SOLUTIONS TO ADDITIONAL EXERCISES FOR II. 1 AND II. 2

Here are the solutions to the additional exercises in betsepexercises.pdf.
B1. Let \mathbf{y} and \mathbf{z} be distinct points of L; we claim that \mathbf{x}, \mathbf{y} and \mathbf{z} are not collinear. If there were some line M containing them, then we would have $M=L$ since both lines contain the last two points; however, we know that $\mathbf{x} \notin L$, so this is impossible.

To show the existence of a plane containing L and \mathbf{x}, let P be the unique plane containing \mathbf{x}, \mathbf{y} and \mathbf{z}. Since \mathbf{y} and \mathbf{z} are in P, the axioms imply that the line joining them, which is L, must be contained in P. To see that there is only one plane containing L and \mathbf{x}, notice that a plane Q which contains both of these will automatically contain \mathbf{y} and \mathbf{z}. Since there is only one plane containing \mathbf{x}, \mathbf{y} and \mathbf{z}, it follows that Q must be identical to P.■

B2. By the previous exercises, there is a unique plane P containing X and K. Let A, B, C be the points where K meets the lines L, M, N respectively. Then we have the following:
(1) Since X and A lie on P, the line $X A=L$ is contained in P.
(2) Since X and B lie on P, the line $X B=M$ is contained in P.
(3) Since X and C lie on P, the line $X C=N$ is contained in P.

Therefore P contains each of the lines K, L, M, N.■
B3. Since $A * B * C$ and $X * Y * Z$ are assumed, the conditions on the distances imply that

$$
d(A, B)=d(A, C)-d(B, C)=d(X, Z)-d(Y, Z)=d(X, Y)
$$

which is what we wanted to prove.■
B4. If $X \in(A B)$, then $A * X * B$ is true. By assumption, we have $A * B * C$ and therefore Proposition II. 4 implies that $A * X * C$ is true, so that $X \in(A C)$. [Note: We are actually using an alternate form of this result; namely, $W * U * T$ and $W * V * U$ imply $W * V * T$. However, this follows from the stated form $-T * U * W$ and $U * V * W$ imply $T * V * W$ because $P * Q * R$ and $R * Q * P$ are equivalent conditions.]

B5. Both of the rays $[A B$ and $[B A$ are contained in the line $A B$, so we have $[A B \cup[B A \subset A B$. Conversely, suppose that $X \in A B$, and write $X=A+t(B-A)$ for some scalar t. If $t \neq 0$ then $X \in[A B$, while if $t<0$ then we have $X * B * A$, and in fact we also have

$$
X=B+(1-t)(B-A)
$$

Since $t<0$, it follows that $1-t>1$ and therefore $X \in[B A$.
B6. Since $A * B * C$ holds, we know that $C=A+v(B-A)$ where $v>1$.

If $X \in[A B]$, then $X=A+t(B-A)$ where $0 \leq t \leq 1$ and hence $X \in[A B$. If $X \in[B C$, then $X=B+s(C-B)$ where $s \geq 0$; using the equation in the preceding paragraph, we may use this to rewrite X as a linear combination of A and B as follows:
$X=B+s[A+v(B-A)-B]=(1+v s-s) B+(s-v s) A=A+(1+v s-s)(B-A)$
Since $s \geq 0$ and $v>1$, it follows that $1+s-v s>1$, and therefore we see that $X \in[A B$. Hence $[A B] \cup[B C$ is contained in $[A B$.

Conversely, suppose that $X \in[A B$ and write $X=A+t(B-A)$ where $t \geq 0$. If $t \leq 1$, then we know that $X \in[A B]$. Suppose now that $t>1$. By the equation in the first paragraph we have

$$
A=\frac{1}{1-v} C+\frac{-v}{1-v} B
$$

and therefore after substitution and some algebraic calculation we may rewrite X as a linear combination of B and C as follows:

$$
X=B+\frac{1-t}{1-v}(C-B)
$$

Since $t, v>1$ it follows that the numerator and denominator of $(1-t) /(1-v)$ are both negative, so that the quotient is positive, and therefore it follows that X must lie on $[B C$. Hence we have $[A B \subset[A B] \cup[B C$, and if we combine this with the previous paragraph we conclude that $[A B=[A B] \cup[B C . \square$

B7. We shall follow the hint and eliminate all of the alternatives. In both cases the points X and Y are on M but not equal to A, and since L and M can only have the point A in common it follows that neither X nor Y lies on L. Therefore in each case either X and Y lie on the same side of L or else they lie on opposite sides of L.

For part (a), we are given that $A * X * Y$, and we want to show that X and Y cannot lie on opposite sides of L. However, if they did, then there would be some point C such that $C \in L$ and $X * C * Y$. Now C would have to be a point of M, and since A is the only common point of L and M it would follow that $A=C$, so that $X * A * Y$. However, we know that $A * X * Y$, and thus we cannot have $X * A * Y$. This is a contradiction, and the source is our assumption that X and Y were on opposite sides of L; hence they must be on the same side of L.

For part (b), we are given that $X * A * Y$, and we want to show that X and Y cannot lie on the same side of L. But if they did, then by convexity all points of $(X Y)$ would also lie on that half-plane, and we know that $A \in(X Y) \cap L$ does not. This is a contradiction, and the source is our assumption that X and Y were on the same side of L; hence they must be on opposite sides of L.■

B8. We first observe that all points of ($A C$ lie on a common side of $A B$, and likewise for $(B D$. If $X \in(A C$, then either $X=C, A * C * X$ or $A * X * C$ holds. In each case X lies on the same side of $A B$ as C. The proof for ($B D$ can be obtained by replacing A and C with B and D respectively.

By assumption, C lies on one side of $A B$, say H, and D lies on the other, say K. We can now use the preceding paragraph to conclude that $(A C \subset H$ and $(B D \subset K$. Since H and K have no points in common, the same is true for $(A C$ and $(B D$. Furthermore, since $A C$ meets $A B$ in A and $B D$ meets $A B$ in B, it follows that A cannot lie on $[B D$ and B cannot lie on $[A C$. If we combine the conclusions of the preceding two sentences, we see that $[A C$ and $[B D$ have no points in common.

B9. We know that $[A B]$ is contained in $\triangle A B C \cap A B$. We shall follow the hint and show that if $X \in \triangle A B C$ but $X \notin[A B]$, then $X \notin A B$.

If $X=C$, then the conclusion follows because $C \notin A B$ by assumption. We are now left with the cases where $X \in(A C)$ or $X \in(B C)$; since the argument in the second case is the same as the argument in the first with A replaced by B, it is enough to show that $X \notin A B$ if $X \in(A C)$. If we did have $X \in(A C)$ and $X \in A B$, then it would follow that the line L containing A and X would be equal to $A B$. But A, X, C all lie on a single lie by assumption, and this line must be $L=A B$, which means that all three vertices of $\triangle A B C$ would lie on L. This is a contradiction, and the source is our assumption that $(A C)$ and $A B$ have a point in common. Therefore $(A C)$ and $[A B]$ do not have any points in common; as noted before the same conclusion will follow for $(B C)$ and $[A B]$, and thus we see that no points of $[A C]-\{A\}$ or $[B C]-\{B\}$ can lie on the line $A B$, so that $\triangle A B C \cap A B$ must be equal to $[A B]$.

B10. In each of these problems, we need to rewrite the line equation in the form $g(x, y)=0$, and then we need to compare the signs of $g(X)$ and $g(Y)$.
(a) In this case we may take $g(x, y)=9 x-4 y-7$. We have $g(3,6)=-3<0$ and $g(1,7)=-26<0$, so the two points lie on the same side of $L . ■$
(b) In this case we may take $g(x, y)=3 x-y-7$. We have $g(8,5)=12>0$ and $g(-2,4)=-29<0$, so the two points lie on opposite sides of $L . ■$
(c) In this case we may take $g(x, y)=2 x+3 y+5$. We have $g(7,-6)=1>0$ and $g(4,-8)=-11<0$, so the two points lie on opposite sides of $L . ■$
(d) In this case we may take $g(x, y)=7 x+3 y-2$. We have $g(0,1)=1>0$ and $g(-2,6)=2>0$, so the two points lie on the same side of L.

