RECTANGLES IN NEUTRAL GEOMETRY

This document provides details for the proof of Theorem V.3.8 in the course notes:

Suppose that a neutral plane \mathscr{P} contains at least one rectangle. Then for each pair of positive real numbers \boldsymbol{p} and \boldsymbol{q} there is a rectangle $\mathbf{A B C D}$ such that the lengths of [AB] and [CD] are equal to \boldsymbol{p} and the lengths of [AD] and [BC] are equal to \boldsymbol{q}.

There are two significant differences in notation from the course notes: First of all, the distance between two points \mathbf{X} and \mathbf{Y} is denoted by $|\mathbf{X Y}|$ in this document. Also, the geometric relationship " \mathbf{Y} is between \mathbf{X} and \mathbf{Z} " is denoted by $\mathbf{X} \mathbf{X} \mathbf{Y} \mathbf{Z}$.

Throughout this document, all points are assumed to lie in some fixed neutral plane \mathscr{T}.

Note. It may well be that NO rectangles exist in a specific neutral plane. However, the next result says that if one rectangle exists then rectangles with arbitrary lengths and widths also exist.

THEOREM 3. If one rectangle exists, then for each $r, s>0$ there is a rectangle $A B C D$ with $|A B|=|C D|=r$ and $|B C|=|A D|=5$. The proof is rather long, and several major steps in the argument will be presented as lemmas.

LEMMA 4 (Splicing Property). Suppose that $A B C D$ is a rectangle, and let $C_{1} \in \mid D C$ be a point such that $\left|D C_{1}\right|=2|D C|$. Let B_{1} be the foot of the perpendicular from C_{1} to $A B$. Then $\left|\angle D C_{1} B\right|=90^{\circ}$ and the points A, B_{1}, C_{1}, D are the vertices of a rectangle.

PROOF, First of all, the lines $A D, B C$, and $B_{1} C$, are all parallel to each other because every two of them have a common perpendicular (namely $A B$). Therefore $A D$ and $B_{1} C_{1}$ are contained in the $D-$ and C_{1} - sides of $B C$ respectively. But $\left|D C_{1}\right|=2|D C|$ and $C_{1} \in\left(D C\right.$ imply $D-C-C_{1}$ is true. This in turn implies that D and C_{1} are on opposite sides of $B C$. Since B is the common point= of the lines $A B_{1}$ and $B C$, it follows that $A-B-B_{1}$ is true.

Since $A D$ and $B_{1} C_{1}$ are parallel (they have a common perpendicular), the points B_{1} and C_{1} lie on the same side of $A D$. Hence A, B_{1}, C_{1}, D form the vertices of a convex quadrilateral. Likewise B, B_{1}, C_{1}, C form the vertices of a convex quadrilateral.

By construction, S.A.S. applies to show $\triangle A D C \cong \triangle B C C_{i}$. It follows that $|A C|=\left|B C_{1}\right|, \gamma=\left|\angle C B C_{1}\right|=|\angle D A C|=a$, anc $\eta=\left|\angle B C_{1} C\right|=|\angle A C D|$. On the other hand, if $\xi=\left|\angle C C_{1} B B_{1}\right|$ then $\alpha+B=90^{\circ}=\gamma+\xi$. Then $\alpha=\gamma$ implies $\beta=\xi$.

By A.A.S. it follows that $\triangle A B C \cong \triangle B B_{1} C_{1}$, and hence $\alpha=\delta=\left|\angle B C_{1} B_{1}\right|$. This implies that $n+t=90^{\circ}$. But then it follows that $\left|\angle D C_{1} B_{1}\right|=n+\delta=90^{\circ}$

LEMAA 5. If there is a rectangle $A B C D$ in the neutral plane under consideration, then for all $n>0$ there is a rectangle A'B'C'D' with

$$
\begin{aligned}
& \left|A^{\prime} B^{\prime}\right|=\left|C^{\prime} D^{\prime}\right|=n|A B|=n|A C|, \\
& \left|B^{\prime} C^{\prime}\right|=\left|A^{\prime} D^{\prime}\right|=|B C|=|A D| .
\end{aligned}
$$

PROOF, The case $n=2$ was done in the preceding lemma. Assume by induction that we have

$$
\begin{aligned}
& B=A_{1}, A_{2}, \ldots, A_{n}-1 \\
& C=C_{1}, C_{2}, \ldots, C_{n-1}
\end{aligned}
$$

such that

$$
\begin{aligned}
& C_{0}=D-C_{1}-\ldots-C_{n-1} \\
& A_{0}=A-A_{1}-\ldots-A_{n-1}
\end{aligned}
$$

$|A B|+|C D|=\left|A_{i+1} A_{i}\right|=\left|C_{i+1} C_{i}\right|$, and $C_{i} A_{i} \perp A B, C D$ (perpendicular to both).

Apply Lemme 4 to the rectangle $A_{n-2} A_{n-1} C_{n-1} C_{n-2}$ to get A_{n} and c_{n} with $A_{n-2}-A_{n-1}-A_{n} C_{n-2}-c_{n-1}-c_{n},\left|A_{n} A_{n-1}\right|=\left|c_{n} c_{n-1}\right|=$ $|A B|=|C D|$, and $A_{n} C_{n} A B, C D$

COROLLARY 6. If a rectangle $A B C D$ exists, then for arbitrary positive integers m and n there is a rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $\left|A^{\prime} B^{\prime}\right|=n|A B|,\left|B^{\prime} C^{\prime}\right|=m|B C|$.

PROOF, APply the preceding lemma to get a rectangle $A^{\prime \prime} B^{n} C^{n} D^{n}$ with $\left|A^{\prime \prime} B^{\prime \prime}\right|=n|A B|,\left|B^{n} C^{n}\right|=|B C|$. Now apply the lemma once again to get a new rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $\left|A^{\prime} B^{\prime}\right|=|A B|,\left|B^{\prime} C^{\prime}\right|=m\left|B^{\prime \prime} C^{\prime \prime}\right|$. It follows that $\left|A^{\prime} B^{\prime}\right|=n|A B|$ and $\left|B^{\prime} C^{\prime}\right|=m|B C|$

The next result allows us to take a large rectangle and trim it to a smaller size.

LEMMA 7. Let $A B C D$ be a rectangle, let $X \in(C D)$, and let y be the foot O the perpendicular from X to $A B$. Then $Y \in(A B)$ and A, Y, X, D are the vertices of a rectangle.

PROOF, The lines $A D, X Y$, and $B C$ are all parallel (they are all perpendicular to $A B)$. Hence $A D \subseteq D-s i a j \quad X Y$ and $B C \subset C-s i d e \quad X Y$. But $C-X-D$ (since X lies on (BC)) implies that C anc D lie on opposite sides of $X Y$. Hence $A D$ anc $B C$ also lie entirely on opposite sides of $X Y$. It follows that ($A B$) $\cap X Y \neq \varnothing$. Since $A B \cap X Y=\{X\}$, this implies $A-X-B$ must be true.

Label the angle measures as indicatec in the diagram above:
$\alpha=|\angle Y D X|$
$\xi=|\angle C Y X|$
$B=|\angle D Y X|$
$\eta=|\angle X C Y|$
$\gamma=|\angle A D Y|$
$\zeta=|\angle C Y B|$
$\delta=|\angle A Y D|$
$\omega=|\angle Y C B|$.

Since $A D\|X Y, B C\| X Y$ and $A B \| C D, i t$ EOllows that A, Y, X, D anc Y, B, C, X form the vertices of a convex quacirilateral. Therefore we nave $D \in \operatorname{Int} \angle A Y X, Y \in \operatorname{Int} \angle A D X, C \in I n t \angle X B, \quad a n d \quad Y \in \operatorname{Int} \angle X C B$. These imply the following four equations:

$$
\begin{array}{ll}
\alpha+\gamma=90^{\circ} & \xi+\zeta=90^{\circ} \\
\delta+\beta=90^{\circ} & \eta+\omega=90^{\circ}
\end{array}
$$

The Saccheri-Legendre Theorem implies the following adaitional inecualities:

$$
\gamma \div i \leq 90^{\circ} \quad \zeta+\omega \leq 90^{\circ} .
$$

These together imply $\alpha+\beta \geq 90^{\circ}$ and $\boldsymbol{\xi}+\eta \geq 90^{\circ}$. Therefore the Saccheri-Legendre Theorem implies $|\angle D X Y|,|\angle C X Y| \leq 90^{\circ}$. On the other hand, $C-X-D$ implies $180^{\circ}=|\angle D X Y|+|\angle C X Y|$. This can happen only if both $|\angle D X Y|$ and $|\angle C X Y|$ are equal to 90°. But this now implies $X Y$ is perpendicular to $C D$, so that A, Y, X, D form the vertices of a rectangle

PROOF OF THEOREM 3. Given rectangle $A B C D$ and $r, s>0$, first find positive integers n and m so that $I<n|A B|$ and $s<m|A D|$. Form $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $\left|A^{\prime} B^{\prime}\right|=n|A B|,\left|C^{\prime} D^{\prime}\right|=m|C D|$. Let

$X \in\left(D^{\prime} C^{\prime}\right)$ so that $\left|D^{\prime} X^{\prime}\right|=I$, and let Y be the foot of the perpendicular from X to $A ' B '$. Then by Lemma 3.7 one obtains rectangle $A^{\prime} Y X D$ with $\left|A^{\prime} Y\right|=I$ and $|Y X|=\left|A^{\prime} D^{\prime}\right|=m|A D|$. Now let $Z \in(Y X)$ satisfy $|Z Y|=s$, and let W be the foot of the perpendicular from Z to $A^{\prime} D^{\prime}$. Then $A ', Y, Z, W$ form the vertices of a rectangle with $\left|A^{\prime} y\right|=I$ and $|Y Z|=s$

