PLANE SEPARATION AND VECTOR ALGEBRA

This is a more detailed look at the interpretation of plane separation in terms of coordinates. We shall verify in detail that for each line L the set of points not on L satisfies the conditions in the Plane Separation Postulate.

If L is a line in the coordinate plane \mathbb{R}^{2}, then L is defined by an equation of the form

$$
0=g(x, y)=A x+B y+C
$$

where at least on of A, B is nonzero. The two half-planes determined by L are the sets where $g(x, y)>0$ and $g(x, y)<0$. We shall denote these half-planes (or sides of the line $L)$ by H_{1} and H_{2} respectively.

The first thing to notice is that H_{1} and H_{2} are both nonempty. For each scalar k, consider the point $V_{k}=(k A, k B)$. We then have $g(x, y)=k\left(A^{2}+B^{2}\right)+C$, and since at least one of A, B is nonzero it follows that the coefficient $A^{2}+B^{2}$ is positive. Therefore we can say that $g\left(V_{k}\right)=g(k A, k B)$ will be positive if $k>-C /\left(A^{2}+B^{2}\right)$ and $g\left(V_{k}\right)=g(k A, k B)$ will be negative if $k<-C /\left(A^{2}+B^{2}\right)$. Since there are infinitely values of k satisfying either of these inequalities, it follows that in fact both H_{1} and H_{2} contain infinitely many points.

We also need to check that H_{1} and H_{2} are both convex; in other words, if $P=(x, y)$ and $Q=(u, v)$ belong to one of these half-planes and $0<t<1$, then the point $P+t(Q-P)$ also belongs to the same half-plane. The key to this is the following chain of identities:

$$
\begin{gathered}
g(P+t(Q-P))=g(x+t(u-x), y+t(v-y))=A(x+t(u-x))+B(y+t(v-y))= \\
(1-t)(A x+B y)+t(A x+B y)+C=(1-t) \cdot g(P)+t \cdot g(Q)
\end{gathered}
$$

If P and Q lie on the same side of L, then either $g(P)$ and $g(Q)$ are both positive or they are both negative. Note that t and $1-t$ are both positive in either case. If $g(P)$ and $g(Q)$ are positive, then it follows that

$$
g(P+t(Q-P))=(1-t) \cdot g(P)+t \cdot g(Q)
$$

must also be positive since it is a sum of two products of positive numbers, while if $g(P)$ and $g(Q)$ are negative, then it follows that the expression is a sum of two products, each with one positive and one negative factor, and hence in this case $g(P+t(Q-P))$ must be negative.

Finally, we need to show if P is in one half-plane and Q is in the other, then the open segment $(P Q)$ and the line L have a point in common. In the terms of the preceding discussions, this means that we can find some t such that $0<t<1$ and $g(P+t(Q-P))=$ 0 .

We shall only consider the case where $g(P)<0<g(Q)$; the other case, in which $g(P)>0>g(Q)$, can be obtained by interchanging the roles of P and Q in the argument below. By the fundamental identity displayed above, we need to find a value of t such that

$$
0=(1-t) g(P)+t g(Q)=g(P)+t(g(Q)-g(P))
$$

The solution to this equation is

$$
t=\frac{-g(P)}{g(Q)-g(P)}
$$

where the denominator is positive since $g(Q)>g(P)$. By assumption $g(P)$ is negative, and therefore the entire expression for t is positive. Furthermore, we also have $0<-g(P)<$ $g(Q)-g(P)$, so it also follows that $t<1$. Therefore, if we take t as given above, then the point $P+t(Q-P)$ will lie on both the open segment $(P Q)$ and the line $L . ■$

