There are now two cases depending upon whether 

or not  C  =  E  (in the drawing the two points are distinct). 
 

If  C  =  E  then  XC  =  XE  is a line which is perpendicular to the lines L  and  M  at this 

common point, and therefore by  Theorem  I I I.1.8   the line  XE  is perpendicular to the plane 
determined by the intersecting lines  L  and  M;  since this plane is  P,  this proves the existence 

of a perpendicular line when  C  =  E. 
 

It remains to prove existence when  C  and  E  are distinct (as in the drawing).   Let  F  be a 

point on  L  distinct from  C,  and choose  X′′′′  so that  X∗E∗X′′′′  and   d(E, X)  =  d(E, X′′′′).   The 

two lines M  and  CX  are contained in the plane  R,  and each is perpendicular to  L,  and 

therefore  L  is perpendicular to  R.   Since  X′′′′  lies in  R  the line  X′′′′C  also lies in  R,  and the 

conclusion in the preceding sentence implies that  X′′′′C  is perpendicular to  L.   By  SAS  we 

have the right triangle congruence  ����CEX  ≅≅≅≅  ����CEX′′′′,  which in turn implies that  d(C, X)  =  

d(C, X′′′′).    Similarly, by  SAS  we have the right triangle congruence  ����FCX  ≅≅≅≅  ����FCX′′′′,  

which  implies that  d(F, X)  =  d(F, X′′′′).   Finally,  by  SSS  we have  ����FEX  ≅≅≅≅  ����FEX′′′′,  

which implies that  |∠∠∠∠FEX|  =  |∠∠∠∠FEX′′′′|.    Since we have   by construction,  the Supplement  

Postulate for angle measurement implies that |∠∠∠∠FEX|  =  |∠∠∠∠FEX′′′′|  =   90°°°°.  This implies that   

XX′′′′  is perpendicular to  FE;  since  XX′′′′ is also perpendicular to  CE  and the plane determined 

by the intersecting lines  CE  and  FE  is  P,  it follows that the line  XX′′′′  is perpendicular to   
P.����  
 

Note.  The proof given in the Welchons –  Krickenberger –  Pearson textbook overlooks the 

case where  C  =  E  (this is not a fatal error, but it emphasizes the need to be careful about 
checking whether  two points are always distinct). 
 

Uniqueness of the perpendicular line.     Suppose that  L  and  M  are two perpendiculars to  
P  which pass through  X.    Since  X  does not lie on  P  and the two lines are distinct, it follows 



that the points  A  and  B  at which  L  and  M  meet  P must be distinct.   If  N  is the line  AB  
and  Q  is the unique plane containing   N  and  X,  then  L  and  M  are two lines in  Q  which 
pass through  X  and are perpendicular to  L.  This contradicts the uniqueness conclusion in 

Proposition  I I I.1.4 .    The source of this contradiction is our assumption about two 
perpendiculars to  P  through  X,  and accordingly there is at most one line perpendicular to  P  

at  X  (and by the previous discussion there is at least one such line).���� 
 

General comments.   It is immediately apparent that the proofs of the preceding  3 – 

dimensional  theorems in the notes, which use vector geometry, are much shorter and simpler 
than the synthetic proofs given here.  One advantage of the latter is that they are also valid in 
neutral geometry; on the other hand,  the vector approach to perpendicular lines and planes 
in space provides a more unified approach to such properties in Euclidean geometry, 
with an added advantage that it extends fairly directly and clearly to more complicated 

situations in higher dimensions.  
 
 

Additional results about lines and planes in space 
 
 

We shall conclude with synthetic proofs for a few other  3 – dimensional results;  as in the 
preceding discussion,  all the proofs are valid in neutral geometry,  and in at last one instance 

the argument is significantly more complex than its analytic/algebraic counterpart in the notes.   

The first theorem is the result on perpendicular bisectors in  3 – dimensional space. 
 

Theorem I I I.1.13.   Let A and B be distinct points in space.  Then the set of all points that 
are equidistant from A and B is the plane which is perpendicular to the line AB and contains 
the midpoint of the segment  [AB].  
 

Proof.    Let  C  be the midpoint of  [AB].   
 

Suppose first that  X  is a point such that  d(X, A)  =  d(X, B).   The synthetic proof of the 

planar result   (Proposition  I I I.1.7)  implies that a point  X  on  AB  satisfies the given equation 

if and only if  X  =  C,  so for the rest of this paragraph assume that  X  does not lie on  AB.  If  

Q  is the plane determined  by  AB  and  X,  then the synthetic proof of  Proposition  I I I.1.7  
shows that  X  lies on the perpendicular bisector  M(X; Q)  of  [AB]  in  Q.   Now  M(X; Q)  is a 

line through  C  which is perpendicular to  AB,  and therefore by  Corollary  I I I.1.12A  the line  
M(X; Q)  is contained in the plane  P  through  C  which is perpendicular  to AB. 
 

Conversely,  suppose  that  X  is a point which lies in the plane  P  through  C  such that  P  is 
perpendicular  to AB;  as before, we may as well assume that  X  does not lie on  AB.    If  Q  is 

the plane determined  by  AB  and  X,  then the synthetic proof of the planar result   (Proposition  

I I I.1.7)  shows that   d(X, A)  =  d(X, B).���� 
 

We can also prove  HALF  of  Theorem  I I I.1.11   in neutral geometry; namely, the statements 
which imply that two lines or planes are parallel.  However, we shall not prove the other 
implications (if  U  and  V  are parallel  and the line  T is perpendicular to  U,  then  T  is also 
perpendicular to  V);  in fact, it turns out that statements of this sort are equivalent to 
Playfair’s Postulate.   
 

Theorem I I I.1.11N.   Let  P  and  Q  be distinct planes in space, and let  L  and  M  be distinct 
lines in space.  Then the following hold: 
 



(1) If both  L  and  M  are perpendicular to  P,  then  L || M.  
 

(2) If  P  ⊥⊥⊥⊥  L  and   Q  ⊥⊥⊥⊥  L,  then  P || Q. 
 

Proofs.    We shall consider the two parts of the theorem separately.   
 

Proof of  (1).       Suppose that  P  meets  L  and  M  at  A  and   B  respectively.   These two 
points are distinct, for otherwise  L  and  M  are both perpendicular to  P  at the same point and 

therefore  L  =  M.     
 

We need to prove that  L  and  M  are disjoint and coplanar, and we shall first prove that  they 
are disjoint.  If they had a common point  X, then there would be some plane  S  containing both 
lines.   Since  A  and  B  lie on  L  and  M,  both points lie in  S,  and within  S  the two lines  L  
and  M  are perpendicular to  AB  which pass through  X.   This contradicts the uniqueness 

conclusion in  Proposition  I I I.1.4,  and therefore it follows that  L  and  M  cannot have a 

common point.   

 
 

By the preceding paragraph,  it is only necessary to prove that  L  and  M  are coplanar.   Let  

BC  be a line in  P  which is perpendicular to  AB,  and choose   D  such that  C∗B∗D  and   

d(B, C)  =  d(B, D).   By  SAS  we have the right triangle congruence  ����ABD  ≅≅≅≅  ����ABC,  

which implies that  d(A, C)  =  d(A, D).   Let  E  be a point of  L  which is distinct from  A,  so  

that  EA  is perpendicular to AC  and  AD  because  L  is perpendicular to  P.   Therefore  by  

SAS  we have the right triangle congruence  ����EAD  ≅≅≅≅  ����EAC,  which implies that  d(E, C)  

=  d(E, D). 
 

The arguments in the preceding paragraphs show  that  A  and  E  are equidistant from  C  and  

D,  and therefore by  Theorem I I I.1.13  both  A  and   E  lie in the plane  Q  which is the 

perpendicular bisector of  [CD];  it follows that  L  =  AE  is also contained in  Q.   Also, since 

the line  M  is perpendicular to CD  and passes through the midpoint  B  of  [CD],  Corollary   

I I I.1.12A  implies that the line  M  is contained in this perpendicular plane  Q.   Thus we have 
shown that both  L  and  M  lie in the plane  Q,  and as noted above this completes the proof 

that  L  and  M  are parallel lines.���� 
 

Proof of  (2).       Suppose that  L  meets  P  and  Q  at  A  and   B  respectively.  These two 
points are distinct, for otherwise  P  and  Q  are both perpendicular  to  L  at the same point and 

therefore  P  =  Q.    
 

Assume that  P  and  Q  have some common point  X.  We claim that  X  does not lie on  L;  if it 
did, then it would be the point at which  L  meets  P  and also the point at which  L  meets  Q,  

so that  A  =  B,  which we know is false.   Let  R  be the unique plane containing  L  and  X.   

Then  XA  and  XB  are lines in  R  which are perpendicular to  L.  This contradicts the 

uniqueness conclusion in  Proposition  I I I.1.4 ,  and the source of the contradiction is our 
assumption that there was a point  X  on both  P  and  Q.  Therefore no such point exists, which 

means that the planes must be parallel.���� 


