
Calculus and the centroid of a triangle 
 
 

The goal of this document is to verify the following physical assertion, which is presented 

immediately after the proof of Theorem  I I I.4.1:   
 

If  X  is the solid triangular region in  RRRR
2
  of uniform density whose vertices 

are the noncollinear points  A, B  and C,  then the center of mass for  X  is 

given by  (1/3) ·  [A  +  B  +  C]. 
 

There are two parts to our argument, the first of which is the following  “physically obvious” 
statement about the effect of rigid motions (or Galilean transformations) on centroids:   
 

Theorem 1.    Let  X  be a subset of  RRRR
2
  which is measurable in the sense that one can define 

its area by some reasonable method, let  z  denote the centroid of  X  defined by the usual sorts 

of formulas from integral calculus, and let  G  be a Galilean transformation of  RRRR
2
.  Then  G(z)  

is the centroid of the subset  G[X]. 
 

 
 

(Source:  http://www.math.cornell.edu/~mec/Summer2008/youssef/Groups/images/triangle_rotation.jpg) 
 

Although this statement corresponds to everyday experience with physical objects, writing up a 
full mathematical proof is considerably more complicated than one might expect (among other 
things, it is necessary to be precise about a reasonable method for defining area).  Details will 
be given at the end of this document. 
 

If  G  is a Galilean transformation of  RRRR
2
,  then the results of Unit  I I  show that  G  sends   

(1/3) ·  [A  +  B  +  C]  to  (1/3) ·  [G(A)  +  G(B)  +  G(C)],  and therefore the if the centroid 

formula is true for  X  then it is also true for  G[X].  Consequently, it will suffice to prove the 

centroid formula for a class  K  of triangles   ����DEF  such that every triangle is congruent to a 
triangle in F.  The second part of the verification  is to show that the formula is true for a suitable 
family of this type. 
 

CLAIM.   Every triangle  ����ABC  in  RRRR
2
  is congruent to a triangle whose vertices are  (p, 0), 

(0, h)  and  (– q, 0), where  p  and  h  are positive real numbers and  q  is a nonnegative real 

number. 
 

 



 
Proof of the claim.    We know that the triangle has at least two acute angles, and without loss 
of generality we may as well assume the vertices of two such angles are  A  and  C.   In this 

case Corollary I I I.4.1 implies that the foot  D  of the perpendicular  from  B  to AC  lies 
between  A  and  C  (see the drawing above).    Then, as the drawing suggests,  there is a 

Galilean transformation  G  be a Galilean transformation sending line  AC  to the  x – axis such 

that  D  is sent to the origin, the first coordinate of  A  is negative, the first coordinate of  C  is 
positive, and the second coordinate of  D  is positive (the explicit construction of  G  is left to the 
reader as an exercise).�   
 

By the preceding discussion, the verification of the centroid formula reduces to doing so for all 
triangles like those in the drawing; in other words, we need to show that the standard integral 

calculus formulas yield the value   (1/3) ·  (p – q, h)  for the centroid of the closed triangular  

region bounded by ����ABC. 
 

For the sake of simplifying the algebra, we shall first consider the special case where  q  =  0. 
 

 
 

By construction the line  AB  is defined by the equation  y  =  h  –  (hx/p),  and the standard 

centroid formulas from integral calculus immediately yield the moment of the solid triangular 

region with respect to the  y – axis.  Similarly, if we rewrite the equation for the line in the form  

x  =  p  –  (py/h),  we get the moment of the triangular region with respect to the   x – axis:   
 

Formula 2.   The moments of the solid triangular region with respect to the  x –  and  y – axes 

are equal to  (1/6) ·  p
2

 h  and  (1/6) ·  ph
2
  respectively.   

 

The derivation of this formula is a routine exercise in integral calculus.� 
 

Derivation of the centroid formula for the triangles in the Claim.   Let  M(x)  and  M(y)  

denote the moments for the solid triangular region of  ����ABC   with respect to the  y –  and   

x – axes,  let  M++++(x)  and  M++++(y)  denote the corresponding moments for the solid triangular 

region of  ����ABD,  and let  M–––– (x)  and  M–––– (y)  denote the corresponding moments for the solid 

triangular region of  ����ACD.    The moments   M++++(x)  and  M++++(y)  are given by Formula 2, and a 

similar argument shows that   M–––– (x)  and  M–––– (y)  are given by   – (1/6) ·  q
2

 h   and   (1/6) ·  q h
2
  

respectively.    Therefore the total moments are given as follows: 
 

M(x)   =   M++++(x)  +  M–––– (x)   =    (1/6) ·  p
2

 h  –  (1/6) ·  q
2

 h 
 

M(y)   =   M++++(y)  +  M–––– (y)   =    (1/6) ·  p h
2
  +  (1/6) ·  q h

2
 

 

The area of the solid triangular region for  ����ABC   is given by  S  =  ½ ( p + q ) h, and 

therefore the coordinates of the centroid are given by  x*  =  M(x)/S  =  ( p + q ) /3  and  y*  =  

M(y)/S  =  h/3, which is what we wanted to prove.�  



 
 

Centroids and Galilean transformations of the plane 
 
 

The preceding results show that the proof the centroid formula  for an arbitrary solid  triangular 

region in the plane will follow once we have verified Theorem 1.   We begin by noting that if the 
conclusion of the theorem is valid for two Galilean transformations  G1  and  G2,  then it follows 
immediately that the conclusion is also true for the composite transformation  G1 G2.  Since an 
arbitrary Galilean transformation of the plane can be expressed as a composite of  
 

(1)  a  translation  G(x)   =   x  +  v0,  where  v0  is some vector in the plane, 
 

(2)  the reflection  G(x, y)  =   (x, – y) , 
 

(3)  a  rotation  through some angle  θθθθ, 
 

this means it will suffice to prove the theorem for transformations of these three types, and we 
shall verify each case individually.   
 
 

Rigid motions  and moments for point masses 
 
 

If  W  is a closed region of uniform density in the plane, then the  x –  and  y –  coordinates of 

its centroid are given by first computing its moment integrals with respect to these axes and 
then dividing each by the area of  W.  The computations of the moment integrals follow a 
standard approach for applying integrals to measure quantities.  Specifically, one starts by 
cutting  W  into a large number of small nonoverlapping pieces, so that the  total moments are 
the sums of the moments of the pieces.  Next, one approximates the moments of the pieces by 
moments of small point masses, where the points in question belong to the respective pieces 
and the mass of a point is just the area of that piece.  Finally, one takes limits over such 
decompositions of   W  as the maximum diameter of the  pieces goes to zero.   Fundamental 
results from the theory of real variables, combined with reasonable assumptions about the 
values of moments, then imply that the limits give integral formulas for the moments of  W  with 
respect to the  coordinate  axes. 
 

The remarks in the preceding paragraph suggest that a crucial step in verifying Theorem  1  is 
to compute the effect of a Galilean transformation on the moments of a point mass. 
 

Theorem 3.    Let  P  =  (x, y)  be a point in  RRRR
2
 with mass equal to  m ,  let  M1(P)  and  M2(P)  

denote its moments with respect to the  y –  and  x –  axes ,  and let  G  be a Galilean 

transformation of  RRRR
2  

which is a translation, reflection or rotation as above.  Then the moments 

of  Q  =  G(P)  with respect to the coordinate axes are given as follows: 
 

(1)    If  G(x)   =   x  +  v0,  where  v0  =  (a, b) ,  then  M1(Q)  =   M1(P) + a m   and  

M2(Q)  =   M2(P) + b m. 
 

(2)    If  G(x, y)  =   (x, – y) ,  then  M1(Q)  =   M1(P)  and   M2(Q)  =  – M2(P). 
 

(3)    If  G  is a counterclockwise rotation through some angle  θθθθ,  then we have  M1(Q)  

=   M1(P) cos θ θ θ θ –    M2(P) sin θθθθ   and    M2(Q)  =   M2(P) cos θ θ θ θ +    M1(P) sin θθθθ. 



 
Proof.    We shall verify the assertions in the stated order. 
 

Verification of  (1).   By definition  M1(P)  =  x m  and  M2(P)  =  y m,  and for the same reasons  

M1(Q)  =  (x + a)  m  and  M2(Q)  =  (y + b)  m. 
 

Verification of  (2).   Once again  M1(P)  =  x m  and  M2(P)  =  y m,  and for the same reasons  

M1(Q)  =  x m  and  M2(Q)  =  – y m. 
 

Verification of  (3).   This case is slightly less trivial.  As the drawing below suggests, a rotation 

through an angle  θθθθ        sends  P  =  (x, y)  to  Q  =  (x cos θ θ θ θ –    y sin θθθθ ,  y cos θ θ θ θ +    x sin θθθθ).  
 
    

 
 

By definition the moments at  Q  are equal to  m  times its coordinates, and this yields the 
formula in the  remaining  case.� 
 
 

Proof of Theorem 1 
 
 
Since Galilean transformations preserve areas, we know that the areas of  X  and  G[X]  are 
equal to the same value which we shall call  C.  The next step is to compute the moments of 

G[X] with respect to the standard coordinate axes, and if we apply Theorem 3 we see that these 
moments given by the integrals on the next page.  In analogy with previous notation, if    W  is a 
closed region of uniform density in the plane, then  M1(W)  and  M2(W)  will are its moments with 

respect to the  y –  and  x –  axes .   

 
 



The integral formulas defining the moments of W with respect to the y− and x−axes
are given by

M1(W ) =

∫ ∫

W

u du dv , M2(W ) =

∫ ∫

W

v du dv

and the centroid coordinates are given by

(u, v) =

(

M1(W )

C
,
M2(W )

C

)

.

Similarly, the moments of G[W ] with respect to these axes are given as follows in
the three basic cases. Throughout this discussion we adopt the notational convention
G(u, v) = (x, y).

Translations. For translations we have x = u + a and y = v + b, so that

M1(G[W ]) =

∫ ∫

W

u + a du dv = M1(W ) + aC ,

M2(G[W ]) =

∫ ∫

W

v + b du dv = M2(W ) + bC .

If we divide both of these equations by the area C, we see that the centroid of G[W ] has
coordinates (u + a, v + b).

Reflections. For the reflection in the second case we have x = u and y = −v, so that

M1(G[W ]) =

∫ ∫

W

u du dv = M1(W ) ,

M2(G[W ]) =

∫ ∫

W

−v du dv = −M2(W ) .

If we divide both of these equations by the area C, we see that the centroid of G[W ] has
coordinates (u,−v).

Rotations. For the rotations in the second case we have x = u cos θ − v sin θ and
y = v cos θ + u sin θ, so that

M1(G[W ]) =

∫ ∫

W

u cos θ − v sin θ du dv = M1(W ) cos θ − M2(W ) sin θ ,

M2(G[W ]) =

∫ ∫

W

v cos θ + u sin θ du dv = M2(W ) cos θ + M1(W ) sin θ .

If we divide both of these equations by the area C, we see that the centroid of G[W ] has
coordinates

(u cos θ − v sin θ, v cos θ + u sin θ) = G(u, v) .


