A VECTOR PROOF OF THE VERTICAL ANGLE THEOREM

Throughout this course there are many examples of theorems which are much easier to verify with analytic methods - generally formulated in terms of vector geometry - than with the synthetic methods of classical Greek geometry. However, there is also a significant number of theorems for which the synthetic arguments are better, and this is one reason for employing a combined synthetic-analytic approach to geometry. To illustrate this point, we shall give a proof of the Vertical Angle Theorem (Theorem II.3.7 in the notes) using vector geometry.

RECALL: The hypothesis of the Vertical Angle Theorem is that we have four distinct points A, B, C, D on two lines such that $A * X * C$ and $B * X * D$ hold, and the objective is to prove that $|\angle A X B|=|\angle C X D|$.

Proof using vector geometry. By Theorem II.2.3 the betweenness conditions imply that

$$
C=X+t(A-X), \quad D=X+u(B-X)
$$

where t and u are both negative. For the sake of notational simplicity write $\mathbf{v}=V-X$, where V is A, B, C or D. Then we have $\mathbf{c}=t \mathbf{a}$ and $\mathbf{d}=u \mathbf{d}$, and hence the cosine of $\angle C X D$ is given by

$$
\begin{array}{r}
\cos \angle C X D=\frac{\langle\mathbf{c}, \mathbf{d}\rangle}{|\mathbf{c}||\mathbf{d}|}=\frac{\langle t \mathbf{a}, u \mathbf{b}\rangle}{|t \mathbf{a}||u \mathbf{b}|}= \\
\frac{t u\langle\mathbf{a}, \mathbf{b}\rangle}{|t||u||\mathbf{a}||\mathbf{b}|}
\end{array}=\operatorname{sgn}(t) \operatorname{sgn}(u) \cdot \frac{\langle\mathbf{a}, \mathbf{b}\rangle}{|\mathbf{a}||\mathbf{b}|}
$$

where the function $\operatorname{sgn}(y)$ is $+1,0$ or -1 depending upon whether y is positive, negative or zero. Since both t and u are negative we have $\operatorname{sgn}(t)=\operatorname{sgn}(u)=-1$, so that the product of these two values is +1 . Therefore the right hand expression in the chain of equations is equal to

$$
\frac{\langle\mathbf{a}, \mathbf{b}\rangle}{|\mathbf{a}||\mathbf{b}|}=\cos \angle A X B
$$

and therefore we have $\cos \angle C X D=\cos \angle A X B$. Since the cosine function is $1-1$ from the open interval $\left(0^{\circ}, 180^{\circ}\right)$ to $(-1,1)$, it follows that $|\angle C X D|=|\angle A X B|$..

