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I I.3    :     Measurement axioms 

 

 
A large  —  probably dominant  —  part of elementary Euclidean geometry deals with 
questions about linear and angular measurements, so it is clear that we must discuss 
the basic properties of these concepts. 
 
 

Linear measurement 
 
 

In elementary geometry courses, linear measurement is often viewed using the lengths 
of line segments.  We shall view it somewhat differently as giving the (shortest) distance 

between two points.  Not surprisingly, in R
2
 and R

3
 we define this distance by the usual 

Pythagorean formula already given in Section I.1.  In the synthetic approach, one may 

view distance as a primitive concept given formally by a function d; given two points X, Y 

in the plane or space, the distance  d(X, Y)  is assumed to be a nonnegative real 
number, and we further assume that distances have the following standard properties: 
 

Axiom D – 1 :  The distance  d(X, Y) is equal to zero if and only if  X  =  Y. 
 

Axiom D – 2 :  For all  X  and  Y we have  d(X, Y)   =   d(Y, X). 
 

Obviously it is also necessary to have some relationships between an abstract notion of 
distance and the other undefined concepts introduced thus far; namely, lines and 
planes.  Intuitively we expect a geometrical line to behave just like the real number line, 

and the following axiom formulated by G. D. Birkhoff (1884 – 1944) makes this idea 
precise: 
 

Axiom D – 3  (Ruler Postulate) :   If  L is an arbitrary line,  then there is a  1 – 1 

correspondence between the points of  L and the real numbers  R such that if the points 

X and Y on  L correspond to the real numbers x and y respectively, then we have 
 

d(X, Y)   =   |  x  –  y |. 
 

It is not difficult to define such a 1 – 1 correspondence explicitly in the analytic approach.  
Suppose we are given a line containing the two points A and B.  Then every point X on 

the line can be expressed uniquely as a sum A   +  k(B – A)  for some real number k.  

The desired mapping is the one sending the point X to the number  x  =  k d(A, B).   A 

proof that this defines a 1 – 1 correspondence is given in the exercises. 
 

For the time being, we shall only give one simple but often needed result about linear 
measurement. 
 

Proposition 1.  Let  A  and  B be distinct points, and let x be a positive real number.  

Then there is a unique point  Y on the open ray  (AB such that  d(A, Y)  =  x.   Further-

more, we have A∗Y∗B  if and only if   x  <  d(A, B),  and similarly we have A∗B∗Y if 

and only if   x  >  d(A, B).   
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Proof.   We begin by proving the existence and uniqueness assertions in the first part of 

the conclusion.  Let  c  =  d(A, B),  so that  c and  c 

–
 

1 
are both positive.  If we take  

 

Y   =   A   +   x c 

– 1
(B – A) 

 

then Y lies on (AB and straightforward computation shows that  
 

d(A, Y)   =   || Y – A ||    =   || x c 

– 1
(B – A) ||   =  x c 

– 1
|| (B – A) ||   =   x. 

 

Furthermore, if Z  =   A  + w (B – A) is an arbitrary point on (AB such that d(A, Z)  =  x, 

then we have  d(A, Z)  =  w d(A, B), which implies that  w  =   x c 

– 1
 and hence Z  =  Y.     

 

We shall next consider the “if” implication in the second part of the proposition.  The 

conditions A∗Y∗B and A∗B∗Y imply x < d(A, B) and x  >  d(A, B) respectively, so 

this part is easy.  To prove the converse, note that every point Y on (AB satisfies exactly 

one of the three conditions A∗Y∗B, Y = B, or A∗B∗Y.  Thus x < d(A, B) can only 

happen if we have A∗Y∗B, and likewise  x   >  d(A, B) can only happen if A∗B∗Y .� 
 
 

Angles and their interiors 
 
 

We have not yet defined angles, but we shall do so now. 
 

Definition.  Let (A, B, C) be an ordered triple of noncollinear points.  The angle ABC, 

generally written ∠∠∠∠ABC, is equal to the union of the rays [BA and [BC. 
 

This definition excludes the extreme concepts of a zero – degree angle for which the 
two rays are equal and also a straight angle in which the two rays are opposite rays 
on the same line. 
 

It follows immediately that  ∠∠∠∠CBA   =   ∠∠∠∠ABC.  Note that this is stronger than saying 
the angles have the same measurements (which we have not yet discussed formally); 
it means that the two angles consist of exactly the same points.  Here is another 
basic statement about identical angles: 
 

Proposition 2.    If  D lies on the open ray (BA and E lies on the open ray (BC, then we 

have  ∠∠∠∠ DBE   =   ∠∠∠∠ ABC. 
 

This follows because we have  [BA = [BD  and  [BC = [BE .� 
 

Definition.    If ∠∠∠∠ ABC is an angle, then its interior, written Int ∠∠∠∠ABC , is equal to the 

intersection H  ∩∩∩∩  K, where H is the half plane determined by BA which contains C, and 
K is the half plane determined by BC which contains A.   Frequently one uses phrases 

such as, “X  lies inside  ∠∠∠∠ABC ,” to express the relationship X  ∈∈∈∈     Int ∠∠∠∠ABC .   It is 

also possible to define the exterior of the angle, written Ext ∠∠∠∠ABC , as all points in the 

plane not on the angle or in its interior; phrases like “X  lies outside  ∠∠∠∠ABC” express 

the relationship X  ∈∈∈∈     Ext ∠∠∠∠ABC. 
 

In the figure below, the shaded region corresponds to the interior of ∠∠∠∠ABC.  Of course, 
the interior also extends indefinitely beyond the shaded part to the upper right. 
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The following criterion for recognizing points in the interior of ∠∠∠∠ABC is often extremely 

useful: 
 

Proposition 3.  Let A, B, C be noncollinear points in R
2
, let D  ∈∈∈∈     R

2
, and express D 

using barycentric coordinates as xA  +  yB  +  zC.  Then D lies in the interior of ∠∠∠∠ABC if 

and only if both x and z are positive. 
 

Proof.  By previous results, a point D lies on the same side of BA as C if and only if z is 

positive, and it lies on the same side of BC as A if and only if x is positive, so the 
conclusion follows directly from these considerations and the definition of an angle’s 
interior.�  
 

Examples.   We shall consider a case where it is intuitively clear which points lie in the 
interior of the given angle and show how this corresponds to the numerical criteria in the 

previous proposition.  Let A  =  (1, 1), B  =  (0, 0) and C  =  (1, 0).  Then we expect 

the points in the interior of ∠∠∠∠ABC to be those points (p, q) such that 0  <  q  <  p. 
 

 
 

In this example B  =  0 and thus the barycentric coordinates x and z  for a point D are  
simply the coefficients for expressing a point as a linear combination of A and C; the 

third barycentric coordinate y is then equal to 1 – x – z.  But we have 
 

(p, q)    =    q (1, 1)  +  (p – q) (1, 0) 
 

and therefore the conditions in the proposition are that  q > 0  and  p – q  > 0, which 
are equivalent to the previously stated inequalities.  

 

We can use similar considerations to give a precise definition for the interior of a triangle.  
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Formally, we define the interior of ����ABC similarly as the intersection of three half – 

planes HA  ∩∩∩∩  HB  ∩∩∩∩  H C, where HA is the half – plane determined by BC which contains 

A, while HB is the half – plane determined by AC which contains B and HC is the half – 

plane determined by AC which contains B.  By standard set – theoretic identities, this 

set is also equal to the intersection of the interiors of ∠∠∠∠ABC, ∠∠∠∠BCA, and ∠∠∠∠CAB.  The 
following result is then an immediate consequence of the previous proposition: 
 

Corollary 4.  Let A, B, C be noncollinear points in R
2
, let  D  ∈∈∈∈     R

2
, and express D 

using barycentric coordinates as xA  +  yB  +  zC.  Then D lies in the interior of ����ABC 

if and only if all three barycentric coordinates    x,     y and    z  are positive.� 
 

The next result also arises frequently in elementary geometry but is not justified in 
classical treatments of the subject. 
 

Theorem 5.  (Crossbar Theorem)   Let A, B, C be noncollinear points in R
2
, and let D be 

a point in the interior of ∠∠∠∠CAB.  Then the segment (BC) and the open ray (AD have a 
point in common. 
 

 
 

Proof, Using barycentric coordinates we may write D  =   xA  +  yB  +  zC, and the 

condition D  ∈∈∈∈     Int ∠∠∠∠CAB implies that y and z are positive.  The objective is to find a 

point P which is expressible both as (1 – t) B  +  t C for some t satisfying 0  <   t  <   1 

and as (1 – u) A  +  u D for some u satisfying  u   >   0.   Let us see what happens if we 
set these expressions equal to each other.  The formula for D implies a chain of 
equations having the form  
 

(1 – t) B  +  t C   =   (1 – u) A + u D   = 
 

(1 – u) A  +  u (xA  +  yB  +  zC)   =  (1 – u  + u x) A  +  uyB   +  uzC 
 

and if we equate coefficients we obtain  t   =   u y  and 1 –  t   =   u z ,  which yield the 

following values for t and u: 
 

zy

z
t

zy
u

+
=

+
= ,

1
 

 



 61 

Since  y  and  z  are positive, we have the inequalities 0  <   z  <   y + z ,  which in turn 

imply that  u  >   0 and  0  <   t  <   1.  If we reverse the preceding derivation, it will 

follow that  (1 – t) B  +  t C   =   (1 – u) A  +  u D  for these choices of t and u.� 
 

Here is one useful consequence of the Crossbar Theorem. 
 

Proposition 6.  (Geometric Trichotomy Principle)   Let A and B be distinct points in R
2
, 

and let C and D be two points on the same side of AB .   Then exactly one of the 

following is true: 
 

(1) D  lies on  (BC  (equivalently, the open rays (BC and (BD are equal ). 
 

(2) D  lies in  Int ∠∠∠∠ABC. 
 

(3) C  lies in  Int ∠∠∠∠ABD. 
 

Proof, As usual write D   =   xA  +  yB  +  zC using barycentric coordinates.  By the 

assumptions we know that z is positive.  We claim that the three alternatives in the 

conclusion correspond to the mutually exclusive options x  >  0,  x  =   0,  and  x  <   0.  

If  x  >   0,  the characterization of Int ∠∠∠∠ABC in terms of barycentric coordinates shows 

that  D  ∈∈∈∈     Int ∠∠∠∠ABC.  If x  =   0,  then the barycentric coordinate equation may be 

rewritten in the form D  =  B  + z (C – D), which implies that D  ∈∈∈∈    (BC because z is 

positive.  Finally, suppose that x  <   0; to prove the third alternative, we need to 
express C as a linear combination of A, B and D using barycentric coordinates and 
check that the coefficient of A is positive.  One way of finding the barycentric expansion 

is to start by writing C – B as a linear combination of A – B and D – B and to rearrange 

the terms afterwards.  The formula for D implies 
 

(D – B)   =   x(A – B) + z(C – B) 
 

and if we solve for C – B we obtain the equation 
 

(C – B)   =   – x z  

–
 

1
(A – B)  +  z  

–
 

1
(D – B) 

 

which in turn implies the barycentric coordinate formula for C: 
 

C    =    z  

–
 

1( – xA  +  B  +  (x + z – 1) D ) 
 

Since z is positive and x is negative by our assumptions, it follows that the barycentric 

coordinate of A, which equals  – x z  

–
 

1
, must be positive.   As noted earlier, this means 

that C  ∈∈∈∈     Int ∠∠∠∠ABD.�   
 
 

Angular measurement 
 
 

The basic axioms for angular measurement are considerably more complicated to state 
than any of the previous ones with the possible exceptions of the separation postulates.  

We have already given the analytic definition in Section I I.1.  In the synthetic approach, 

angle measurement is given formally as an abstract function µµµµ , which assigns to each 

ordered triple of noncollinear points (A, B, C) a real number µµµµ ∠∠∠∠ABC. This value is 
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always strictly between 0 and 180°, and it called the angular measurement, angle 
measure, or something similar.   
 

Axiom AM – 0  (Invariance Property) :   If ∠∠∠∠DBE   and   ∠∠∠∠ABC are the same set, 

then  µµµµ ∠∠∠∠DBE    =   µµµµ ∠∠∠∠ABC. 
 

Axiom AM – 1  (Supplement Postulate) :   If D satisfies D∗B∗C then we have the 

identity  µµµµ ∠∠∠∠ABD   +  µµµµ ∠∠∠∠ABC    =   180°.   

 
 

Axiom AM – 2  (Protractor Postulate) :   If  0  <   x  <   180° and H is a half – 

plane associated to the line BC, then there is a unique ray [BA such that (BA is 

contained in H and µµµµ ∠∠∠∠ABC    =   x.    

 
 

Axiom AM – 3  (Additivity Postulate) :   If  D lies in Int ∠∠∠∠ABC, then we have  
 

µµµµ ∠∠∠∠ABD   +  µµµµ ∠∠∠∠DBC    =   µµµµ ∠∠∠∠ABC. 
 

 
 

Frequently it is convenient to write µµµµ ∠∠∠∠ABC in the alternate form | ∠∠∠∠ABC | , and in fact 
the latter is the notation we shall generally use throughout these notes. 
 

In a complete treatment of Euclidean geometry, it would be necessary to verify that the 
analytically defined angular measurement satisfies all these properties, but in our 
combined treatment we shall not do so (this would require very lengthy and complicated 
digressions).  Details appear in the previously cited book by Moïse.   
 

We shall only prove a few simple consequences of the angle measurement axioms here; 
they will be used extensively in the next unit.  The next result may be one of the earliest 
in the systematic deductive formulation of geometry, and it is attributed to Thales of 

Miletus (c. 624 B. C. E. –  c. 547 B. C. E.) : 
 

Proposition 7.  (Vertical Angle Theorem)   Let A, B, C, D be four distinct points such 

that   A∗X∗C and   B∗X∗D.   Then µµµµ ∠∠∠∠AXB    =   µµµµ ∠∠∠∠CXD. 
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Proof.  Two applications of the Supplement Postulate imply that 
 

µµµµ ∠∠∠∠AXB   +  µµµµ ∠∠∠∠AXD    =   180°    =   µµµµ ∠∠∠∠DXA   +  µµµµ ∠∠∠∠DXC 
 

and if we subtract µµµµ ∠∠∠∠AXD    =   µµµµ ∠∠∠∠DXA   from the left and right hand side we obtain 
 

µµµµ ∠∠∠∠AXB    =   µµµµ ∠∠∠∠DXC 
 

which is equivalent to the conclusion because  ∠∠∠∠CXD  =    ∠∠∠∠DXC.� 
 

The next result verifies an intuitively clear relationship between angle measurement and 
interiors of angles. 
 

Theorem 8.  Let A, B, C, D be distinct coplanar points, and suppose that C and D lie on 

the same side of AB.  Then µµµµ ∠∠∠∠CAB    <   µµµµ ∠∠∠∠DAB    if and only if  C lies in the interior of 

∠∠∠∠DAB. 
 

Proof.    The “if” direction is a consequence of the Additivity Postulate (which implies 

that  µµµµ ∠∠∠∠CAB   +  µµµµ ∠∠∠∠DAC    =   µµµµ ∠∠∠∠DAB) and the fact that µµµµ ∠∠∠∠DAC is positive.   The 
reverse implication follows from the Additivity Postulate and the Trichotomy Principle. 

Specifically, if C does not lie in the interior of ∠∠∠∠DAB, then either C lies on (AD or else D 

lies in the interior of ∠∠∠∠CAB; in the first case we have  µµµµ ∠∠∠∠CAB    =   µµµµ ∠∠∠∠DAB and in the 

second we have µµµµ ∠∠∠∠CAB    >   µµµµ ∠∠∠∠DAB.� 
 
  
 

I I.4    :     Congruence, superposition and isometries 
 

 
Although the relationships between linear and angular measurement are a major theme 
in Euclidean geometry, the measurement axioms in the preceding section say nothing 
about any such relationships.  In the synthetic approach it is necessary to have axioms 
which describe the ties between the two types of measurements.   One of the fastest 
ways of doing so is to assume the three basic congruence principles for triangles as 
axioms.  This is actually a bit redundant, for if one of them is true then the others can be 
derived from it.  However, assuming all three will allow us to bypass a few logical 
detours.  Later in this section we discuss some logical arguments involving congruence 
from the Elements and describe the underlying ideas from a modern perspective. 
 
 

The triangle congruence principles 
 
 

Not surprisingly, we start with two triangles ����ABC and ����DEF.  More accurately, we 
start two ordered triples of noncollinear points (A, B, C) and (D, E, F) where it is possible 
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that the sets {A, B, C} and {D, E, F} may be identical (for example, we may have D = B, 
E = C and F = A). 
 

Axiom SAS  (Side – Angle – Side Postulate) :   Suppose we have two ordered triples 

(A, B, C) and (D, E, F) as above such that     d(A, B)  =  d(D, E) ,     d(B, C)  =  d(E, F) ,     and     

| ∠∠∠∠ABC |  =  | ∠∠∠∠DEF | .    Then we also have d(A, C)  =  d(D, F) ,     | ∠∠∠∠BAC |  =  | ∠∠∠∠EDF | ,      

and     | ∠∠∠∠ACB |  =  | ∠∠∠∠DFE | . 
 

In geometry one generally writes ����ABC   ≅≅≅≅   ����DEF and says that ����ABC and ����DEF 

are congruent if the six equations in this postulate are satisfied.   However, this is really 
a slight  abuse of language  because  the orderings of the vertices are absolutely 

essential;  we may write ����ABC  ≅≅≅≅  ����DEF, but in doing so we do not necessarily mean 

to assert that  ����ABC  ≅≅≅≅  ����EDF  even though ����DEF and ����EDF are exactly the same 

triangle. 
 

Axiom ASA  (Angle – Side – Angle Postulate) :   Suppose we have ordered triples 

(A, B, C) and (D, E, F) as above satisfying the conditions     d(B, C)  =  d(E, F) ,     | ∠∠∠∠ABC |  

=  | ∠∠∠∠DEF | ,    and     | ∠∠∠∠ACB |  =  | ∠∠∠∠DFE | .     Then we have ����ABC   ≅≅≅≅   ����DEF. 
 

Axiom SSS  (Side – Side – Side Postulate) :   Suppose we have ordered triples 

(A, B, C) and (D, E, F) as above such that     d(A, B)  =  d(D, E) ,     d(B, C)  =  d(E, F) ,     and     

d(A, C)  =  d(D, F) .    Then we have ����ABC   ≅≅≅≅   ����DEF. 
 

At the beginning of this section we noted that if we assume just one of these three 
postulates, then we can prove the other two.  For the sake of completeness, in the 
file 
 

http://math.ucr.edu/~res/math133/trianglecongruence.pdf 
 

we shall give (synthetic) proofs that SAS implies both ASA and SSS. 

There is also an AAS congruence principle (����ABC   ≅≅≅≅   ����DEF  if     d(B, C)  =  d(E, F) ,     

| ∠∠∠∠ABC |  =  | ∠∠∠∠DEF | ,    and     | ∠∠∠∠BAC |  =  | ∠∠∠∠EDF | ) which can be deduced from the 
preceding statements, but we shall not do so here (one proof of this will be given in 

Section I I I.2, and another is given by an Exercise from Section V.2).  On the other 

hand, there is NO SSA congruence principle; this is illustrated by the drawing below, in 

which we have d(A, C)  =  d(A, E) , so that ����CAB and ����EAB satisfy SSA but are not 

congruent. 
 

 
 

The standard results involving isosceles triangles are immediate consequences of our 
axioms. 
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Theorem 1.  (Isosceles Triangle Theorem)     In ����ABC, one has d(A, B)  =  d(A, C) if 

and only if  | ∠∠∠∠ABC |  =  | ∠∠∠∠ACB | . 

 
 

Proof.   If d(A, B)  =  d(A, C) then we can use the SAS assumption to conclude that 

����BAC   ≅≅≅≅   ����CAB.  The latter implies that | ∠∠∠∠ABC |  =  | ∠∠∠∠ACB | .  Conversely, if we 

have | ∠∠∠∠ABC |  =  | ∠∠∠∠ACB | , then we can use the ASA assumption to conclude that 

����ABC   ≅≅≅≅   ����ACB,  and the latter implies that d(A, B)  =  d(A, C) .� 
 

Corollary 2.   In ����ABC, one has d(A, B)  =  d(A, C)  =  d(B, C) (the triangle is 

equilateral) if and only if one has | ∠∠∠∠ABC |  =  | ∠∠∠∠ACB |  =  | ∠∠∠∠BAC | (the triangle is 

equiangluar) . 
 

The corollary follows from two applications of the theorem.� 
 

The idea of applying a congruence result to the same triangle with permuted vertices is 

essentially due to Pappus of Alexandria (c. 290 –  c. 350).    Euclid’s proof of the “if” 

direction (Proposition 5 of Book I) is a fairly lengthy argument which requires the 
construction of auxiliary points and line segments, and it receives so much attention in 
books on geometry and the history of mathematics that a reference for it should be 

given; in particular, the proof is discussed on pages 151 – 152 of the following textbook: 
 

D. M. Burton, The history of mathematics: An introduction (Sixth Edition).  

McGraw – Hill, Boston, MA, 2005.  ISBN: 0–07–305189–6.  
 

One might speculate that Euclid did not realize that congruence theorems could be 
applied to the same triangle with permuted vertices, but there is no corroborating 
evidence for or against this (in fact, we know almost nothing about Euclid himself). 
 

Congruence and the other axioms.   In the Elements and quite a few other treatments 
of synthetic geometry, the basic congruence theorems are formulated as theorems 
rather than postulates.  Two of the reasons for this difference will be mentioned here.  
Historically these proofs were based upon an intuitive idea of superposition that we shall 
discuss at some length after the end of this paragraph.  In another direction, recall our 
earlier observation that the linear and angular measurement axioms say nothing about 
how these two types of measurement interact.  The lack of such links should raise 
doubts whether one could hope to prove any (equivalently, all) of the basic congruence 

theorems for triangles.  In fact, it is possible to prove rigorously that SAS, ASA and 
SSS cannot be logically derived from the remaining postulates that were stated in the 
preceding sections (and this also holds if we add the postulate that will be stated in 

Section 5).  We shall explain this statement at the end of this section in an Appendix. 
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Classical superposition 
 
 

Coincidence [superposition] is either mere 
tautology, or something entirely empirical, which 
belongs ... to external sensuous experience. 
 

A. Schopenhauer (1788 – 1860), The World as 

Will (1818) 
 

The proofs of SAS and SSS in the Elements are exceptional because they rely on a 
principle of moving an object without changing its size or shape.  In both cases one 

starts with ����ABC and ����DEF such that | ∠∠∠∠ABC |  =  | ∠∠∠∠DEF | ,    and the idea is to move  
so that side [BA] will lie on ray [ED and side [BC] will lie on ray [EF; by construction the 
vertex B is sent to E.   The goal is then to show that the images of A and C are precisely 

the points D and F, so that we have a  superposition  of ����ABC directly on top of 

����DEF, and from this to conclude that the corresponding parts of the triangles have 
equal measurements.  The following online sites contain several interactive videos 
illustrating the physical concept of superposition: 
 

http://www.ies.co.jp/math/products/geo1/menu.html (see the subheading, 
Congruent Figures and Triangles) 

 

http://standards.nctm.org/document/eexamples/chap6/6.4/index.htm 
 

http://standards.nctm.org/document/eexamples/chap6/6.4/part3.htm 
 

http://standards.nctm.org/document/eexamples/chap6/6.4/part4.htm 
 

Everyday experience with physical objects strongly suggests such rigid motions of 
objects are easy to achieve.  However, we are dealing here with mathematical objects 
rather than physical objects, so to be logically complete we must either deduce this 
somehow from our setting for geometry or else make an additional assumption to justify 
it.   As noted before, there is speculation that Euclid may have been uncomfortable with 
the use of superposition, for there are numerous other places in the Elements where it 
could have been used equally well. 
 
 

A modern approach 
 
 

Congruent parts of space V, V ′ are such as can be 
occupied by the same rigid body in two of its positions.  
If you move the body from one into the other position, 

the particle of the body covering point P of V will 

afterwards cover a certain point P ′ of V ′, and thus the 

result of the motion is a mapping P →→→→ P ′ of V upon V ′.  

We can extend the rigid body either actually or in 

imagination so as to cover an arbitrarily given point P of 

space, and hence the congruent mapping P →→→→ P ′ can be 

extended to the entire space. 
 

H. Weyl (1885 – 1955) 
 

The first step in analyzing the notion of superposition is to find a mathematical model for 
the notion of moving an object.  The concept of function is excellently suited for this 
purpose.     Suppose that we have some geometric object, which we view as a subset K 
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of R
n
, and we want to see what happens when we move it.  A physical motion can be 

modeled mathematically by a function f which is defined on all points of K and takes 

values in R
n
. Most motions at this level of generality will not preserve any geometrical 

properties of K.   If we want to preserve any geometrical properties, we need to make 
some assumptions on the function.  For our purposes the following seem pretty basic: 
 

1. The function f is 1 – 1 (so two points do not get squashed into a single point). 
 

2. If x and y are points of K, then f preserves the distance between them; in 

other words, we have d(x, y)  =  d( f(x), f(y) ).  
  

3. The function f sends collinear points to collinear points and noncollinear points 
to noncollinear points. 

 

4. If x, y, z are noncollinear points of K, then f preserves the measurement of the 

angle they form; in other words, we have | ∠∠∠∠ xyz |  =  | ∠∠∠∠ f(x) f(y) f(z) |. 
 

We know that the inclusion mapping from K into R
n
 has these properties for trivial 

reasons; physically, this corresponds to the “motion” which does not move anything at 
all.  Clearly we are more interested in having examples where the function actually 
changes something.  Linear algebra provides powerful methods for attacking such 
questions. 
 
 

Isometries and linear algebra 
 
 

We shall be interested in the following class of mappings from R
n
 to itself: 

 

Definition.   A function (or mapping) T from R
n
 to itself is said to be an isometry if it is a 

1 – 1 onto map such that d(x, y)  =  d( T(x), T(y) ) for all vectors x and y in R
n
.   

 

Before we investigate the relevance of such mappings to the issues raised above, we 
shall study them briefly as objects in their own right. 
 

Proposition 3.  The identity map is an isometry from R
n
 to itself.  If  T is an isometry 

from  R
n
 to itself, then so is its inverse T 

–
 

1
.  Finally, if  T and  U are isometries from R

n
 

to itself then so is their composite T         U.   
 

Proof.    These arguments may be familiar, but we include them for the sake of 

completeness.  The first part follows from the tautology  d(x, y)   =   d(x, y).   To prove 

the second assertion, let u  =  T 

–
 

1
(x) and v  =  T 

–
 

1
(y), so that  x  =  T(u) and y  =  T(v).   

We then have   
 

d( T  

–
 

1
(x), T 

 

–
 

1
(y) )   =   d(u, v)   =    d( T(u), T(v) )   =   d(x, y) 

 

which is what we need to verify.  In the last case we apply the isometry condition for T 
and U in separate steps to conclude that 
 

d( T         U (x), T        U (y) )  =  d( U(x), U(y) )  =  d(x, y) 
 

once again obtaining the desired conclusion.� 
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Examples of isometries.    1.  If T is a linear transformation from R
n
 to itself and is 

given by the square matrix A (so that T(x)  =  Ax), then T is a rigid motion from R
n
 to 

itself if A is an orthogonal matrix; in other words, the inverse matrix A 

–
 

1 
is equal to the 

transposed matrix 
T
A.  This is true because    

 

〈〈〈〈Ax , Ax〉〉〉〉  =  
T
(Ax) Ax   =    

T
x 

T
AAx   =    

T
x  I x   =   ( 

T
x)  x   =   〈〈〈〈x , x〉〉〉〉 

 

shows that T preserves lengths of vectors, so that  
 

d( T(x), T(y) )   =   || T(x)  – T(y) ||    =    || T(x –  y) ||    =    || x –  y ||    =    d(x, y). 
 

In fact, the converse is also true by results from linear algebra; if a linear transformation 
defines an isometry then it is given by an orthogonal matrix.  Linear algebra courses 
provide many examples of orthogonal matrices; one characterization of such matrices is 

that their rows and/or columns form an orthonormal basis for R
n
. 

 

2.   If w is an arbitrary vector in R
n
 then the translation mapping S w from R

n
 to itself 

defined by S w (x)  =  x + w is also an isometry.  This is a consequence of the following 
chain of equations:  

d( S w (x), S w (y) )  =  || S w (x)  –  S w (y) ||   = 
 

|| (x + w)  –  (y + w) ||   =   || x –  y ||   =   d(x, y). 
 

3.  If we combine the preceding examples with the result on composites of isometries, 

we see that every Galilean transformation of R
n
 having the form G(x)  =  Ax + w, 

where A is orthogonal, is an isometry from R
n
 to itself.  It is known that products and 

inverses of orthogonal matrices are again orthogonal, and using this one can show that 
composites and inverses of Galilean transformations are also Galilean transformations 

(compare the proof of Proposition 4 below).  
 

4.  A standard textbook exercise in linear algebra books is to show that all isometries 

from R
n
 to itself are given by Galilean transformations.  A proof is given at the beginning 

of Section 1 in the document    
 

http://math.ucr.edu/~res/math133/metgeom.pdf 
 

in the course directory.   However, we shall not need this fact here.  
 
 

Affine transformations 
 
 

Before returning to geometric superposition, we shall derive some basic properties of 
Galilean transformations in a more general setting.  The latter will include all invertible 

linear transformations as well as translations by fixed vectors in R
n
. 

 

Definition.   A function (or mapping)  T  from R
n
 to itself is said to be an affine 

transformation if it is a 1 – 1 onto map expressible in the form T(x)   =   L(x)  +  v , 

where L is an invertible linear transformation and v is a fixed vector in R
n
.   

 

The requirement that T be 1 – 1 and onto is actually redundant.  If L is an invertible 

linear transformation and v is a fixed vector, then T as above is 1 – 1 because T(x)  =  
T(y) implies L(x) + v  =  L(y) + v, so that L(x)  =  L(y) and hence x  =  y because the 
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mapping L is 1 – 1. Similarly, if z is an arbitrary vector in R
n
, then the equation L(x) + v 

= z has a solution given by x  =  L
–

 

1
(z – v).  In particular, the preceding shows that 

every Galilean transformation is an affine transformation.   
 

As in the case of isometries, we begin by considering affine transformations as objects in 
their own right. 
 

Proposition 4.  The identity map is an affine transformation from R
n
 to itself.  If T is an 

affine transformation from R
n
 to itself, then so is its inverse T 

–
 

1
.  Finally, if T and U 

affine transformations from R
n
 to itself, then so is their composite T                U.   

 

Proof.  The first statement follows because the identity is an invertible linear 
transformation.  To prove the second, as usual write T(x)   =   L(x) + v where L is 

invertible.  Then the inverse is given by T 

–
 

1
(y)   =   L

–
 

1
(y)  –  L

–
 

1
(v).  Finally, if U is also 

an affine transformation write U(x)   =   M(x) + w, where once again M is invertible.  

Then we have T            U(x)    =    L                M(x)  +  ( L(v) + w ), which shows that T    U is also an 

affine transformation.� 
 

Although affine transformations are not necessarily linear, they do satisfy some weak 
analogs of linearity. 
 

Theorem 5.    Let T be an affine transformation from R
n
 to itself, and suppose that we 

have a barycentric linear combination 
 

b    =    w1a1  +  w 2a 2  +  …  +  wnan 
 

where  w1 +  w2  +  …  +  wn   =  1.   Then T(b)  =  w1T(a1)  +  w2T(a2)  +  …  +  wnT(an) .  
 

Proof.  Write T(x)   =   L(x)  +  v as usual.  Then we have  
 

T(b)   =   L(b)  +  v  =  L(w1a1  +  w2a2  +  …  +  wnan)  +  v   = 
 

w1L(a1)  +  w2L(a2)  +  …  +  wnL(an)  +  (w1 +  w2  +  …  +  wn ) v    = 
 

w1(L(a1) + v)  +  w2(L(a2) + v)  +  …  +  wn(L(an) + v)   = 
 

w1T(a1)  +  w2T(a2)  +  …  +  wnT(an) 
 

as required.� 
 

This result has several important consequences. 
 

Corollary 6.  Let x and y be distinct points in R
n
 and let T be an affine transformation of 

R
n
 to itself.  Then for all scalars k we have T(x + k(y – x) )   =   T(x) + k(T(y) – T(x) ). 

 

Proof.   We have x  +  k(y – x)   =   (1 – k) x  +  k y  and by the previous theorem this 

yields 
 

T(x  +  k(y – x) )    =    T((1 – k) x  +  k y)   = 
 

(1 – k) T(x)  +  k T(y)    =    T(x)  +  k(T(y) – T(x) ) 
 

as required.� 
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Corollary 7.  Let T be an affine transformation from R
n
 to itself.  Then T takes collinear 

points to collinear points and noncollinear points to noncollinear points. 
 

Proof.   Let x, y, z be three points in R
n
. The preceding corollary shows that if z lies on 

the line xy, then T(z) lies on the line joining T(x) and T(y).   Conversely, if T(z) lies on the 

line joining T(x) and T(y)  with  T(z)   =   T(x) + k( T(y) – T(x) ) ,  then the derivation in the 

previous corollary shows that T(z)   =    T(x + k(y – x) ).  Since T is 1 – 1 this means that 

z   =   x + k(y – x), so that z lies on the line xy.� 
 

Corollary 8.  Let T be an affine transformation from R
n
 to itself, and let x and y be 

distinct points in R
n
.  Suppose that a  =  T(x) and b  =  T(y).  Then T maps the segment 

[xy] to the segment [ab]  and T maps the ray [xy] to the ray [ab . 
 

Proof.   This follows from the results on affine transformations and the earlier result 

which determines the values of k for which u  +  k(y – v) lies on [uv] or [uv .�  
 
 

Further properties of Galilean transformations 
 
 

We shall now prove a crucial result which shows that Galilean transformations have all 
the desired properties for rigid motions described earlier.  
 

Theorem 9.   Every Galilean transformation G (hence every isometry) of R
n
 satisfies the 

four geometric conditions listed previously: 
 

1. The function G is 1 – 1. 

2. If x and y are points of R
n
, then f preserves the distance between them; in 

other words, we have d(x, y)   =   d( G(x), G(y) ).   
3. The function G sends collinear points to collinear points and noncollinear 

points to noncollinear points. 

4. If x, y, z are noncollinear points of R
n
, then G preserves the measurement of 

the angle they form; in other words, we have | ∠∠∠∠x y z |  =  | ∠∠∠∠ G(x) G(y) G(z) |. 
 

Proof.    By the preceding discussion we may write G as a composite T     S w where the 
factors are given as above.  The first assertion follows because the difference between 

distinct points is positive and G is distance – preserving.  The collinearity and 
noncollinearity assertions follow from general properties of affine transformations.   
 

Finally, we must prove the result concerning angle measurements.  The value | ∠∠∠∠x y z | is 

entirely determined by its cosine, which is equal to the quotient of 〈〈〈〈x – y , z – y〉〉〉〉 by the 
lengths of x – y   and z – y .  If v  =  x or z, we know that the lengths of the two vectors 
G(v) – G(y) and v – y are equal because G is an isometry, so it suffices to check that G 
and the inner product satisfy the following compatibility condition: 

〈〈〈〈x – y , z – y〉〉〉〉   =   〈〈〈〈 G(x) – G(y), G(z) – G(y) 〉〉〉〉 
 

By the factorization of G in the first sentence of the proof we have G(v)  =  Av + w, and it 
follows immediately that  G(u) – G(v)   =   A(u – v) for all u and v.  Thus we may reason 
as before to show that 
 

〈〈〈〈 G(x) – G(y), G(z) – G(y) 〉〉〉〉   =    〈〈〈〈 A(x – y), A(z – y) 〉〉〉〉   =   
T
(A(x – y)) A(z – y)   = 
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T
(x – y) 

T
AA(z – y)   =     

T
(x – y)   I (z – y)   =   ( 

T
(x – y)) ·  (z – y)   =   〈〈〈〈 x – y 

 , z – y 〉〉〉〉 
 

and hence G must preserve angle measurements.� 
 

Geometric significance.   We now have a simple method for constructing very large 
families of rigid motions satisfying the desired four conditions.  Namely, we apply a 

Galilean transformation to an arbitrary subset K of R
n
.  

 
 

Application to classical superposition 
 

 

Using the results we have obtained for isometries and affine transformations, we can 
give a mathematical model for the sort of superposition mapping that was described 
earlier. 
 

Theorem 10.   Let  a, b, c  be noncollinear points in R
2
, and let x, y, z be another triple 

of noncollinear points such that  | ∠∠∠∠ x y z |   =   | ∠∠∠∠ abc | .  Then there is a Galilean 

transformation  G  of  R
2
 such that G(b)  =  y, the map G sends the segment [ba] into 

the ray [yx , and the map G sends the segment [bc] into the ray [yz . 
 

Proof.    By our hypotheses the sets { a – b, c – b } and { x – y, z – y } are bases for R
2
.  

Let M  =  || a – b || / || x – y || and  N  =  || c – b || / || z – y || ; if we set u  =  M (x – y) and 

v  =  N (z – y),  then u and v are positive multiples of x – y and z – y such that || u ||   =   

|| a – b || and || v ||  =  || c – b || .  In particular, { u, v } is also a basis for R
2
. 

 

Standard results of linear algebra imply there is an invertible linear transformation T such 
that T(a – b)   =  u  and  T(c – b)   =   v .   We claim that T is an orthogonal linear 

transformation ; i. e., the mapping T preserves vector lengths and their squares (this is 

equivalent to preserving inner products).  Given a vector w in R
2
, write  

 

w   =   p (a – b) + q (c – b) 
 

for suitable scalars p and q.   We then have the following formulas:  
 

|| w ||  
2
   =   p 

2 
|| (a – b) ||  

2
  +  2pq 〈〈〈〈 (a – b), (c – b) 〉〉〉〉   +  q 

2 
|| (c – b) ||  

2
 

 

|| Tw ||  
2
   =   p 

2 
|| T(a – b) ||  

2
  +  2pq 〈〈〈〈 T(a – b), T(c – b) 〉〉〉〉   +  q 

2 
|| T(c – b) ||  

2
 

 

By construction we know that || T(a – b) ||  =  || (a – b) ||  and || T(c – b) ||  =  || (c – b) || .  
Furthermore, we also have the following: 
 

〈〈〈〈  T(a – b), T(c – b) 〉〉〉〉   =   ( cos ∠∠∠∠x y z ) · || T(a – b) || · || T(c – b) ||   = 
 

( cos ∠∠∠∠a bc ) ⋅⋅⋅⋅ || (a – b) || · || (c – b) ||    =   〈〈〈〈 (a – b), (c – b) 〉〉〉〉 
 

Therefore the coefficients of p 

2
,  2pq, and q 

2
 in the expressions for || w || 

2
 and  || Tw || 

2
 

are equal, and this implies that  || w || 

2
   =   || Tw || 

2
 which implies that T is orthogonal by 

previous observations. 
 

We now define G by the formula G(w)  =  y + T(w – b)  =  [y – T(b)] + T(w); to complete 
the proof, we need to verify that G has the properties listed in the statement of the 
theorem.   First of all, we have G(b)  =  y + T(0)  =  b.  Next, we have  
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G(a)   =   y  + T(a – b)  =  y  +  u   =  y  +  M (x – y) 
 

G(c)   =   y + T(c – b)  =  y  +  v   =  y  +  N (z – y) 
 

so that G(a) and G(c) lie on the rays [yx and [yz respectively.  By the general results on 
affine transformations, it follows that [ba and [bc are mapped to the rays [y G(a)  =  [yx 
and [y G(c)  =  [yz respectively.�   
 

The preceding result implies a strong superposition property for congruent triangles. 
 

Proposition 11.  If ����ABC   ≅≅≅≅   ����XYZ , then there is a Galilean transformation G which 

maps ����ABC to ����XYZ . 
 

Proof.    This is a refinement of the previous argument.  Let G and T be the maps 

constructed above.  The conditions      d(A, B)  =  d(X, Y)  and  d(B, C)  =  d(Y, Z)  imply 

that T(B – A)  =  X – Y and T(C – A)  =  Z – Y,  and these in turn imply that G(A)  =  X  
and G(C)  =  Z .  By the general results for affine transformations we then see that G 
must map [AB] to [XY], {BC] to {YZ], and [AC] to [XZ].  Since the triangles under 

considerations are [AB] ∪∪∪∪ [BC] ∪∪∪∪ [AC] and [XY] ∪∪∪∪ [YZ] ∪∪∪∪ [XZ], it follows that G maps 

����ABC to ����XYZ .� 
 

This theorem suggests the following general definition of congruence.   
 

Definition.  Let K and L be subsets of R
n
.   We shall say that K is congruent to L if 

there is a Galilean transformation  G  of  R
n
  which maps K to L.    

 

We can define affine equivalence similarly; namely, two subsets K and L are affinely 

equivalent if there is an affine transformation F of R
n
 which maps K to L.  Congruent 

subsets are affinely equivalent, but the converse is not necessarily true.  The next result 
illustrates this very clearly. 
 

Proposition 12.  If ����ABC and ����XYZ are triangles in R
2
, then ����ABC and ����XYZ are 

affinely equivalent. 
 

Proof.   Construct G as in the preceding corollary.  Under the hypotheses we cannot 
conclude that G is a Galilean transformation, but we can conclude that it is an affine 
transformation, and it still maps  A, B, C to  X, Y, Z.  As in the proof of the corollary, this 

gives enough information to conclude that G maps  ����ABC  to  ����XYZ .� 
 

Remark,        Further study of affine geometry implies that two quadrilaterals are not 
necessarily affinely equivalent.  For example, a parallelogram is not affinely equivalent to 
a proper trapezoid in which one pair of opposite sides is parallel but the other is not.   
We shall prove this in the next section. 
 

Origin of the term “affine.”   (This is just background material and it is not needed 
subsequently.)   As one might expect, the word “affine” comes from the same root word 

as does “affinity.”  One definition (from Webster’s 1960 New World Dictionary) describes 
affinity as “similarity of structure, as of species of languages, implying common origin.”  
Another contains the phrase, “resemblance in general plan or structure.”  This term 

entered geometry in the 18
th
 and 19

th
 century, originating in the work of L. Euler (1707 – 

1783) and significantly extended in the work of A. F. Möbius (1790 – 1860).  In this 
section we have discussed the congruence relationship between geometric figures; later 

in Section I I I.  5 we shall discuss the weaker relationship of similarity, in which the 
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distances between corresponding points are proportional by a fixed constant rather 
than equal (from our viewpoint, congruence is the special case where the proportionality 

constant is equal to 1).   It turns out that there is a notion of similarity transformation — 
which is more general than a Galilean transformation but less general than an affine 

transformation — such that two geometric figures are similar if and only if there is a 
similarity transformation sending one to the other.   The word “affinity” was employed to 
describe figures that were not necessarily similar in the usual geometrical sense but still 
had some common properties which distinguished them from other closely related 
objects.  Roughly speaking, these properties involve collinearity and internal parallelism 

relationships.   Some historical references are given below. 
 

L. Euler,  Intrōductio in Analysin Infīnītōrum,  Tomus I I.  Opera 
Omnia, Ser. 1, Vol. 9 (ed. A .Speiser).  Societās Scientārum Nātūrālium 

Helvēticae, Geneva, 1945.  [The detailed reference is Cap. XVIII, artic. 
442.] 

 

A. F. Möbius, Der barycentrische Calcül (1827).  Gesammelte Werke, 
Bd. 1 (Neudruck).  Dr. M. Sändig, Wiesbaden, (West) Germany, 1967.   

 
 

Geometry and geometric transformations 
 
 

In this section of the notes we have seen that the notion of rigid motion or isometry 
plays a major role in the modern approach to geometry, and our discussion led us to 
more general classes of affine transformations which are closely tied to linear algebra.  
Such transformations will also be significant in several further contexts at later points of 
these notes, and in fact geometric transformations are fundamentally important to our 
current understanding of geometry.  Most high school courses now include at least a 
small amount of material on geometric transformations, and some mathematicians and 
educators have even suggested that transformations provide the best approach to 
geometry; the books by Ryan and Greenberg do not quite go this far, but they do 
emphasize geometric transformations very systematically.  The following book provides 
a fairly detailed account of geometry that is organized around geometric transformations. 
 

G. E. Martin, Transformation Geometry: An Introduction to Symmetry 
(Undergraduate Texts in Mathematics). Springer Verlag, New York, 1982. 
ISBN: 0–387–90636–3. 

 

The online file http://math.ucr.edu/~res/math133/elltangents.pdf illustrates one way in which 
geometrical transformations can be applied to obtain conclusions whose proofs by other 
methods are more difficult; in this particular case, one uses such transformations to 
generalize a statement about tangents and circles to the analog for ellipses. 
 

Geometric transformations and synthetic axioms.   In fact, it is possible to formulate 
alternative axioms for Euclidean geometry based upon the undefined concepts of point 
and motion (or geometric transformation), which is assumed to have some reasonable 
properties (the axioms).   This approach to Euclidean geometry is due to G. Peano 

(1858 – 1932) and M. Pieri (1860 – 1913).  
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Appendix – Independence of the congruence axiom(s) 

 
We have stated that it is mathematically impossible to prove the SAS, ASA and SSS 
congruence theorems for triangles from the other postulates introduced thus far.  Over 
the years people have claimed many things were impossible (steamships and airplanes 
are particularly obvious examples), and it is easy to discount claims of impossibility as 
condescending or defeatist.  Therefore we should explain how claims of mathematical 
impossibility differs from analogous claims in everyday life, and why they generally far 
more reliable.   
 

The crucial point in mathematical impossibility is that it requires one to follow logical 
rules very strictly and thus stay within fairly narrow limits.  In contrast, consider a 

problem that many thought was impossible until just over 100 years ago:   The building 

of a heavier – than – air device that could fly.  One reason for the Wright brothers’ 
breakthrough was the introduction of relatively lightweight but powerful engines that had 
been invented just a few years earlier.  This drastically changed the rules of the game for 
those who wanted to build flying machines.  In contrast, the rules of abstract logic are 
not subject to such changes.   
 

In principle, the idea for proving mathematical impossibility is simple; one assumes that 
it is possible to do something and show this leads to a logical contradiction.  The 

standard elementary proof that the square root of 2 is irrational (which goes back to 
ancient Greek mathematicians) is a simple but typical example.  One supposes that 

there is a rational number  m / n  whose square is equal to 2, and one then exploits this 

to derive a logical contradiction (specifically, if one reduces the numerator and 
denominator to least terms, so that at least one is odd, then both must be even).  It is not 
just a situation where no one has yet found a fraction of the desired type but some future 

genius might eventually do so; if one believes it is possible to find positive integers 

whose quotient is the square root of 2, then by applying the rules of logic one ultimately 
ends up with a logical contradiction.    
 

A still more basic example is given by adding two odd numbers:  It is mathematically 
impossible to find two odd (positive whole) numbers whose sum is odd.  This is 
true because one can prove directly that the sum of two odd numbers must be even, and 
it follows that no one will ever be able to find examples with the properties described in 
the preceding sentence.   
 

So what do we need to do in order to prove the congruence axiom(s) cannot be derived 
as logical consequences of the others?  It suffices to construct a mathematical model 
in which all the previous axioms are true but one of the congruence axioms is false.  
In other words, we need to construct data corresponding to points, lines, planes, linear 
measurement (or distance) and angular measurement which has the properties of the 
preceding sentence. 
 

Our model will be very close to the usual one,  the only difference being that we shall 

define distance in a new way.  Specifically, let us take R
2
 with all the standard data 

except that we replace the ordinary Pythagorean metric by the so – called taxicab 

metric:  If p1   =  (x1,  y1) and p2   =  (x2,  y2) are points of R
2
, then the distance dT is 

defined by dT( p1 , p2 )   =   | x2  –  x1 |   +  | y2  –  y1 | . 
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(Source: http://mathworld.wolfram.com/TaxicabMetric.html ) 
 

The taxicab metric  (sometimes also called the Manhattan distance) is the length of an 

arbitrary path connecting p1 and p2 along horizontal and vertical segments, without ever 

going back, like paths traveled by vehicles moving in a grid – like street pattern.  It was 

first described explicitly by H. Minkowski (1864 – 1909) as a special case of more 
general phenomena involving convex sets. 
 

We also define the taxicab length of a vector || v || 1  to be the taxicab distance from v to 

0.  The taxicab length has a few properties in common with the ordinary length.  Here 
are two of them. 
 

(1) It is nonnegative, and || v || 1  =   0  if and only if  v  =  0. 

(2) If k is a scalar then || kv ||  1   =     |k| ⋅⋅⋅⋅ || v || 1 .  
 

Since we are assuming that our standard model satisfies the axioms for Euclidean 
geometry, the key point to checking this new model satisfies the axioms from previous 
sections is a verification of the Ruler Postulate.  This can be done by an argument 
similar to that in the standard model, the only difference being that the use of the 
Pythagorean metric and length is replaced by the taxicab metric and length; the two 
properties listed above imply that the new metric has enough of the properties of the 

usual metric that one can prove the postulates in Section 3 for the taxicab metric. 
 

It remains to show that the new system does not satisfy the three basic congruence 

axioms, and to do this we need only give a pair of triangles such that ����ABC and ����ADE 

satisfy the SAS hypotheses 
 

dT(A, B)  =  dT(A, D) ,     dT(A, C)  =  dT(A, E) ,     and     | ∠∠∠∠BAC |  =  | ∠∠∠∠DAE | 
 

but do not satisfy dT(B, C)  =  dT(D, E) .     
 

One pair of such examples is given by taking A  =  (0, 0),  B  =  (0, 2),  C  =  (2, 0), 

D  =  (1, 1) and E  =  (1,  –1).  This configuration is depicted in the drawing below. 
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Since we are still using the same angle measurement, we have | ∠∠∠∠ BAC |  =  | ∠∠∠∠ DAE |  =  

90°.  If we compute the taxicab distances between the various pairs of points we find 

that dT(A, B)  =  dT(A, D)  =     dT(A, C)  =  dT(A, E)  =    2, but on the other hand we also 
have 
 

dT(B, C)  =  4  >  2  =  dT(D, E) . 
 

Now if one could prove SAS from the previously stated axioms it would follow that the 

distances dT(B, C) and dT(D, E) would have to be equal.  Since they are not, it follows 

that no proof of SAS from the earlier axioms can exist.� 
 

In order to avoid misunderstandings, we emphasize that the system constructed 
above is not meant to be an accurate model of physical space.  It is merely an 
example of an abstract mathematical system which satisfies all the assumptions 
introduced in the previous sections of this unit. 

 
 
 

I I.5    :     Euclidean parallelism 
 

 

The fifth and final postulate in Euclid’s Elements differs from the latter’s other 
assumptions in several respects.   All of the remaining statements are fairly simple (for 
example, lines can be extended indefinitely in either direction), but the last one is fairly 
complicated by comparison.  In particular, it takes more words to state this postulate 
(both in English and the original Greek) than are needed for the remaining four 
postulates combined.  For centuries scientists, philosophers and others felt it would be 
desirable to avoid the need for such an assumption which is so dissimilar to the others.  
It is also particularly noteworthy that the fifth postulate is not used until some point in 

Book I in the Elements, so that a significant part of the subject is developed without this 
assumption.    Internal evidence from the Elements and other ancient Greek writings 
suggest that issues related to the Fifth Postulate had concerned many mathematicians 
from the classical and later Greek eras.     
 

In the 5th century A. D., Proclus Diadochus (410 – 485) suggested replacing Euclid’s 
Fifth Postulate with a simpler statement involving parallel lines;  this statement is 

generally called Playfair’s Postulate after J. Playfair (1748 – 1819).  Although Playfair’s 
Postulate is easier to state, it is still a more delicate assumption than the others, and 
there were many efforts to prove it from the remaining assumptions, beginning at least 
with the time of Pappus and Proclus and continuing into the 19th century.  Most of these 
efforts either contained fatal errors or assumed some other statement, either consciously 
or unconsciously.  By the end of the 18th century, some mathematicians had concluded 
that proving the Fifth Postulate from the others was futile; further work during the 19th 
century ultimately confirmed the impossibility of finding such a proof.   We shall discuss 
these matters more thoroughly in the final unit of the course.   
 

The main issue for now is that we need one more postulate to complete the synthetic 
approach to Euclidean geometry.    
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Euclid’s Fifth Postulate and the Parallel Postulate 
 
 

A modern formulation of Euclid’s Fifth Postulate is probably a good place to start. 
 

EUCLID’S FIFTH POSTULATE.  (Modern verion)   Let AB be a line, and let C and D be 
points such that A, B, C and D are coplanar and both C and D lie on the same side of 
AB.  Then the open rays (AC and (BD have a point in common if and only if  
 

| ∠∠∠∠CAB |   +  | ∠∠∠∠DBA |    <   180°. 
 

 
 

In fact, one can derive the “only if” implication from the other assumptions, so the “if” 
implication is the central point.  The picture shows a situation in which the angle 
measurement inequality holds, and it seems clear that one could extend the two rays to 
find a point where they both meet.  If the sum of the angle measurements were greater, 
then it is possible that the point of intersection would not lie on the printed page, and if 

the sum is close enough to 180° any point may be too far away to be located by any 
ordinary physical means.   
 

Before introducing the statement suggested by Proclus and Playfair, we shall need to 
formalize the concept of parallelism.   
 

Definition. Given two lines L and M in the plane or space, we say that L and M are 

parallel (written L || M) if L and M are coplanar but have no points in common. 
 

If we are working in the plane, the condition that L and M be coplanar is unnecessary, 
but there are examples of lines in space which are both noncoplanar and disjoint; such 
pairs are called skew lines.  There are many simple examples of skew lines, and here is 

one of them:  Let e1, e2, e3 be the standard basis of R
3
 given by unit vectors, let L be 

the line consisting of all points expressible as ue1 for some scalar u, and let M be the 

line consisting of all points expressible as e2  +  ve3 for some scalar v.   The verification 
that these lines are disjoint and not coplanar is left as an exercise.  
 

We are now ready to give the postulate on parallel lines which is equivalent to Euclid’s 
Fifth Postulate. 
 

Axiom P – 0  (Playfair’s Postulate) :   Given a line  L and a point X which is not on  

L,  there is a unique line M such that  X  ∈∈∈∈        M  and  L || M .  
 

As in the case of Euclid’s Fifth Postulate, one can get by with a slightly weaker 
assumption.  Using the axioms presented in previous sections one can always construct 
at least one parallel to L through X; for example, this can be done by dropping a 
perpendicular N from X to L and then constructing a perpendicular M to N at X in the 
plane determined by the intersecting lines L and N.  One can then prove that L and M 

have no points in common.  Thus the real question answered by P – 0 is whether more 
than one parallel through X can exist, and by this postulate the answer is negative. 
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Algebraic interpretation 
 
 

In R
2
 and R

3
 there is a simple characterization of parallel lines in terms of linear algebra. 

 

Proposition 1.  Let x + V be a line in R
2
 and R

3
, where V is a 1 – dimensional vector 

subspace spanned by the nonzero vector v,  and suppose that z is a vector not on x + V.  

Then the lines x + V and z + V are parallel. 
 

Proof.  The condition on z implies that z – x does not lie in V.  Therefore it follows that v 

and z – x are linearly independent.  Let U be the 2 – dimensional vector subspace they 

span.   Clearly x + V is contained in x + U by construction, and if z + kv is a typical 

vector in the line z + V then the expansion z + kv   =  x + (z – x)_+ kv expresses the left 
hand side as a sum of x and two vectors in U, and consequently the vector in question 
lies in x + U.  Thus the lines x + V and z + V are coplanar; it remains to show that they 
have no points in common.  Assume the contrary, and suppose that w is a common 

point.  Then there are scalars p and q such that  
 

x + pv   =  w   =   z + qv   =   x + (z – x) + qv 
 

and if we subtract x from both sides and rearrange terms we obtain z – x  =  (p – q)v, 
which in turn implies that z – x lies in V.  This contradicts a previous observation.  The 
source of the contradiction is our assumption that x + V and z + V had a point in 
common, so this must be false and the lines in question must be parallel.� 
 

We can use this to give a very simple proof of the next result, which is pretty obvious in 

the plane (look at a piece of ruled notebook paper) but less so in 3 – dimensional space. 
 

Theorem 2.   Let L, M and N be lines in R
2
 or R

3
 such that  L || M  and  M || N .   Then 

either L = N  or else L || N . 
 

In other words, if two distinct lines are parallel to a third line, then they are parallel 
to each other. 
 

Proof.    Write the line M as x + V where V is a 1 – dimensional vector subspace.  Then 
it follows that L  =  a + V and N  =  b + V where neither a nor b belongs to M.   If a also 
does not belong to N, then by the previous reasoning we know that L and N are parallel.  

On the other hand, if a does belong to N then we may write a  =  b + kv where v is a 

nonzero vector spanning V and k is some scalar.   Therefore an arbitrary vector in L has 

the form a + qv  =  a  =  b + kv + qv,   which implies that it also lies in N  =  b + V.  In 
particular, this means that L is contained in N.  Since there is only one line containing 
two points and L contains at least two points, this implies L  =  N.� 
 
 

Parallelism and affine transformations 
 
 

At the end of the previous section we mentioned that a parallelogram and a proper 
trapezoid are not affinely equivalent.  We can use the material of this section to prove a 
general result which will imply our earlier assertion. 
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Theorem 3.  Let a, b, c, d be four points in R
2
 such that no three are collinear, and let T 

be an affine transformation of R
2
 to itself.  Then the lines ab and cd are parallel if and 

only if the lines T(a)T(b)  and  T(c)T(d)  are parallel. 
 

Since every Galilean transformation is an affine transformation, it follows immediately 
that Galilean transformations send parallel lines to parallel lines. 
 

Proof.      As usual write T(x)  =  L(x) + v where L is an invertible linear transformation 

and v is a fixed vector.   If ab || cd , then we may write ab  =  a + W  and cd  =  c + W 

where W is some 1 – dimensional vector subspace.  It follows that both b – a and d – c 
lie in W, and hence these nonzero vectors must be nonzero scalar multiples of each 

other, say  d – c  =   k(b – a).  Similarly, we have that the lines T(a)T(b)  and  T(c)T(d)  
are respectively given by all vectors of the forms 
 

T(a) + p( T(b) – T(a) )   T(c) + q( T(d) – T(c) ) 
 

for suitable scalars p and q.  Since earlier considerations imply that T(c) does not lie on 
T(a)T(b), it will suffice to show that T(d) – T(c) is a nonzero multiple of T(b) – T(a).  
Using the description of T in the first sentence we have  
 

T(d) – T(c)  =  (L(d) + v)  –  (L(c) + v)  =  L(d) – L(c)  =  L(d – c)  = 
 

L( k(b – a) )  =  k L(b – a)  =  k( (L(b) + v)  –  ( L(a) + v) )  =   k( T(b) – T(a) ) 
 

and therefore T(d) – T(c) is indeed a nonzero multiple of T(b) – T(a) as required. 
 

Conversely, if the lines T(a)T(b)  and  T(c)T(d)  are parallel, then T(d) – T(c) is a 
nonzero multiple of T(b) – T(a) , so we have an equation of the form  
 

T(d) – T(c)   =    k (T(b) – T(a) ) 
 

for a suitable scalar k.  We then have  
 

L( k(b – a) )  =  k L(b – a)  =  k( (L(b) + v)  –  (L(a) + v) )  =   k(T(b) – T(a) )   = 
 

T(d) – T(c)  =  (L(d) + v)  –  (L(c) + v)  =  L(d) – L(c)  =  L(d – c) . 
 

Since L is invertible, this means that k(b – a) must be equal to d – c, and therefore the 
lines ab and cd must be parallel.� 
 

Corollary 4.  Let a, b, c, d be four points in R
2
 such that no three are collinear, and let T 

be an affine transformation of R
2
 to itself.  If ab and cd are parallel and ad and bc are 

parallel, then T(a)T(b)  and  T(c)T(d)  are parallel and T(a)T(d)  and  T(b)T(c)  are 
parallel.� 
 

In particular, the corollary and results of the previous section show that the image of the 
parallelogram 
 

[ab]  ∪∪∪∪  [bc]  ∪∪∪∪  [cd]  ∪∪∪∪  [ad] 
 

is also a parallelogram and hence cannot be a proper trapezoid.  This proves an 
assertion at the end of the previous section.� 
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Synthetic characterization of affine transformations 
 
 

In the previous section we mentioned that the Galilean transformations of R
n
 could be 

characterized as the 1 – 1 correspondences from R
n
 to itself that preserve distances 

between points (isometries).  There is an analogous synthetic characterization of affine 
transformations in terms of mappings called collineations; in the planar case, these are 

1 – 1 correspondences from R
2
 to itself which take collinear subsets to collinear subsets 

and noncollinear subsets to noncollinear subsets.   Appendix E of Ryan contains a proof 

that collineations and affine transformations of R
2
 are the same (also see pages 39 – 40 

of that book for background).  
  

Incidentally, a similar result holds for 3 – dimensional space; in this case the definition of 

collineation must be modified to say that the 1 – 1 correspondence also takes coplanar 
subsets to coplanar subsets and noncoplanar subsets to noncoplanar subsets. 

 
Appendix – Coordinate affine spaces 

 
One obvious feature of Playfair’s Postulate is that it makes no reference to linear or 
angular measurement.  This in itself strongly suggests that questions about parallel 
lines can be studied, at least to some extent, in their own right and independently 
from any questions about measurement.  In fact, one can go quite far in this direction, 
and it leads to significant insights into questions of independent interest.  Examples 

include the finite geometries that were mentioned in Section 1 of this unit. 
 

A further example of the power of Playfair’s Postulate is a fundamental coordinatization 

theorem for abstract systems (S, L, P ) of points, lines and planes which satisfy both 

the 3 – dimensional Incidence Axioms in Section 1 and Playfair’s Postulate (such a 

system is often called an affine 3 – space).  The statement of this result requires a 

description of certain basic systems which satisfy the conditions in the preceding 
sentence. 
 

The first step is a fundamental fact about linear algebra; namely, everything at the 
beginning of the subject about subspaces, bases, linear transformations, matrices, 
and so on through the theory of determinants will remain valid if even if we do not 
work over the real or complex numbers.  All that one needs is a system with notions 
of addition,  subtraction,  multiplication, and division (by nonzero quantities)  that 
satisfy the usual algebraic properties.  The real and complex numbers are examples of 
such systems, and the rational numbers are another.  Furthermore, many of the “clock 
arithmetic” systems, in which one identifies two integers whose difference is equal to a 

multiple of some fixed positive integer k  >  1, are also allowable choices for scalars; 

specifically, this is true if (and only if) k is a prime.  Many linear algebra texts explicitly 
note this level of generality, and in nearly every text it is at least implicit (see also the 
online file http://math.ucr.edu/~res/progeom/pgnotesappa.pdf ).  
 

If F is a system which satisfies the given conditions on the four basic arithmetic 

operations, then for each positive integer n we can define the n – dimensional vector 

space F
n
 in which addition and multiplication are defined coordinatewise, exactly as in 
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the real or complex case.   We can also define translates of subspaces exactly as in Unit 

I of these notes, and we can take the sets L  =  L (F
n
) and P  =  P(F

n
)  of lines and 

planes to be the translates of 1 – dimensional and 2 – dimensional vector subspaces.  
One can then extend the previous arguments to prove the following result: 
 

Theorem 5.   Let n  =  2  or  3, and let  (F
n
, L, P ) be as above.  Then  (F

n
, L, P ) 

satisfies the relevant Incidence Axioms (the first two if n  =  2, all of them if n  =  3) and 
Playfair’s Postulate.� 
 

One can even go a little further and make nearly everything work for scalars that do not 

necessarily satisfy the commutative multiplication identity ab  =  ba;  the most notable 
exception  is that the theory of determinants cannot be extended to this setting.  The 

most widely known and used example of this sort is given by the algebra H of 

quaternions, which corresponds to a notion of multiplication on R
4
;  the notation 

reflects the fact that this algebra was first discovered and publicized by W. R. Hamilton 

(1805 – 1865), who is also known for numerous other contributions to mathematics and 
physics.  Some online references for the quaternions are given below: 
 

http://en.wikipedia.org/wiki/Division_ring 
 

http://en.wikipedia.org/wiki/Field_theory_(mathematics) 
 

http://en.wikipedia.org/wiki/Quaternion 
 

http://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras) 
 

We shall not discuss the quaternions explicitly in this course, but more detailed 

information on H appears in the following reference: 
 

I. N. Herstein, Topics in Algebra (2
nd

 Ed.).  Wiley, New York, 1975.  

ISBN: 0–571–01090–1.  
 

Algebraic systems which satisfy all the standard properties for addition, subtraction, 
multiplication and division except perhaps the commutative law of multiplication are 

called division rings or skew – fields; if the commutative law of multiplication holds, 

the system is called a field.   If F is a division ring and n is a positive integer, then we 

can make F
n
 into a right or left vector space over F as before.  We have to be careful 

about the difference between left and right multiplication because the commutative law 
of multiplication fails; for example, we need to distinguish between right vector 
subspaces and left vector subspaces, and when defining lines and planes we much 
make a choice of whether we want to use translates of right or left vector subspaces. 
However, if we systematically take these issues into account, we obtain the following 
generalization of the previous result. 
 

Theorem 6.   Let n  =  2  or  3, and let (F
n
, L, P ) be as above, where F is a skew – 

field. Then (F
n
, L, P ) satisfies the relevant Incidence Axioms (the first two if n  =  2, all 

of them if  n  =  3) and Playfair’s Postulate.� 
 

Notation.   We shall say that the system associated to right vector subspaces is the 

standard coordinate model for affine n – space over the skew – field  F. 
 

In the 3 – dimensional case there is a remarkable converse to Theorem 6: 
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Theorem 7.  (Coordinatization Theorem)   Let (S, L, P ) be a system of points, lines and 

planes which satisfy both the 3 – dimensional Incidence Axioms in Section 1 and 

Playfair’s Postulate.   Then there is a 1 – 1 correspondence h from S onto some 

coordinate affine  3 – space F
3
 such that a subset A of S is a line in S if and only if its 

image h[A] under h is a line in F
3
, and a subset C of S is a plane in S if and only if its 

image h[C] under h is a plane in F
3
. 

 

In other words, every 3 – space satisfying Playfair’s Postulate is mathematically 
equivalent to one of the coordinate models we have described above.� 
 

The crucial ideas in the proof of this result are due to K.  F. von Staudt (1798 – 1867).  

More detailed information (formulated using concepts from Unit IV of these notes) 
appears in the books cited below:   
 

W. V. D. Hodge and D. Pedoe, Methods Of Algebraic Geometry, Volume 

I.  Cambridge Univ.  Press, Cambridge (U. K.) and New York, 1968.  ISBN: 

0–521–46901–5.  [The specific reference is Chapter VI.] 
 

J. A. Murtha and E. R. Willard, Linear Algebra and Geometry.  Holt, 

Rinehart and Winston, New York, 1969.  ISBN: 0–030–74485–7. [The 
specific reference is Sections 4.6 and 4.7.] 

 

In contrast to the preceding coordinatization theorem, the situation for planes is more 
complicated. and in fact there exist affine planes which are not equivalent to any of the 
coordinate models. 
  

Coordinatization for affine planes.   (This is additional information at an advanced level 
and will not be needed elsewhere in the notes.)   Questions about coordinatizing affine 
planes are generally discussed using the notions of projective geometry described in Unit 
IV of these notes.  Specifically, given an affine plane there is an associated projective 
plane obtained by adding an extra line of points at infinity, and conversely given a 
projective plane and a line in the latter, one can obtain an affine plane by removing the 
given line.   There is a corresponding notion of coordinates for projective planes, and the 
coordinatization of an affine plane turns out to be equivalent to the coordinatization of the 
associated projective plane.   For projective planes, these issues are discussed in the 
following online reference which will serve as the basis for our discussion:  

 

http://math.ucr.edu/~res/progeom/pgnotes04.pdf 
 

An example of an affine plane which cannot be coordinatized is given by taking the 

example on page 73 of this reference and removing the line of points at infinity.  Further 
examples are given by removing one line from each of the examples mentioned in the 

first paragraph of page 74.  As noted on pages 84 – 86 of the same document, the 

methods which yield Theorem 7 can be extended to give a sufficient condition for the 
coordinatization of an affine plane.   The condition is an assumption that the statement of 

Desargues’ Theorem, which is discussed in sections IV.1 and IV.5 of these notes, is 
true in the associated projective plane.  

 

Final remark.   One natural question about the coordinatization theorem is whether 
there is an intrinsically geometric condition that is equivalent to the commutativity of 

multiplication in the skew – field F.  In fact, there is such a condition; namely, a suitable 

analog of the Pappus Hexagon Theorem in Unit IV.5 of the notes must be true in the 

abstract geometrical system (S, L, P). 


