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I I I.4 : Concurrence theorems 
 

 
If, when three coins are tossed, they always turn 
up heads, we know at once that the matter 
demands investigation.  In a like manner, if three 
points are always on a straight line or three lines 
[always] pass through a single point, we seek 
the reason. 
 

The Volume Library (Educators Association, 
New York, 1948) 

 

In this section we shall assume that all points lie in the Euclidean plane. 
 

If one draws three or more coplanar lines in a random manner, it is likely that no more 
than two will pass through a particular point.  Therefore it is may seem surprising when 
some general method of constructing three lines always yields examples that pass 
through a single point.  There are four basic results of this type in elementary geometry. 
We shall begin with one which has a simple algebraic proof. 
 

Theorem 1.    Suppose we are given ����ABC.  Let D, E and F be the midpoints of the 
respective sides [BC], [AC] and [AB].  Then the open segments (AD), (BE) and (CF) 
have a point in common. 
 

 
 

(Source:  http://mathworld.wolfram.com/TriangleCentroid.html ) 
 

The classical formulation of this result is that the medians of a triangle are concurrent.  
 

Proof.  The first step is to see if the lines AD and BE have a point in common.  In other 

words, we need to determine if there are scalars p and q such that  
 

p D  +  (1 – p)  A    =    q E  +  (1 – q)  B 
 

and if we use the midpoint formulas D  =  ½ (B + C), E  =  ½ (A + C) we obtain the 
following equations: 

 

(1 – p)  A  +  ½ p  B  +  ½ pC    =    ½ q  A  +  (1 – q)B  +  ½ q  C 
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Equating barycentric coordinates, we conclude that 1 –  p  =  ½ q,  1 –  q  =  ½ p and 

½ q  =  ½ p.  The last equation implies p  =  q, and if we combine this with the others we 

obtain the equation 1 –  p  =  ½ p, which implies that  p  =  2/3 .   It is then routine to 

check that this value for p and q solves the equations for the barycentric coordinates and 

hence there is a point where AD and BE meet.  In fact, since p and q lie strictly between 

0 and 1, it follows that the open segments (AD) and (BE) meet, and the common point is 
given by  
 

(1 ⁄⁄⁄⁄ 3) ·  [A  +  B  +  C]. 
 

If we apply the same argument to (BE) and (CF), we find that they also have a point in 
common, and the argument shows it is exactly the same point as before.   Therefore it 

follows that this point lies on all three of the segments (AC), (BE) and (CF).� 
 

The common point is called the centroid of the triangle.  By the results of Section I.4, 
this is the center of mass for a system of equal weights at each of the three vertices of 
the triangle (and it is also the center of mass for a triangular plate of uniform density 

bounded by ����ABC).  We should also note that Theorem 1 is actually a special case of 

Ceva’s Theorem  (see Exercise I.4.8)  with t   =  u   =  v  =  ½  .   
 
 

Perpendicular bisectors and altitudes 
 
 

We shall need the following observation: 
 

Lemma 2.    Let L1 and L2 be two lines that meet in one point, and let M1 and M2 be 

distinct lines that are perpendicular to L1 and L2 respectively.  Then M1 and M2 have a 

point in common. 
 

Proof.    Suppose that M1 and M2 are parallel.  Since L1  ⊥⊥⊥⊥  M1 and M1 || M2 it follows 

that L1  ⊥⊥⊥⊥  M2 .  However, we also have L2  ⊥⊥⊥⊥  M2 ,  so it follows that L1 || L2 .  This 

contradicts our assumption on L1 and L2 ,  and therefore our assumption that M1 || M2 

must be false, so that M1 and M2 must have a point in common.� 
 

Theorem 3.    Given ����ABC, the perpendicular bisectors of [BC], [AC] and [AB] all 
have a point in common. 
 

Proof.    Let LA, LB and LC be the perpendicular bisectors of [BC], [AC] and [AB] 

respectively.   Then LA  ⊥⊥⊥⊥  BC and LB  ⊥⊥⊥⊥  AC, and of course AB and AC have the point 

C in common.   Therefore by the lemma LA and LB have a point X in common.  Since 

the perpendicular bisector of a segment is the set of all points which are equidistant from 

the segment’s endpoints, it follows that  d(X,B)   =   d(X,C) and  d(X,A)   =   d(X,C).   

Combining these, we have  d(X,A)   =   d(X,C) and hence  X  lies on the perpendicular 

bisector LC of [AB] .� 
 

The common point of the lines LA, LB and LC is called the circumcenter of the triangle; 
it is the center of a (unique) circle containing A, B and C.  
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(Source:  http://faculty.evansville.edu/ck6/tcenters/class/ccenter.html ) 
 

Definition.   Given ����ABC, the altitudes are the perpendiculars from A to BC, from B to 
AC, and from C to AB.  Note that the points where the altitudes meet BC, AC and AB 
need not lie on the segments [BC], [AC] and [AB].  In particular, by the results of 

Section 2, we know that the altitude from A to BC meets the latter in (BC) if and only if 

the vertex angles at B and C are acute (measurements less than 90 degrees). 
 

Theorem 4.    Given ����ABC, its altitudes all have a point in common. 
 

Proof.    The trick behind this proof is to construct a new triangle ����DEF such that the 

altitudes MA, MB and MC of ����ABC are the perpendicular bisectors of the sides of 

����DEF.  Since these three lines have a point in common, the result for the original 
triangle will follow.  More precisely, one constructs the new triangle such that we have 
AB || DE, AC || DF and BC || ED and the midpoints of [EF]  , [DF] and [DE] are just the 
original vertices A, B and C.  The situation is shown in the drawing below. 

 

 
 

We must now describe the points D, E and F explicitly. 
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D   =   B + C – A        E   =   A + C – B        F   =   A + B – C 
 

We first need to verify that A, B and C are the midpoints of [EF], [DF] and [DE] 

respectively.  To do this, it is only necessary to expand the three vectors ½ (E + F),  

½ (E + F), and ½ (E + F) using the definitions above. 
 

Next, we need to show that AB || DE, AC || DF and BC || EF.  It will suffice to show the 
following: 
 

1. The lines AB and DE are distinct, the lines AC and DF are distinct, and the 

lines BC and EF are distinct. 
 

2. The difference vectors E – D and B – A are nonzero multiples of each other, 

the difference vectors F – D and C – A are nonzero multiples of each other, 

and the difference vectors F – E and C – B are nonzero multiples of each 
other. 

 

We can dispose of the first item as follows:  Since C lies on DE and not on AB, it follows 
that DE and AB are distinct lines; similarly, since B lies on DF and not on AC, it follows 
that DF and AC are distinct lines, and finally since A lies on EF and not on BC, it follows 
that EF and BC are distinct lines.  The assertions in the second item may be checked by 

expanding E – D, F – D, and F – E in terms of A, B and C using the definitions.   These 

computations yield the equations  E – D  =  2(B – A),  F – D  =  2(C – A), and  F – E  =  

2(C – B). 
 

Finally, we need to verify that the altitudes MA, MB and MC of ����ABC are perpendicular 

to EF, DF and DE respectively.   The first one follows because MA  ⊥⊥⊥⊥  BC and BC || EF 

imply MA  ⊥⊥⊥⊥  EF, the second follows because MB  ⊥⊥⊥⊥  AC and AC || DF imply MB  ⊥⊥⊥⊥  DF, 

and the third follows because MC  ⊥⊥⊥⊥  AB and AB || DE imply MC  ⊥⊥⊥⊥  DE.�  
 

The common point of the altitudes is called the orthocenter of the triangle. 
 

The Euler line.     The remarkable facts established above were all known to the Greek 
geometers.  However, Euler discovered an even more amazing relationship in the 18th 
century; namely,  the three concurrency points described above are always 
collinear.  The line on which these points lie is called the Euler line of the triangle.  
Illustrations and additional information about this line appear in the following online sites: 

 

http://faculty.evansville.edu/ck6/tcenters/class/eulerline.html 
 

http://www.ies.co.jp/math/java/vector/veuler/veuler.html 
 

http://en.wikipedia.org/wiki/Euler's_line 
 

 http://www.youtube.com/watch?v=CizogTmSju4&feature=related 
 
 

Classical characterization of angle bisectors 
 
 

We should begin by stating the basic existence and uniqueness result for angle 

bisectors.  This was previously stated as Exercise I I.4.1, and a proof is given in the 

solutions to the exercises for Section I I.4. 
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Proposition 5.    Suppose that A, B and C are noncollinear points.  Then there is a 

unique ray [AD such that (AD is contained in the interior of ∠∠∠∠BAC and |∠∠∠∠DAB|  =  

|∠∠∠∠DAC|  =  ½ |∠∠∠∠BAC|.� 
 

The ray [AD is said to bisect ∠∠∠∠BAC and is called the (angle) bisector of ∠∠∠∠BAC. 
 

We can now state the desired characterization of angle bisectors: 
 

Theorem 6.    Let A, B and C be noncollinear, and let [AD be the bisector of ∠∠∠∠BAC.  

Given a point X in Int ∠∠∠∠BAC, let YX and ZX be the feet of the perpendiculars from X to 

AB and AC respectively.  Then X ∈∈∈∈  (AD if and only if d(X, YX)  =  d(X, ZX). 
 

Note.  If we are given a line L and a point Q not on L, the following standard usage we 

shall say that the foot of the perpendicular from Q to L is the (unique) point S ∈∈∈∈ L 

such that L ⊥⊥⊥⊥ QS. 
 

The proof we shall give is basically standard.  However, some care is needed to 

determine whether the points YX and ZX lie on the open rays (AB and (AC.  The 

following result will be helpful in analyzing such questions. 
 

Lemma 7.   Let D  ∈∈∈∈  Int ∠∠∠∠BAC  and suppose that  |∠∠∠∠DAC|  <  90°°°°.   If  F is the foot of 

the perpendicular from D to AC, then we have F ∈∈∈∈ (AC. 
 

Proof of Lemma.     If F does not lie on (AC then either F  =  A or else F∗A∗C holds.  

But F  =  A implies ∠∠∠∠DAC  =  ∠∠∠∠DFC is a right angle; since |∠∠∠∠DAC|  <  90°°°°, this is 

impossible.  Also, F∗A∗C implies |∠∠∠∠CAD|  >  |∠∠∠∠FAD|  =  90°°°° by the Exterior Angle 

Theorem.  Therefore we must have F ∈∈∈∈ (AC.� 
 

Proof of Theorem.    Suppose first that X lies on the bisector.  Since |∠∠∠∠BAC| is less 

than 180°°°°, it follows that both |∠∠∠∠XAB| and |∠∠∠∠XAC| are less than 90°°°°, so by the lemma 
we know that Y lies on (AB and also Z lies on (AC.   
 

 
 

Since |∠∠∠∠XZA|  =  |∠∠∠∠XYA|  =  90°°°° and |∠∠∠∠XAZ|  =  |∠∠∠∠YAZ|  =  ½|∠∠∠∠BAC|, we have 

����ZAX   ≅≅≅≅   ����YAX  by AAS, and hence d(X,Y)  =  d(X, Z). 
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Conversely, suppose now that X ∈∈∈∈  Int ∠∠∠∠BAC and d(X,Y)  =  d(X,Z).  We claim that Y 

and Z lie on the open rays (AB and (AC respectively.  Since  |∠∠∠∠XAB|  +  |∠∠∠∠XAC|    =   

|∠∠∠∠BAC|  <  180°°°° it follows that at least one of the terms on the left hand side must be 

strictly less than 90°°°°.  Without loss of generality, we might as well assume that |∠∠∠∠XAC| 

< 90°°°°; if not, we can retrieve the result when |∠∠∠∠XAB| < 90°°°° by reversing the roles of B 

and C and of Y and Z in the argument that follows.   By the lemma the condition |∠∠∠∠XAC| 

< 90°°°° implies that Z lies on (AC.  If Y does not lie on (AB, then as in the lemma we 

either have Y  =  A or else Y∗A∗B.  We can dispose of the case Y  =  A as follows:  If 

this happens then we have a right triangle ����XZA, and since the hypotenuse is strictly 

longer than either of the other sides this means that   d(X,Y)   =   d(X,A)   >   d(X,Z), 

contradicting our assumption that  d(X,Y)  =  d(X,Z).  Thus it remains to eliminate the 

possibility that Y∗A∗B holds.  However, if Y∗A∗B holds, then Y and B lie on opposite 
sides of AC.  Since B and X lie on the same side of AC by hypothesis, it follows that Y 
and X lie on opposite sides of AC.  Thus the line AC and the segment (XY) have some 

point W in common.  It follows that  d(X, Z)  >  d(X,W).  Also, since XZ is perpendicular 
to AC and meets the latter at Z, it follows (say, from the Pythagorean Theorem) that 

d(X,W)  ≥≥≥≥  d(X,Z).  Combining the observations in the preceding sentences, we have 

d(X,Y)  >  d(X,Z), contradicting our assumption that these were equal.  Therefore 

Y∗A∗B is also impossible, and the only remaining option is for Y to lie on (AB.   

 
 

Now that we know that Y and Z lie on the open rays (AB and (AC respectively, the rest 

of the proof is straightforward.  Triangles ����XYA and ����XZA are right triangles with right 

angles at Y and Z respectively.  We know that d(X, A)   =   d(X,A) and also d(X,Y)  = 

d(X,Z), so by the Pythagorean Theorem we also know that d(A,Y)  =  d(A,Z).  Therefore 

����XYA   ≅≅≅≅   ����XZA  by SSS, so that |∠∠∠∠XAY|  =  |∠∠∠∠XAZ|.  Since Y and Z lie on the 

open rays (AB and (AC respectively, we have ∠∠∠∠XAB  =  ∠∠∠∠XAY and ∠∠∠∠XAZ  =  ∠∠∠∠XAC.  

By assumption X lies in the interior of ∠∠∠∠BAC, and therefore by the Additivity Postulate 

we have |∠∠∠∠BAC|   =   |∠∠∠∠BAX|   +   |∠∠∠∠XAC|   =   2|∠∠∠∠BAX|    =   2|∠∠∠∠XAC|, so that 

|∠∠∠∠BAX|  =  |∠∠∠∠XAC|  =  ½ |∠∠∠∠BAC|, which means the ray [AX is the bisector of ∠∠∠∠BAC.� 
 
 

The incenter 
 
 

We are finally ready to state the last of the four classical concurrence theorems for 
triangles. 
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Theorem 8.   Given ����ABC, let [AD, [BE and [CF be the bisectors of ∠∠∠∠BAC, ∠∠∠∠ABC 

and ∠∠∠∠BCA respectively.  Then the lines AD, BE and CF have a point in common, and it 

lies in the interior of ����ABC. 
 

This point is called the incenter of the triangle.  The reason for this name is that if one 
drops perpendiculars from this point to the sides of the triangle, then the feet of the 
perpendiculars lie on a circle inscribed within the triangle (see the illustration below). 
 

 
(Source: http://mathworld.wolfram.com/Incenter.html ) 

 

Proof.   Needless to say, we are going to use the characterization of angle bisectors 
developed in the previous theorem.   
 

Since [AD bisects ∠∠∠∠BAC, the Crossbar Theorem implies there is a point X where (AD 

meets (BC).  Likewise, since [BE bisects ∠∠∠∠ABC = ∠∠∠∠ABX, the Crossbar Theorem also 
implies there is a point J where (BE meets (AX).  Since J lies on (BE, it follows that J 

lies in the interior of ∠∠∠∠ABC, and since (AX) is contained in (AD, it follows that J also lies 

in the interior of ∠∠∠∠BAC; therefore J lies in the interior of ����ABC. 
 

 
 

Let T, U and V be the feet of perpendiculars from J to BC, AC and AB respectively 

(these are labeled MA, MB and MC in the drawing).  Since J lies on the bisector [BE we 

have d(J,T)  =  d(J,V), and since J lies on the bisector (AD we have d(J,U)  =  d(J,V).  

Combining these, we have d(J,T)  =  d(J,U); since we already know that J lies in the 

interior of ����ABC, which contains the interior of ∠∠∠∠ACB, it follows that J also lies on the 

bisecting ray [CF.� 
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The excenters of a triangle 
 
 

There is an analog of the incenter theorem involving suitably defined external angle 
bisectors of a triangle. 
 

Theorem 9.   Given a triangle ����ABC, let D and E be points such that A∗C∗D and 

A∗B∗E, let [BX and [CY denote the bisectors of ∠∠∠∠ ABE and ∠∠∠∠ BCD respectively  

(the external bisectors of the angles at B and C),  and let [AZ denotes the bisector of  

∠∠∠∠ BAC.  Then the rays [BX, [CY and [AZ are concurrent. 
 

 
 

Proof.   We shall first verify that [BX and [CY meet at a point F, and this point lies on the 

side of BC opposite A.  The bisector conditions imply that |∠∠∠∠XBC|   =   ½ |∠∠∠∠EBC| and 

|∠∠∠∠YCB|   =   ½ |∠∠∠∠GCB|.  Since both |∠∠∠∠EBC| and |∠∠∠∠GCB| are less than 180 degrees, it 

follows that |∠∠∠∠XBC|   +   |∠∠∠∠YCB|   =   ½ |∠∠∠∠EBC|   +   ½ |∠∠∠∠GCB|  <   180 °°°°, and 
therefore by the classical version of Euclid’s Fifth Postulate it follows that (BX and (CY 
meet at a point which lies on the same side of BC as Y and Z.  To see that this 
intersection point F lies on the side of BC opposite A, proceed as follows:  The bisector 
condition implies that F, X and E lie on the same side of BC, while the betweenness 
condition implies that A and E lie on opposite sides of BC, and therefore F and A must 
lie on opposite sides of BC. 

We claim that F lies in the interior of ∠∠∠∠ BAC.  Since F lies on (BX and (CY, it follows that 

F lies in the interiors of both ∠∠∠∠ ABE and ∠∠∠∠ BCD.  The second of these implies that F and 

B lie on the same side of CD  =  AC, while the first implies that F and C lie on the same 

side of BE  =  AB; combining these, we obtain the assertion in the first sentence of this 
paragraph.  
 

By construction the point F does not lie on any of the lines AB, BC or AC.  Let G, H and 
K denote the feet of the perpendiculars from F to AC, BC and AB respectively.  By the 
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characterization of angle bisectors, we know that  d(F, G)  =  d(F, H)  and d(F, H)  =  

d(F, K).  Since F lies in the interior of ∠∠∠∠ BAC, the preceding equations imply that F lies 
on the angle bisector [AZ of that angle.   Therefore the point F, which by construction 
lies on (BX and (CY, must also lie on (AZ, which is what we wanted to prove.�  
 

The point F is called an excenter for the triangle.  If we interchange the roles of the 
vertices in the original triangle, we obtain three different excenters.   In the drawing 

below, the points JA and JB are two of the excenters, and the red lines through A and B 

meet in the third excenter JC, which is out of the picture: 
 

 
 
 

(Source: http://mathworld.wolfram.com/ExteriorAngleBisector.html ) 
 
 
 

I I I.5 : Similarity theorems 
 

 
We shall begin by quoting a passage from http://math.youngzones.org/similar.html : 
 

Similar … [objects] are the same shape but not [necessarily] the same size. This means 
that corresponding angles … are congruent, and that the ... [distances between 
corresponding points] are in the same ratio. ... Similarity is found in scale models, 
blueprints, maps, microscopes, and when enlarging or reducing a photocopy. All of the 
angles are exactly the same size, so the object looks exactly like the original, only larger 

or smaller. … These … triangles [depicted below] have a scale factor of 3/4.  
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Similarities of geometric objects are fundamental to the theory and applications of 
trigonometry, and similarities also have numerous applications in the other sciences and 
engineering. 
 
 

Similarities and linear algebra 
 
 

We shall be interested in the following class of mappings from R
n
 to itself: 

 

Definition.   A function (or mapping) T from R
n
 to itself is said to be an abstract 

similarity (transformation) if it is a 1 – 1 onto map and there is a positive constant k 

(called the ratio of similitude) such that d( T(x), T(y) )   =   k ⋅⋅⋅⋅ d(x, y)  for all vectors x 

and y in R
n
.  By definition, an isometry is the same thing as an abstract similarity with 

ration of similitude equal to 1. 
 

The ideas of Section I I.4 yield a large family of similarities that we shall call regular 

similarities.   Specifically, if we are given a nonzero constant k and a Galilean 

transformation G(x)  =  Ax + w, where A is orthogonal and w is a vector in R
n
, then the 

affine transformation G(x)  =  kAx + w is an abstract similarity whose ratio of similitude 

is equal to | k | .  In Section I I.4 we mentioned that every isometry of R
n
 is given by a 

Galilean transformation, and likewise every abstract similarity of R
n
 is a regular similarity 

of the type described here; in fact, the result for abstract similarities is a very simple 
consequence of the result for isometries. 
 

Abstract similarities and regular similarities share some basic formal properties with 
isometries, Galilean transformations and affine transformations.  We shall merely state 
them; the proofs are simple modifications of the earlier arguments and are left to the 
reader as exercises: 
 

Proposition 1.  The identity map is an abstract similarity from R
n
 to itself with ratio of 

similitude equal to 1.  If T is an abstract similarity from R
n
 to itself with ratio of similitude 

k, then its inverse T
 – 1

 is an abstract similarity of R
n
 with ratio of similitude k

 – 1
.  Finally, 

if T and U are isometries from R
n
 to itself with ratios of similitude k and q respectively, 

then so is their composite T            U is an abstract similarity of R
n
 with ratio of similitude kq.�   

 

Proposition 2.  The identity map is a regular similarity transformation from R
n
 to itself.  

If T is a regular similarity transformation from R
n
 to itself, then so is its inverse T – 1

.  

Finally, if T and U are regular similarities of R
n
, then so is their composite T         U.�     

 

Regular similarities also have the following important properties: 
 

Theorem 3.  Every regular similarity transformation S of R
n
 have the following geometric 

properties: 
1. The function S sends collinear points to collinear points and noncollinear 

points to noncollinear points. 

2. If x, y, z  are noncollinear points of  R
n
, then S preserves the measurement of 

the angle they form; in other words, we have | ∠∠∠∠x y z |  =  | ∠∠∠∠ S(x) S(y) S(z) |. 
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Proof.   The first property holds because regular similarities are affine transformations.  
The proof that regular similarities preserve angle measurements is similar to the proof 

for Galilean transformations.   The cosine of | ∠∠∠∠x y z | is the quotient of 〈〈〈〈x – y , z – y〉〉〉〉 by 

the product of the lengths || x – y || ⋅⋅⋅⋅ || z – y || .  If k is the ratio of similitude for the regular 

similarity transformation S, then we have  
 

|| S(x) – S(y) || ⋅⋅⋅⋅ || S(z) – S(y) ||   =   k 
2

 || x – y || ⋅⋅⋅⋅ || z – y || 
 

and therefore the proof that S preserves (cosines of) angles reduces to verifying that S 

and the inner product satisfy the following compatibility condition: 
 

   〈〈〈〈 S(x) – S(y), S(z) – S(y) 〉〉〉〉    =   k
2
 〈〈〈〈x – y , z – y〉〉〉〉 

 

By the factorization of S in the first sentence of the proof we have S(v)  =  kAv + w, and 

it follows immediately that  S(u) – S(v)   =   kA(u – v) for all u and v.  Thus we may 
reason as before to show that 
 

〈〈〈〈 S(x) – S(y), S(z) – S(y) 〉〉〉〉   =    〈〈〈〈 kA(x – y), kA(z – y) 〉〉〉〉   = 
 

(k
2
) ⋅⋅⋅⋅T(A(x – y)) A(z – y)   =  (k

2
) ⋅⋅⋅⋅T(x – y) 

T
AA(z – y)  = 

 

(k
2
) ⋅⋅⋅⋅T(x – y)   I (z – y)   =   k

2⋅⋅⋅⋅( 

T
(x – y))  (z – y)   =  k

2
 〈〈〈〈 x – y 

 , z – y 〉〉〉〉 
 

and hence S must preserve angle measurements.� 
 
 

Classical triangle similarities 
 
 

As in the discussion of classical triangle congruences, we start with two ordered triples 

of noncollinear points (A, B, C) and (D, E, F), where it is possible that the sets {A, B, C} 

and {D, E, F} may be identical (for example, possibly D = B, E = C and F = A).  Unless 

otherwise noted, k denotes a positive constant. 
 

Definition.  We shall generally write ����ABC ~ k ����DEF and say that ����ABC and ����DEF 

are similar with ratio of similitude equal to k if the following hold: 
 

• The corresponding lengths of the sides satisfy d(D, E)  =  k · d(A, B) ,     d(E, F)  =  

k · d(B, C) , and d(D, F)  =  k · d(A, C) .        
• The corresponding angle measurements satisfy  | ∠∠∠∠ABC |  =  | ∠∠∠∠DEF | ,     | ∠∠∠∠BAC |  

=  | ∠∠∠∠EDF | ,      and     | ∠∠∠∠ACB |  =  | ∠∠∠∠DFE | . 
 

As in the case of triangle congruence, in the preceding definition of similarity the 
orderings of the vertices are absolutely essential.  If the precise ratio of similitude is 

unknown or unimportant, the subscript k is often suppressed. 
 

Several basic properties of similarity follow immediately. 
 

Proposition 4.    Classical triangle similarity has the following properties: 

(1) ����ABC   ≅≅≅≅   ����DEF if and only if   ����ABC ~ 1 ����DEF. 

(2)  If  ����ABC ~ k ����DEF, then ����DEF ~ 1/ k ����ABC. 

(3) If  ����ABC ~ k ����DEF, and ����DEF ~ q ����TUV, then  ����ABC ~ k q ����TUV.� 
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One basic relation between classical triangle similarity and regular similarity 
transformations is contained in the following result: 
 

Proposition 5.   Suppose that a, b, c are noncollinear points in R
n
, and let S be a 

regular similarity with ratio of similitude k.    Then S maps ���� a b c  to  ���� S(a) S(b) S(c)  

and we have ���� a b c ~ k ���� S(a) S(b) S(c) . 
 

The first part follows from general properties of affine transformations, and the second 
preceding follows directly from the properties of regular similarities described in a 
previous result.� 
 

We shall use this proposition to prove the standard similarity theorems for triangles. 
 

Theorem 6.  (SAS Similarity Theorem)    Suppose we have ordered triples (A, B, C) 

and  (D, E, F)  as above and a positive constant  k  such that     d(D, E)  =  k ⋅⋅⋅⋅ d(A, B),     
d(E, F)  =  k ⋅⋅⋅⋅ d(B, C)  and     | ∠∠∠∠ABC |  =  | ∠∠∠∠DEF | .    Then ����ABC ~ k ����DEF. 
 

Proof.   Let T be a similarity transformation with ratio of similitude k, and consider the 

triangle ����XYZ, where X  =  T(A), Y  =  T(B), and Z  =  T(C).   We then have ����ABC ~ k 
����XYZ, and this may be combined with the hypotheses and the SAS Congruence 

Theorem to conclude that ����XYZ   ≅≅≅≅   ����DEF.  Therefore by the general properties of 

classical triangle similarity we have ����ABC ~ k ����DEF .� 
 

Theorem 7.  (AA Similarity Theorem)       Suppose we have ordered triples (A, B, C) 

and (D, E, F) as above which satisfy | ∠∠∠∠ABC |  =  | ∠∠∠∠DEF | and     | ∠∠∠∠ACB |  =  | ∠∠∠∠DFE | .     

Then we have ����ABC ~ k ����DEF,  where     k  =         d(E, F) / d(B, C). 
 

Proof.   Let k be defined as in the statement of the theorem, let T be a similarity 

transformation with ratio of similitude k, and consider the triangle ����XYZ, where X  =  

T(A), Y  =  T(B), and Z  =  T(C).  We then have ����ABC ~ k ����XYZ, and this may be 

combined with the hypotheses and the ASA Congruence Theorem to conclude that 

����XYZ   ≅≅≅≅   ����DEF.  Therefore by the general properties of classical triangle similarity 

we have ����ABC ~ k ����DEF .� 
 

Theorem 8.  (SSS Similarity Theorem)       Suppose we have ordered triples (A, B, C) 

and  (D, E, F) as above and a positive constant  k  such that     d(D, E)  =  k ⋅⋅⋅⋅ d(A, B) ,     

d(E, F)  =  k ⋅⋅⋅⋅ d(B, C) ,     and     d(D, F)  =  k ⋅⋅⋅⋅ d(A, C) .    Then we have ����ABC ~ k ����DEF. 
 

Proof.   Let T be a similarity transformation with ratio of similitude k, and consider the 

triangle ����XYZ, where X  =  T(A), Y  =  T(B), and Z  =  T(C).  We then have ����ABC ~ k 
����XYZ, and this may be combined with the hypotheses and the SSS Congruence 

Theorem to conclude that ����XYZ   ≅≅≅≅   ����DEF.  Therefore by the general properties of 

classical triangle similarity we have ����ABC ~ k ����DEF .� 
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We can use the following to prove the following additional link between classical 
similarity of triangles and regular similarity transformations.  It is analogous to a link 
between the classical notion of congruence and the general notion described in Section 

I I.4 of these notes. 
 

Theorem 9.    Suppose we have ����ABC and ����DEF in the coordinate plane R
2
 such 

that ����ABC ~ k ����DEF .  Then there is a regular similarity transformation S with ratio of 

similitude k which sends ����ABC to ����DEF . 
 

Proof.   The idea is similar to the corresponding proof for congruence.   We know that 

the pairs { B – A, C – A } and {E – D, F – D } form bases for R
2
.  Let L be the unique 

linear transformation such that L(B – A)  =  E – D and L(C – A)  =  F – D.  Then the 

argument proving the angle superposition theorem in Section I I.4 implies that k
 –

 
1
L is 

an orthogonal (linear) transformation; it follows that L is a similarity transformation.  Now 
consider the similarity transformation S defined by  
 

S(X)   =   (X – A) + D   =   L(X)  +  [D – L(A)]. 
 

By definition and the identities  S(X)  –  S(Y)  =  L(X)  –  L(Y)  =  L(X – Y), the map S 

sends A to D, B to E and C to F, and the ratio of similitude is equal to k.  Since every 

similarity transformation is an affine transformation, it follows that T sends ����ABC to 

����DEF as required.� 
 

In analogy with congruence, the preceding result leads to a general definition of 
similarity for geometric figures; namely, two geometric figures F and G are similar (in 
the general sense) if and only if there is a regular similarity transformation S which sends 
F onto G.   
 
 

Recognizing and using similar triangles 
 
 

It is often useful to have a simple criterion for recognizing similar triangles.  The following 
one is particularly important. 
 

Theorem 10.    Suppose we are given ����ABC, and suppose that D  ∈∈∈∈     AB and E  ∈∈∈∈    AC 

are distinct points such that BC || DE.  Then ����ABC ~ ����ADE .    
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Proof.    Write D  =  A + p(B – A) and E  =  A + q(C – A) for appropriate scalars p and 

q.  Since DE is parallel to BC, we know that E – D is a nonzero multiple of C – B, so we 

shall write E – D  =  k(C – B).  We then have the following chains of equations: 
 

E – D  =  k(C – B)  =  k(C – A) – k(B – A) 
 

E – D  =  (E – A)  –  (D – A)  =   q(C – A)  –   p(B – A) 
 

Combining these equations, we have  
 

k(C – A) – k(B – A)  =  q(C – A)  –   p(B – A) 
 

Since A, B and C are noncollinear the vectors B – A and C – A are linearly independent, 
and therefore their coefficients on both sides of the equation above must be equal.  

Therefore we have p  =  q  =  k. 
 

Let T be the regular similarity transformation given by T(X)   =   kX  –  kA   +  A.   By 

construction and previous observations we have T(A)  =  A, T(B)  =  D, and T(C)  =  E.  

Therefore it follows that ����ABC ~ ����ADE .   In fact, a closer inspection of the 

construction implies that the ratio of similitude is equal to | k |.� 
 

The appearance of the absolute value in the last sentence of the proof deserves some 
further comment.  The drawing which appears before the proof illustrates a case where 

k is positive, and the drawing below depicts a case where k is negative. 

 
 

The basic similarity theorems also have some standard consequences for right triangles.  
 

Theorem 11.  Suppose that ����ABC has a right angle at C, and let D be the foot of the 

perpendicular from C to AB.  Then D lies on the open segment (AB), and AD splits 

����ABC into two triangles, each of which is similar to ����ABC.  More precisely, we have 

����ACB ~ ����ADC and ����ACB ~ ����CDB.  
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Proof.  The assertion that D lies on (AB) follows because both | ∠∠∠∠CAB| and | ∠∠∠∠ABC| 

are less than 90°°°°, for one can use the proof of one corollary to the Exterior Angle 

Theorem to conclude that these angle inequalities imply D  ∈∈∈∈    (AB).   
 

We know that ∠∠∠∠CAD  =  ∠∠∠∠BAC  and that |∠∠∠∠ACB |  =  | ∠∠∠∠ADC |  = 90°°°°.  Therefore we 

have ����ACB ~ ����ADC   by the AA similarity theorem.  Likewise we know that ∠∠∠∠DBC = 

∠∠∠∠CBA and that | ∠∠∠∠ACB |  =  | ∠∠∠∠CDB |  = 90°°°°.  Thus we also have ����ACB ~ ����CDB by 

the AA similarity theorem.� 
 

Corollary 12.  In the setting of the previous result we have d(C, D) 

2
  =  d(A,D) d(B,D). 

 

This result is often stated in the form, “The altitude to the hypotenuse of a right triangle 

is the mean proportional between the segments into which it divides the hypotenuse.” 
 

Proof.    The theorem implies that ����ADC ~ ����CDB, so if k is the ratio of similitude it 

follows that  
 

k
DBd

DCd

DCd

DAd
==

),(

),(

),(

),(
 

 

and if we clear this of fractions we obtain the equation in the corollary.� 
 
 

The angle bisector theorem 
 
 

We shall conclude this section with an application of similar triangles to a simple but 
basic question about an arbitrary triangle. 
 

Theorem 13.  (Angle Bisector Theorem)  Given ����ABC, let [AX be the bisector of 

∠∠∠∠BAC, and let D be the point where (AX meets (BC) by the Crossbar Theorem.  Then 

we have the following proportionality relation: 
 

),(

),(

),(

),(

DCd

DBd

ACd

ABd
=  
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Proof.   Let L be the unique line through B which is parallel to AD.  Since AC and AD 
are distinct lines, it follows that AD meets L in some point, say E.   
 

We claim that C∗A∗E holds; this comes from the parallelism condition BE || AD and the 

fact that B∗D∗C.  Since AC  =  AE is a transversal to the parallel lines BE and AC and 

B∗D∗C  implies that B and D lie on the same side of the transversal, by the result on 

transversals and corresponding angles we have |∠∠∠∠CAD|  =  |∠∠∠∠AEB|.  Furthermore, 

since [BD bisects ∠∠∠∠ BAC we have |∠∠∠∠BAD|  =   |∠∠∠∠CAD|. 
 

The ordering relations C∗A∗E and B∗D∗C imply that D and E lie on opposite sides of 
AB.  Therefore by the result on transversals and alternate interior angles we have 

|∠∠∠∠ABE|  =  |∠∠∠∠ BAD|.  Combining all these, we conclude that |∠∠∠∠ABE|  =   |∠∠∠∠AEB|, and 

therefore d(A,E)  =  d(A,B) by the Isosceles Triangle Theorem. 
 

The preceding observations imply that ����CAD ~ ����CEB by the AA similarity theorem.    

Therefore, if k is the ratio of the lengths of the sides of the second triangle to those of 
the first, we have the following equation: 

  

k
DCd

BCd

ACd

ECd
==

),(

),(

),(

),(
 

 

If we take reciprocals of everything in the preceding display, we obtain the following:   
 

kBCd

DCd

ECd

ACd 1

),(

),(

),(

),(
==  

 

Since  C∗A∗E and B∗D∗C hold, we may further rewrite these as follows: 
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),(),(
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),(),(
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Subtracting 1 from both sides of the outside expressions, we obtain the following: 
 

),(

),(

),(

),(

DCd

DBd

ACd

AEd
=  

 

Finally, if we combine the preceding with d(A,E)  =  d(A,B), we obtain 
 

),(

),(

),(

),(

DCd

DBd

ACd

ABd
=  

 

which is the equation in the statement of the Theorem.� 
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I I I.6 : Circles and constructions 
 

 

In classical Euclidean geometry, there is a great deal of emphasis on constructing 

objects using an unmarked straightedge (not a marked ruler!) and a compass.  The 
strong preference for such constructions apparently goes back to Plato, possibly 
because use of other tools emphasized practicality rather than “ideas” which he 
regarded as more important, and the constructions in Euclid’s Elements are all of this 
restricted type.   In any case, each such classical construction involves a sequence of 
elementary steps, and the following two types are of particular interest in this section. 
 

• Given a line and a circle, take the point or points where they meet. 

• Given two circles, take the point or points where they meet. 
 

Of course, such steps can be carried out only if we know one or more points where the 
two curves meet.  In many cases, it seems clear that such common points will exist 
physically, but we also need to justify their existence mathematically.  We have 
already noted that such a mathematical verification is lacking in the first proposition of 

Book I in the Elements, which describes the construction of an equilateral triangle 
whose sides have a given length.  The main purpose of this section is to develop the 
results on intersections of lines and circles that are needed to justify the construction 
steps listed above.  We shall then use these results to analyze a basic construction 
question.  Further information on constructions with straightedge and compass can be 

found at the following online sites: 
 

http://en.wikipedia.org/wiki/Compass_and_straightedge 
 

http://www.sonoma.edu/users/w/wilsonst/Courses/Math_150/c-s/default.html 
 

http://mathworld.wolfram.com/GeometricConstruction.html 
 

http://mathworld.wolfram.com/GeometricProblemsofAntiquity.html 
 

http://en.wikipedia.org/wiki/Proof_of_impossibility 
 

Angles and intercepted arcs.   There are several interesting and important results on 
circles in elementary geometry, many of which involve one or two arcs on a circle which 
lie inside a given angle or pair of angles, and the relations between the measurements of 
these angles and the degree (or radian) measures of their intercepted arcs.  The most 

basic example is illustrated below;  in this drawing the angle ∠∠∠∠ABC intercepts a circular 

arc with endpoints A and C whose measure is | ∠∠∠∠AQC |,   and the latter quantity is equal 

to 2 |∠∠∠∠ABC|.   
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It will not be possible cover such material in these notes, but additional information on 

intercepted arcs is available in Chapter 16 of the previously cited book by Moïse and 

Chapter 14 of the following classic geometry text:   
 

E. E. Moise and F. L. Downs, Geometry.  Addison – Wesley, Reading, MA, 1964. 
 

Throughout this section, unless noted otherwise all points are assumed to lie in the 

plane  R
2
.  

 
 

The basic theorems 
 
 

 We shall begin with two results on lines and circles.  Neither should be surprising, but 
that does not eliminate the need for proofs. 
 

Theorem 1.  (Line – Circle Theorem)   Let  L be a line, let ΓΓΓΓ be a circle, and suppose 

that L contains a point inside ΓΓΓΓ.  Then  L meets ΓΓΓΓ in exactly two points. 

 
Proof.     Let k denote the radius of ΓΓΓΓ.  It will be convenient to split the proof into two 

cases.  Suppose first that the line L contains the center of ΓΓΓΓ.  Then by earlier results we 

know that L meets ΓΓΓΓ in two points. 
 

Suppose now that L does not contain the center Q of ΓΓΓΓ and let X be a point of L which 

lies inside ΓΓΓΓ.  Let P be the foot of the perpendicular from Q to L.  Then by (say) the 

Pythagorean theorem we know that   d(Q, P)   ≤≤≤≤   d(Q, X), which is less than k, and 

therefore we know that P also lies inside the circle.  There are exactly two points A and 

B on L whose distance from P is equal to sqrt( k 

2
 – d(Q, P) 

2
 ), and by the Pythagorean 

Theorem it follows that  d(A, Q)  =  d(B, Q)  =  k.  Thus L meets ΓΓΓΓ in at least two points. 
 

To see that these are the only points, suppose that C ∈∈∈∈ L also satisfies  d(C, Q)  =   k.  
Then the Pythagorean Theorem implies that  
 

d(C, P)   =   d(A, P)   =   d(B, P)   =   sqrt( k 

2
 – d(Q, P) 

2
 ) 

 

and since A and B are the only two points at this distance from P it follows that C is 
either A or B .� 
 

Proposition 2.    Let  ΓΓΓΓ be a circle, and suppose that we have points a  and  b  that are 

(respectively) inside and outside  ΓΓΓΓ.  Then the open segment (ab) meets ΓΓΓΓ in exactly 

one point. 
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Proof.   As in the previous argument, let k be the radius of the circle.   By the previous 

result the line ab meets the circle ΓΓΓΓ in exactly two points.  Let p = q if ab contains the 
center of the circle, and let p be the foot of the perpendicular from q to ab if the line ab 
does not contain the center.   

 
 

Suppose that p  =  a, and consider the ray [pb  =  [ab.  By the proof of the preceding 

result there is a unique point x ∈∈∈∈ (pb such that d(x, p)  =  sqrt( k 

2
 – d(q, p) 

2
 ), and 

since b lies outside the circle we have 

d(b, p)   =   sqrt( d(q, b) 

2
  –  d(q, p) 

2
 )    >    sqrt( k 

2
 – d(q, p) 

2
 )   =   d(x, p). 

Since x ∈∈∈∈    (pb this means that we have the ordering p∗x∗b or equivalently a∗x∗b, so 

that x lies on (ab).   The Pythagorean Theorem now implies that x lies on the original 

circle.  Conversely, if z is any point on (pb)  =  (ab) which also lies on the circle, then z 

also lies on the ray [pb and by the Pythagorean Theorem d(z, p)  =  sqrt( k 

2
 – d(q, p) 

2
 )  

=  d(x, p),  so that x must be equal to z. 
 

If p and a are distinct, parts of the preceding argument go through, but more work is 

needed.  First of all, we now have d(a,p)  <  d(x, p)  as well as d(x, p)  <  d(b, p).   Next, 

there are two cases depending upon whether [pa  =  [pb or [pa is the opposite ray to 
[pb.  Suppose first that the rays are equal.  Then the distance relations imply the 

ordering relationship x∗a∗b, so that x lies on the circle and on (ab).  Furthermore, if z is 

any such point, then z ∈∈∈∈ (ab) implies z ∈∈∈∈ (pb and the Pythagorean Theorem again 

implies that d(x, q)  =  d(z, q), so that x  =  z.   Turning to the remaining case, if a and b 

lie on opposite rays then we have a∗p∗b as well as p∗x∗b, and these combine to show 

that a∗x∗b, so that x lies on (ab).  Conversely, if z is any point on the segment and the 

circle, we claim that z lies on [pb; note that we have d(z, p)  =  d(x, p) by yet another 
application of the Pythagorean Theorem.  If z does not lie on [pb, then we would have 

z∗p∗b and since z lies on (ab) we would also have a∗z∗b.  Taken together, these imply 

a∗z∗p, so that d(a, p)  >  d(z, p)  =  d(x, p).  But we have already proven the reverse 

inequality, so this is a contradiction.  The problem arises from assuming that z is a point 
on the ray [pa, the open segment (ab) and the circle, and thus we see that if a point lies 
on [pa and the circle then it cannot lie on (ab).  Therefore there is only one point which 
lies on both (ab) and the circle.� 
 

The next theorem is similar in nature but definitely more complicated to prove. 
 

Theorem 3.  (Two Circle or Circle – Circle Theorem)   Suppose that  ΓΓΓΓ1  and  ΓΓΓΓ2 are two 

circles with different centers such that  ΓΓΓΓ2 contains a point inside  ΓΓΓΓ1 and a point outside 
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ΓΓΓΓ1 .   Then  ΓΓΓΓ1  and  ΓΓΓΓ2  meet in two points, one on each side of the line joining their 

centers. 
 

Proof.    Let b and c denote the centers of ΓΓΓΓ1 and ΓΓΓΓ2 respectively, let p and q be the 

respective radii of these circles, and let u1 be a vector of unit length that is a positive 

scalar multiple of c – b (specifically, multiply the latter by the reciprocal d of its length, so 

that c  =   b  +  du1).  Take u2 to be a unit vector perpendicular to u1.  The drawing 

below illustrates everything when u1 and u2 are the standard unit vectors. 
 

 
 

(Adapted from http://mathworld.wolfram.com/Circle-CircleIntersection.html ) 
 

Suppose we know that  v   =   a  +  x u1  +  y u2 lies on ΓΓΓΓ2; we would like to determine 

when v lies inside, on or outside the first circle ΓΓΓΓ1.   Since  
 

|| v – a || 

2
     =     x 

2
   +   y 

2
 

 

and points on the second circle satisfy  
 

q 

2
    =    || v – b || 

2
     =     (x – d) 

2
   +   y 

2
 

it follows that a point on ΓΓΓΓ2 lies inside, on, or outside ΓΓΓΓ1 depending upon whether the 

quantity q 

2
  + 2dx  –  d 

2
 is less than, equal to, or greater than p 

2
.  

 

The minimum value of this function on the circle occurs for the smallest possible value of 

x, which is d – q, and the maximum value of this function on the circle occurs for the 

largest possible value of x, which is d + q . Since we know there are points inside and 

outside the circle, we know that the given minimum value must be strictly less than p 

2
 

and the given maximum value must be strictly greater than p 

2
.   Therefore we have the 

following system of equations and inequalities: 
 

q 

2
 –  2dq  +  d 

2
   =   q 

2
 +  2d(d – q)  –  d 

2
   <    p 

2
   <   

 

q 

2
  + 2d(d + q)  –  d 

2
   =   q 

2
 + 2dq  +  d  

2
 

The latter are equivalent to  
 

| q – d |   <   p   <   d + q . 
 

By the preceding discussion we also know that for any point which lies on both circles 

the coefficient x is given by q 

2
 + 2dx  –  d 

2
   =   p 

2
 , so that  
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x  =  (p 

2
 + d 

2
 – q 

2
) / 2d 

 

Since the coefficient y is then given by ±±±± sqrt ( p 

2
 – x 

2
), we see that two solutions of the 

desired type will exist if and only if | x |  <  p,  and since the two sides of the line joining 

the centers are the sets of points where y is respectively positive or negative, these two 

solutions will yield one point on each side of that line. The condition | x | <  p is 
equivalent to saying that 

 

– 2dp  <   p 

2
 + d 

2
 – q 

2
  <  2dp. 

 

which in turn is equivalent to each of the next three lines: 
 

– p 

2
 – 2dp – d 

2
  <   – q 

2
  <   – p 

2
 + 2dp – d 

2
 

 

– (p + d) 

2
  <  – q 

2
  <   – (p – d) 

2
 

 

(p – d) 

2
  <  q 

2
  <  (p + d) 

2
 

 

| p – d |  <  q  <  p + d 
 

Therefore the proof reduces to verifying the inequalities on the preceding line. 
 

We know that | p – d |  <  q  <  p + d by earlier steps in the proof.  Now p  <  q + d 

implies  p – d  <  q,  while q – d  <  p implies that  q  <  p + d and d – q  <  p implies 

that  d – p  <  q,  so all the necessary inequalities are true, and this completes the proof 
of the theorem.� 
 
 

A converse to the Classical Triangle Inequality 
 
 

We shall only consider one application of the preceding theorems to construction 
problems. 
 

Problem.    Suppose we are given three positive real numbers a, b, and c (two or more 
may be equal).  What are the necessary and sufficient conditions for these numbers to 
be the lengths of the sides of a triangle? 
 

The Classical Triangle Inequality yields a fundamental necessary condition; namely, the 
sum of every pair of the numbers must be greater than the third one.  Our objective is to 
show that any set of three numbers satisfying these simple conditions can be realized as 
the set of lengths of the sides of some triangle. 
 

We can always rename a, b and c as x,  y and z such that x  ≥≥≥≥  y   ≥≥≥≥   z , and if we do 
so then the conditions of the Classical Triangle Inequality translate to the single 

inequality x  <  y + z  (the other inequalities y  <  x + z  and z  <  y + x  follow 

immediately from the conditions  x  ≥≥≥≥  y   ≥≥≥≥   z    >   0).  Thus proving the desired 

converse to the Classical Triangle Inequality reduces to showing the following result: 
 

Theorem 4.    Suppose we are given real numbers x  ≥≥≥≥  y   ≥≥≥≥   z  >  0  which satisfy the 

condition x  <  y + z .  Then there is a triangle ����ABC such that d(B, C)  =  x,  d(A, C)  

=  y, and  d(A, B)  =  z . 
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Proof.   Let B and C be arbitrary points such that d(B, C)  =  x, let ΓΓΓΓ1 be the circle with 

center B and radius y, and let ΓΓΓΓ2 be the circle with center C with radius z.   We claim that 
the hypothesis (hence the conclusion) of the Two Circle Theorem is satisfied. 
 

Let U be the point on [BC such that d(B, U)  =  x + z, and let V be the point on [BC such 

that d(B, U)   =   x – z .   Then clearly y  ≤≤≤≤   x  <  x + z, and the inequality x   <   y  +  z 

implies that x  –  z   <   y.  This means that U and V both lie on ΓΓΓΓ2, but U lies outside ΓΓΓΓ1 

and V lies inside ΓΓΓΓ1.  Therefore the Two Circle Theorem implies that ΓΓΓΓ1 and ΓΓΓΓ2 have two 

points in common, with one on each side of BC.  If we take A to be either of these 

common points, then it is a routine exercise to verify that ����ABC satisfies the desired 
conditions.� 
 

Clearly one can ask analogous questions for SAS and ASA data.  The first of these is 
fairly easy to check (a triangle with the given measurements always exists).  We shall 

conclude this section with the result in the ASA case. 
 

The discussion depends heavily on the following partial reformulation of Euclid’s original 
Fifth Postulate: 
 

Theorem 5.   Let AB be a line, and let C and D be points such that A, B, C and D are 
coplanar and both C and D lie on the same side of AB.  Then the open rays (AC and 

(BD have a point in common if | ∠∠∠∠CAB |   + | ∠∠∠∠DBA |    <   180°°°°. 
 

As noted in Section 2 of this unit, the converse follows from the Exterior Angle Theorem. 

 

 Proof.   Let  E and F be points such that C∗A∗E and D∗B∗F, and let G be a point such 

that A∗B∗G.  Then since | ∠∠∠∠CAB |   +  | ∠∠∠∠DBA |    <   180°°°°  we have  
 

|∠∠∠∠DBE |    =    180°°°°  –  | ∠∠∠∠DBA |   >   | ∠∠∠∠CAB | . 
  

If AC || BD, then by the theorem on transversals and corresponding angles we would 

have | ∠∠∠∠BDE|   =   | ∠∠∠∠CAB|, so it follows that AC and BD must have a point in common.  
By construction we know that A and B are distinct, but if AC met BD on the line AB then 
A and B would have to be equal.  Therefore the common point either lies on the same 
side of AB as C and D, or else the common point lies on the same side of AB as E and 
F.  It suffices to eliminate the latter possibility, so suppose that AC meets BD on the 
same side of AB as E and F.  Let H be this common point, so that [AE  =  [AH and [BF  
=  [BH.  By the Supplement Postulate we have  

 

|∠∠∠∠CAB|  +  |∠∠∠∠BAH|    =    180°°°°    =    |∠∠∠∠DBA|  +  |∠∠∠∠ABH|. 
 

By a corollary of the Exterior Angle Theorem we have | ∠∠∠∠HAB |  + | ∠∠∠∠HBA |   <  180°°°°, 
and if we combine this with the supplementary angle equations we obtain the inequality | 

∠∠∠∠CAB |  +  | ∠∠∠∠DBA |   >  180°°°°.   This contradicts our initial assumption; the problem 
arises from the supposition that AC meets BD on the same side of AB as E and F, so 
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the latter cannot happen.  Therefore the lines must meet on the same side as C and D.  

If S is this half plane, then it follows that the intersection AD ∩∩∩∩ BC ∩∩∩∩ H is nonempty, and 

hence (AC  =  AC ∩∩∩∩ S and (BD  =  BD ∩∩∩∩ S have a point in common.� 
 

Theorem 6.  Suppose we have positive real numbers x, αααα, ββββ such that α α α α + β β β β  <  180°°°°.  

Then there is a triangle ����ABC with |∠∠∠∠BCA|  =  αααα,  |∠∠∠∠BAC|  =  ββββ,  and d(A, C)  =  x. 
 

Proof.  Choose A and C such that  d(A, C)   =   x.  By the Protractor Postulate, there 
are rays [AX and [CY such that (AX and (CY lie on the same side of AC and their angle 

measurements satisfy |∠∠∠∠YCA|  =  αααα and  |∠∠∠∠XAC|  =  ββββ.   Since    α α α α     ++++     β β β β   <   180°°°°,  the 
previous result implies that (AX and (CY have a point in common.  If B is this common 

point, then ����BAC  =  ����ABC will satisfy all the required conditions.� 
 
 

Further remarks on construction problems 
 
 

For the sake of completeness, we shall mention a few other well known facts about 
constructions with an unmarked straightedge and (collapsible) compass.  The term 
“collapsible” means that given two points Q and P it is possible to draw the circle with 
center Q passing through P, but it is not possible to lift the compass off the plane and 

draw a circle with some center Q′ which is not equal to P or Q and radius equal to the 
distance between P and Q.  Additional information on such constructions is given in 

Chapter 19 of the book by Moïse. 
 

One particularly celebrated result in the Elements states that a regular polygon with 60 
sides can be constructed by straightedge and compass.  This requires the construction 

of a 6°°°° angle by such means.   The construction of such an angle uses three other 
constructions. 

 

1. It is possible to bisect an angle by means of straightedge and compass. 
 

2. Suppose that 0  <  p, q  <  180°°°° and it is possible construct angles with 

measures p and q by straightedge and compass.  (a)  If  p  +  q  <  180°°°°, 

then it is possible to construct an angle of measure equal to  p  +  q  by 

means of straightedge and compass.  (b)  If p  <  q, then it is possible to 

construct an angle of measure q – p  by straightedge and compass. 

 

3. It is possible to construct an equilateral triangle by means of straightedge 
and compass. 

 

4. It is possible to construct a regular pentagon by means of straightedge and 
compass. 

 

The first three of these are fairly straightforward, but the fourth requires more substantial 

work.  From a modern viewpoint, the latter is possible for three basic reasons: 
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1. If, in the picture above, Q is the center point for the regular pentagon and A 

and B are adjacent vertices, then |∠∠∠∠ AQB|  =  72°°°°. 

2. The cosines of 72 °°°° and 36 °°°° may be written in the form a + b sqrt(5), where 

a and b are rational numbers (by the double angle formula expressing cos 2θθθθ 

as a quadratic function of cos θθθθ, if the cosine of 36 °°°° is so expressible then so 

is the cosine of 72 °°°°).   

3. For every positive integer n and all rational numbers a and b, it is possible to 

construct a segment whose length is equal to | a + b sqrt(n) |  (the absolute 
value) by means of straightedge and compass. 

 

Detailed information on several of these points (generally at a more advanced level) is 

contained in the following online document: 
 

http://math.ucr.edu/~res/math153/history02b.pdf 
 

The latter also contains information on several other classical questions worth 

mentioning here, including the more general question of constructing a regular n – gon 
by straightedge and compass and also the three classical problems from Greek 
geometry which turn out to be impossible to do by means of straightedge and compass 
(trisecting an angle, duplicating the cube, and squaring the circle).   

 

We should also note that the concept of mathematical impossibility is often seriously 
misunderstood (it is not the same as impossibility in engineering or technology), and 
there is a discussion of this issue in the online document cited above (see also the 

discussion at the end of Section I I.4 in these notes).  Further information on this topic 

may be found in the file http://math.ucr.edu/~res/math133/mathproofs.pdf or Chapter T of the 
following book: 

 

W. Dunham, The Mathematical Universe: An Alphabetical Journey Through 
the Great Proofs, Problems, and Personalities.  Wiley, New York, 1997.  

ISBN: 0–471–17661–3.  
 
 

Marked straightedge and compass constructions 
 
 

The restriction to unmarked straghtedges in classical constructions is extremely 
important, and often misunderstandings arise from confusion over marked and 
unmarked straightedges.  Although angle trisection and cube duplication cannot be done 
using classical (unmarked straightedge and compass) construction principles, but 
ancient Greek geometers did discover methods for completing these constructions with 
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a marked straightedge and compass.  Near the end of the 16th century F. Viète (or Vieta, 

1540 – 1603; among other things, known for crucial advances in the development of 
modern symbolic mathematical notation) suggested a modified theory of constructions 
with the following admissible steps called neusis constructions in addition to the 
classical ones: 
 

Suppose that we are given the points A, B, C and the intersecting lines L and M 

which all lie on the same plane, and let w denote the distance between A and 
B.  Then one can also construct points X and Y such that 

 

(1)  X ∈∈∈∈ L and  Y ∈∈∈∈ M,  
 

(2)  the points C, X, and Y are collinear,  
   

(3)  the distance between X and Y is also equal to w . 
 

Here is a drawing which illustrates this type of construction step: 
 

 
 

There are a couple of reasons for assuming that the lines L and M are intersecting and 
not parallel.  If L || M and C is an arbitrary point in the same plane as these lines, then it 

is not possible to find X and Y if  w  is less than the distance between L and M, but if  w  
is greater than this distance then it is always possible to make the construction using 
classical unmarked straightedge and compass methods.  On the other hand, if L and M 
intersect this is not necessarily the case. 
 

The drawing is meant to suggest the following physical model for the added type of 
construction step:  One first places the straightedge on the line AB, marking it at A and 
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B, and then one moves this marked straightedge so that the line it determines passes 
through C and the two marked points lie on L and M. 
 

To avoid further digression we shall not explain how one can use neusis constructions to 
trisect angles and duplicate cubes, but here are a few online references where these 
and other constructions are completed (for example, the construction of a regular 
heptagon). 

 

http://math.berkeley.edu/~robin/Viete/construction.html 
 

http://orion.math.iastate.edu/msm/EekhoffMSMSS07.pdf 
 

http://www.geom.uiuc.edu/docs/forum/angtri/ 
 

http://www.uwgb.edu/dutchs/pseudosc/trisect.htm 
 

http://www.uwgb.edu/dutchs/pseudosc/DuplCube.HTM 
 

http://www.cut-the-knot.org/htdocs/dcforum/DCForumID4/756.shtml 
 
 

Appendix — Further topics in Euclidean geometry 
 

 
There are more things in heaven and earth, 
Horatio, than are dreamt of in your philosophy. 
 

Shakespeare, Hamlet, Act 1, Sc. V, 166 – 167. 
 

Euclid’s Elements presented an integrated account of the main body of mathematical 
knowledge at the time, but Greek geometers had already pushed some parts of the 
subject considerably beyond the material covered there.   Given the Elements’ impact 

on mathematics — and indeed for civilization in general — it is not at all surprising that 

there has been an enormous amount of further work on its topics over the past 2300 
years.  In particular, during the “modern” era of mathematics beginning late in the 16th 
century, many professional and amateur mathematicians have discovered remarkable 
facts about familiar figures like circles and triangles that are in the spirit of classical 
Greek geometry but were apparently unknown in ancient times (since many classical 
Greek mathematical writings have not survived and substantial parts of classical Greek 
mathematical work were probably never put into written form, at least some results might 

have been known).   In Section 4 we mentioned one example; namely, the discovery of 
the Euler line.  A detailed discussion of such results is beyond the scope of these notes, 
but we list some books and online references (including videos) that cover these topics.  

 

N. Altshiller – Court, Modern Pure Solid Geometry. (2
nd

 Ed.).  Chelsea Pub., 

New York, 1979.  ISBN: 0–828–40147–0. 
 

N. Altshiller – Court, College geometry: An introduction to the modern 
geometry of the triangle and the circle.  (2

nd
 Enlarged Ed.). Dover, New York, 

2007.  ISBN: 0–486–45805–9. 
 

A. S. Posamentier and J. Stepelman, Teaching Secondary School 
Mathematics: Techniques and Enrichment Units. (6

th
 Ed.). Prentice Hall, 

Upper Saddle River NJ, 2001.  ISBN: 0–130–94514–5.  
 

H. Perfect, Topics in Geometry (Commonwealth and International Library No. 
142 ; Maths. Div. Vol. 7). Pergamon/Macmillan, London and New York, 1963.  
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R. D. Millman and G. D. Parker, Geometry — A Metric Approach with Models. 

Springer – Verlag, New York, 1990. ISBN: 0–387–97412–1. 
 

http://jwilson.coe.uga.edu/emt669/Student.Folders/McFarland.Derelle/Euler/euler.html 
 

http://www.cut-the-knot.org/triangle/Morley/Morley.shtml 
 

http://www.youtube.com/watch?v=CizogTmSju4&feature=related 
 

http://www.youtube.com/watch?v=LqF4hiNkvQk&feature=related 
 

http://www.youtube.com/watch?v=cRebl8I0lKk&feature=channel 
 

Section 19.4 in Moïse (The Problem of Apollonius) also discusses some more advanced 

topics in Euclidean geometry.   NOTE:  Apollonius of Perga  (c. 262  –  c. 190 B.C.E.) 
was one of the most important figures in ancient Greek mathematics, and he is 
especially known for his extensive study of conic sections; his contributions are 
described in the following online document: 

 

http://math.ucr.edu/~res/math153/history04Y.pdf 


