SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

Here are the solutions to the additional exercises in betsepexercises.pdf.

B1. Let \mathbf{y} and \mathbf{z} be distinct points of L; we claim that \mathbf{x} , \mathbf{y} and \mathbf{z} are not collinear. If there were some line M containing them, then we would have M = L since both lines contain the last two points; however, we know that $\mathbf{x} \notin L$, so this is impossible.

To show the existence of a plane containing L and \mathbf{x} , let P be the unique plane containing \mathbf{x} , \mathbf{y} and \mathbf{z} . Since \mathbf{y} and \mathbf{z} are in P, the axioms imply that the line joining them, which is L, must be contained in P. To see that there is only one plane containing L and \mathbf{x} , notice that a plane Q which contains both of these will automatically contain \mathbf{y} and \mathbf{z} . Since there is only one plane containing \mathbf{x} , \mathbf{y} and \mathbf{z} , it follows that Q must be identical to P.

B2. By the previous exercises, there is a unique plane P containing X and K. Let A, B, C be the points where K meets the lines L, M, N respectively. Then we have the following:

- (1) Since X and A lie on P, the line XA = L is contained in P.
- (2) Since X and B lie on P, the line XB = M is contained in P.
- (3) Since X and C lie on P, the line XC = N is contained in P.

Therefore P contains each of the lines K, L, M, N.

B3. Since A * B * C and X * Y * Z are assumed, the conditions on the distances imply that

$$d(A,B) = d(A,C) - d(B,C) = d(X,Z) - d(Y,Z) = d(X,Y)$$

which is what we wanted to prove.

B4. If $X \in (AB)$, then A * X * B is true. By assumption, we have A * B * C and therefore Proposition II.4 implies that A * X * C is true, so that $X \in (AC)$. [Note: We are actually using an alternate form of this result; namely, W * U * T and W * V * U imply W * V * T. However, this follows from the stated form -T * U * W and U * V * W imply T * V * W because P * Q * R and R * Q * P are equivalent conditions.]

B5. Both of the rays [AB] and [BA] are contained in the line AB, so we have $[AB \cup [BA \subset AB]$. Conversely, suppose that $X \in AB$, and write X = A + t(B - A) for some scalar t. If $t \neq 0$ then $X \in [AB]$, while if t < 0 then we have X * B * A, and in fact we also have

$$X = B + (1-t)(B-A)$$
.

Since t < 0, it follows that 1 - t > 1 and therefore $X \in [BA.\blacksquare$

B6. Since A * B * C holds, we know that C = A + v(B - A) where v > 1.

If $X \in [AB]$, then X = A + t(B - A) where $0 \le t \le 1$ and hence $X \in [AB]$. If $X \in [BC]$, then X = B + s(C - B) where $s \ge 0$; using the equation in the preceding paragraph, we may use this to rewrite X as a linear combination of A and B as follows:

$$X = B + s[A + v(B - A) - B] = (1 + vs - s)B + (s - vs)A = A + (1 + vs - s)(B - A)$$

Since $s \ge 0$ and v > 1, it follows that 1 + s - vs > 1, and therefore we see that $X \in [AB]$. Hence $[AB] \cup [BC]$ is contained in [AB].

Conversely, suppose that $X \in [AB]$ and write X = A + t(B - A) where $t \ge 0$. If $t \le 1$, then we know that $X \in [AB]$. Suppose now that t > 1. By the equation in the first paragraph we have

$$A = \frac{1}{1-v}C + \frac{-v}{1-v}B$$

and therefore after substitution and some algebraic calculation we may rewrite X as a linear combination of B and C as follows:

$$X = B + \frac{1-t}{1-v}(C-B)$$

Since t, v > 1 it follows that the numerator and denominator of (1 - t)/(1 - v) are both negative, so that the quotient is positive, and therefore it follows that X must lie on [BC]. Hence we have $[AB \subset [AB] \cup [BC]$, and if we combine this with the previous paragraph we conclude that $[AB = [AB] \cup [BC]$.

B7. We shall follow the hint and eliminate all of the alternatives. In both cases the points X and Y are on M but not equal to A, and since L and M can only have the point A in common it follows that neither X nor Y lies on L. Therefore in each case either X and Y lie on the same side of L or else they lie on opposite sides of L.

For part (a), we are given that A * X * Y, and we want to show that X and Y cannot lie on opposite sides of L. However, if they did, then there would be some point C such that $C \in L$ and X * C * Y. Now C would have to be a point of M, and since A is the only common point of L and M it would follow that A = C, so that X * A * Y. However, we know that A * X * Y, and thus we cannot have X * A * Y. This is a contradiction, and the source is our assumption that X and Y were on opposite sides of L; hence they must be on the same side of L.

For part (b), we are given that X * A * Y, and we want to show that X and Y cannot lie on the same side of L. But if they did, then by convexity all points of (XY) would also lie on that half-plane, and we know that $A \in (XY) \cap L$ does not. This is a contradiction, and the source is our assumption that X and Y were on the same side of L; hence they must be on opposite sides of L.

B8. We first observe that all points of (AC lie on a common side of AB, and likewise for (BD). If $X \in (AC)$, then either X = C, A * C * X or A * X * C holds. In each case X lies on the same side of AB as C. The proof for (BD) can be obtained by replacing A and C with B and D respectively. By assumption, C lies on one side of AB, say H, and D lies on the other, say K. We can now use the preceding paragraph to conclude that $(AC \subset H \text{ and } (BD \subset K)$. Since H and K have no points in common, the same is true for (AC and (BD). Furthermore, since AC meets AB in A and BD meets AB in B, it follows that A cannot lie on [BD] and B cannot lie on [AC]. If we combine the conclusions of the preceding two sentences, we see that [AC] and [BD] have no points in common.

B9. We know that [AB] is contained in $\triangle ABC \cap AB$. We shall follow the hint and show that if $X \in \triangle ABC$ but $X \notin [AB]$, then $X \notin AB$.

If X = C, then the conclusion follows because $C \notin AB$ by assumption. We are now left with the cases where $X \in (AC)$ or $X \in (BC)$; since the argument in the second case is the same as the argument in the first with A replaced by B, it is enough to show that $X \notin AB$ if $X \in (AC)$. If we did have $X \in (AC)$ and $X \in AB$, then it would follow that the line L containing A and X would be equal to AB. But A, X, C all lie on a single lie by assumption, and this line must be L = AB, which means that all three vertices of ΔABC would lie on L. This is a contradiction, and the source is our assumption that (AC) and AB have a point in common. Therefore (AC) and [AB] do not have any points in common; as noted before the same conclusion will follow for (BC) and [AB], and thus we see that no points of $[AC] - \{A\}$ or $[BC] - \{B\}$ can lie on the line AB, so that $\Delta ABC \cap AB$ must be equal to [AB].

B10. In each of these problems, we need to rewrite the line equation in the form g(x, y) = 0, and then we need to compare the signs of g(X) and g(Y).

(a) In this case we may take g(x, y) = 9x - 4y - 7. We have g(3, 6) = -3 < 0 and g(1,7) = -26 < 0, so the two points lie on the same side of L.

(b) In this case we may take g(x, y) = 3x - y - 7. We have g(8, 5) = 12 > 0 and g(-2, 4) = -29 < 0, so the two points lie on opposite sides of L.

(c) In this case we may take g(x, y) = 2x + 3y + 5. We have g(7, -6) = 1 > 0 and g(4, -8) = -11 < 0, so the two points lie on opposite sides of L.

(d) In this case we may take g(x, y) = 7x + 3y - 2. We have g(0, 1) = 1 > 0 and g(-2, 6) = 2 > 0, so the two points lie on the same side of L.