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I V .5    :    Theorems of Desargues and Pappus 

 
 

The elegance of the[se] statements testifies to 
the unifying power of projective geometry. …  
The elegance of the[ir] proofs … testifies to the 
power of the method of homogeneous 
coordinates. 
 

Ryan, p. 126 
 

We have already mentioned Desargues’ Theorem as an example of a result which is 
best understood by means of perspective projections and hence of projective geometry, 
and we shall begin by proving the nonplanar case of that result using the machinery that 
was developed in the preceding three sections. 
 

Theorem 1.  (Desargues’ Theorem  —  nonplanar case).   Suppose that we are given 

four noncoplanar points Q, A, B, C ∈∈∈∈    P(R
3
), and suppose we are given three other 

points A′′′′, B′′′′ and C′′′′ such that A′′′′ ∈∈∈∈    QA, B′′′′ ∈∈∈∈    QB, and C′′′′ ∈∈∈∈    QC.  Then the pairs of 

corresponding lines {AB, A′′′′B′′′′}, {AC, A′′′′C′′′′}, and {BC, B′′′′C′′′′} meet at points D, E 

and F respectively, and these three points are collinear. 
 

 
 

(Source:  http://mathworld.wolfram.com/DesarguesTheorem.html ) 
 

In the picture above, the point O corresponds to the point Q in the 
statement of the theorem, and similarly the intersection points R, S and T 
correspond to D, E and F respectively. 
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Proof.    The argument is very similar to the informal discussion given in Section 1 of this 

unit, but now we are working inside P(R
3
) rather than R

3
 and we are also in a position 

to be less tentative about a few issues (for example, whether the pairs of lines have 
points in common). 
 

In order to show that the line pairs have points in common, by the properties of P(R
3
) it 

is only necessary to check that they are coplanar.  We shall only do this explicitly for the 

pair {AB, A′′′′B′′′′}, for the other cases follow by interchanging the roles of A, B, C and A′′′′, 

B′′′′,  C′′′′.  Since A′′′′ ∈∈∈∈    QA and B′′′′ ∈∈∈∈    QB, it follows that the lines AB and A′′′′B′′′′ both line in 
the plane determined by Q, A and B.  As noted in the second sentence of the paragraph, 

it follows similarly that  {AC, A′′′′C′′′′}  and {BC, B′′′′C′′′′} are coplanar pairs of lines.  
 

By construction, we know that D, E and F  —  which are points on the lines AB,  AC, 

and BC  —   lie in the plane ABC determined by those three points, and likewise they lie 

in the plane A′′′′B′′′′C′′′′.  If these two planes are distinct, then we know that D, E and F all lie 
on the line in which these planes intersect and we are done.  To see that the planes are 
distinct, we shall assume they are the same and derive a contradiction.  If they were 

distinct, then A′′′′ would lie on the plane of ABC, and thus the entire line AA′′′′  = QA would 

lie on this plane; since Q, A, B, and C are not coplanar we know this cannot happen, 

and therefore A′′′′ does not lie on the plane determined by ABC; but this means that the 

planes ABC and A′′′′B′′′′C′′′′ cannot be the same.� 
 

Euclidean interpretation.   The nonplanar case of Desargues’ Theorem immediately 
yields the following result in Euclidean geometry.  Notice that the hypothesis is the 
same, but the conclusion involves three separate cases. 
 

Theorem 2.    Suppose that we are given four noncoplanar points Q, A, B, C ∈∈∈∈    R3
, and 

suppose we are given three other points A′′′′, B′′′′ and C′′′′ such that A′′′′ ∈∈∈∈    QA, B′′′′ ∈∈∈∈    QB, and 

C′′′′ ∈∈∈∈    QC.  Then exactly one of the following is true: 
 

(1) The pairs of corresponding lines {AB, A′′′′B′′′′}, {AC, A′′′′C′′′′}, and {BC, B′′′′C′′′′} 

meet at points D, E and F respectively, and these three points are collinear. 
 

(2) Exactly one of the pairs of lines consists of parallel lines.  Furthermore, in this 

case if AB || A′′′′B′′′′, then these two lines are parallel to the line EF, where E is the 

common point of AC and A′′′′C′′′′, and F is the common point of BC and B′′′′C′′′′. 
 

(3) All three of the pairs of lines are pairs of parallel lines; in other words, we have 

AB || A′′′′B′′′′,  AC || A′′′′C′′′′,  and BC || B′′′′C′′′′.   
 

In the second case, note that one has analogous conclusions if AC || A′′′′C′′′′ or BC || B′′′′C′′′′,  
and these can be extracted by suitably interchanging the roles of the variables  A,  B,  C 

and their counterparts A′′′′,  B′′′′,  C′′′′ in the proof.   
 

The Euclidean version of Desargues’ Theorem shows how projective geometry can 
provide an effective means for giving unified formulations and proofs of otherwise 
complicated statements in Euclidean geometry (the “bewildering chaos of special 

cases” in the Dieudonné quotation at the beginning of Section 2).  The Euclidean 
interpretations of Desargues’ Theorem when Q is the point at infinity are described in 
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Theorems 9 and 10 on page 129 of Ryan (strictly speaking, Ryan treats the planar 
rather than the nonplanar case, but the conclusion is the same in both cases). 
 

Comment on the proof.   All we need to do is to interpret the conclusions of the 
projective theorem in terms of Euclidean geometry.  The conclusion of Desargues’ 
Theorem applies to the extended ordinary lines, and the intersection points of these 
extended ordinary lines may be ordinary points or ideal points.  The first case 
corresponds to the case in which they are all ordinary points, and the second to the case 
in which exactly one is an ideal point.  Finally, if at least two of the intersection points are 
ideal points, then by the collinearity statement the third must also be an ideal point, so 

that the lines are parallel in pairs.� 
 

Clearly one would expect that a proof of Desargues’ Theorem without using P(R
3
)  

would involve three separate arguments for the individual cases. 
 
 

Convenient choices for homogeneous coordinates 
 
 

We are now going to discuss proofs of theorems in projective geometry using 
homogeneous coordinates.  Usually it is very helpful to choose the latter so that the 
algebraic computations become as simple as possible, and the next few results provide 
frequently used ways of doing so. 
 

Frequently it is useful to have some sort of coding for passing back and forth between 
points in projective spaces and sets of homogeneous coordinates representing them.  
One method of doing so is to denote geometric points by ordinary capital letters and 
homogeneous coordinates by corresponding lower case Greek letters; since there are 
more letters in the Latin alphabet than the Greek alphabet, some additional adjustments 
are necessary; in the table we use two forms of the Greek letter phi and we insert Cyrillic 

characters zhe, oborotnoye, and cha for J, U, and V. 
 
    

A B C D E F G H I J K L M 

αααα ββββ γγγγ δδδδ εεεε φφφφ χχχχ θθθθ ιιιι ж κκκκ λλλλ µµµµ 
 

N O P Q R S T U V W X Y Z 

νννν οοοο ϕϕϕϕ ψψψψ ρρρρ σσσσ ττττ э ч ωωωω ξξξξ ηηηη ζζζζ 
 
 

We then have the following three results on choices for homogeneous coordinates. 
 

Proposition 3.    Let  n  =  2  or  3, let A and B be distinct points in P(R
n
), and let X be 

a third point which lies on the line AB.  Then it is possible to choose homogeneous 

coordinates αααα, ββββ, and ξξξξ for the points A, B, and X such that we have ξξξξ  =  αααα + ββββ.  

Furthermore, if αααα
∗
, ββββ

∗
, and ξξξξ

∗
 are arbitrary homogeneous coordinates for  such that  ξξξξ

∗
  

=  αααα
∗
 + ββββ

∗
, then there is a nonzero scalar k such that  ξξξξ

∗
  =  k ξξξξ,  αααα

∗
  =  k αααα, and  ββββ

∗
  =  

k ββββ. 
 

Proposition 4.    Let  n  =  2  or  3, let A, B,  and C be noncollinear points in P(R
n
), 

and let X be a point in the plane ABC such that no three of the points A, B, C, and X are 

collinear.  Then it is possible to choose homogeneous coordinates αααα, ββββ, γγγγ, and ξξξξ for the 
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points A, B, C, and X such that we have ξξξξ  =  αααα + β β β β + γγγγ.  Furthermore, if αααα
∗
, ββββ

∗
, γγγγ

∗
, 

and ξξξξ∗
  are arbitrary homogeneous coordinates for A, B, C, and X for which we have  ξξξξ∗

  

=  αααα
∗
 + ββββ

∗
 + γγγγ

∗
, then there is a nonzero scalar k such that  ξξξξ

∗
  =  k ξξξξ, αααα

∗
  =  k αααα, ββββ

∗
  =  

k ββββ, and  γγγγ
∗
  =  k  γγγγ. 

 

Proposition 5.    Let A, B, C, and D be noncoplanar points in P(R
3
), and let X be a 

point which such that no four of A, B, C, D, and X are coplanar.  Then it is possible to 

choose homogeneous coordinates αααα, ββββ, γγγγ, δδδδ, and ξξξξ for the points A, B, C, D, and X 

such that we have ξξξξ  =  αααα + ββββ + γγγγ + δδδδ.  Furthermore, if   αααα
∗
,  ββββ

∗
,  γγγγ

∗
,  δδδδ

∗
, and  ξξξξ

∗
  are 

arbitrary homogeneous coordinates for A, B, C, D, and X which satisfy the equation  ξξξξ
∗
  

=  αααα
∗
 + ββββ

∗
 + γγγγ

∗
 + δδδδ

∗
, then there is a nonzero scalar k such that ξξξξ

∗
  =  k ξξξξ,  αααα

∗
  =  k αααα,  

ββββ
∗
  =  k ββββ,  γγγγ

∗
  =  k γγγγ,  and  δδδδ

∗
  =  k δδδδ. 

 

With a sufficiently abstract formal setting, all three of these would be cases of a single 
result; we have chosen to set things up in a more elementary manner to limit the time 
spent on projective geometry and to keep everything from becoming too abstract and 
heavily loaded with definitions. 
 
Proofs.    We shall prove these in the order they are stated above. 
 

Suppose that A and B are distinct points in P(R
n
), and let X be a third point which lies 

on the line AB.   Let αααα′′′′ and ββββ′′′′ be arbitrary homogeneous coordinates for A and B 

respectively.  Since X lies on AB, we know that a set ξξξξ    of homogeneous coordinates for 

X must be a linear combination of αααα′′′′ and ββββ′′′′, so write ξξξξ  =  z αααα′′′′ + u ββββ′′′′  for suitable 

scalars z and u. We claim that both of these coefficients are nonzero; certainly both 

cannot be equal to zero, and if one is equal to zero then we have  X  =  A   or  X  =  B.  

Therefore we know that αααα =  z αααα′′′′ and ββββ =  u ββββ′′′′ also represent A and B respectively, and 

for these choices of homogeneous coordinates we clearly have ξξξξ  =  αααα + ββββ.   
 

To prove the uniqueness statement for the first result, note that if ξξξξ
∗
 is any other set of 

homogeneous coordinates for X, then ξξξξ
∗
  =  k ξξξξ  for some nonzero scalar k and hence 

we have ξξξξ
∗
  =  k ξξξξ  =    =    =    =  k    αααα + k    ββββ.  Since we also know there are nonzero scalars p and q 

such that αααα
∗
  =  p αααα    and ββββ

∗
  =  q ββββ, it follows that  

 

k    αααα + k    ββββ      =  k ξξξξ  =    =    =    =  ξξξξ∗
  =  αααα

∗
 + ββββ

∗
  =    =    =    =      p    αααα + q    ββββ. 

 

The assumption that A and B are distinct implies that αααα and ββββ  are linearly independent, 

and the latter in turn implies that the coefficients of αααα and ββββ on the left and right hand 

expressions in the display above must be equal.  Therefore we have  k  =  p  =  q, so 

that  αααα
∗
  =  k αααα and  ββββ

∗
  =  k ββββ. 

 

Next, suppose that A, B,  and C are noncollinear points in P(R
n
), and let X be a point 

in the plane ABC such that no three of the points A, B, C, and X are collinear.  Let αααα′′′′, 

ββββ′′′′, and γγγγ    ′ be arbitrary homogeneous coordinates for A, B, and C respectively.  We then 
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know that αααα′′′′, ββββ′′′′, and γγγγ    ′ are linearly independent and hence that a set ξξξξ    of 

homogeneous coordinates for X must be a linear combination of αααα′′′′, ββββ′′′′, and γγγγ    ′; 

therefore we may write ξξξξ  =  z αααα′′′′ + u ββββ′′′′ + v γγγγ    ′ for suitable scalars z, u, and v.   As in the 

preceding paragraph, we claim that all of these coefficients are nonzero.  If, say, we had 

z  =  0  then X would lie on the line BC,  and hence z is nonzero; similar considerations 

show that the other two coefficients are nonzero.  Therefore we know that  αααα
∗
  =   k αααα,,,,  

ββββ
∗
  =   k ββββ    and  γγγγ =  v γγγγ    ′ also represent A, B, and C respectively, and for these choices 

of homogeneous coordinates we clearly have ξξξξ  =  αααα + β β β β + γγγγ. 
 

To prove the uniqueness statement for the second result, note again that if ξξξξ
∗
 is any 

other set of homogeneous coordinates for X, then ξξξξ
∗
  =  k ξξξξ  for some nonzero scalar k 

and therefore ξξξξ
∗
  =  k ξξξξ  =    =    =    =  k    αααα + kββββ + k    γγγγ.  Since we also know there are nonzero 

scalars p, q and x such that αααα
∗
  =  p αααα,    ββββ

∗
  =  q ββββ, and γγγγ

∗
  =  x γγγγ, it follows that  

 

k    αααα + k    ββββ + k    γγγγ      =  k ξξξξ  =    =    =    =  ξξξξ
∗
  =  αααα

∗
 + ββββ

∗
 + γγγγ

∗
  =     =     =     =    p        αααα + q  ββββ + x     γγγγ.  

 

The assumption that A, B,  and C are noncollinear implies that αααα, ββββ, and γγγγ are linearly 

independent, and the latter in turn implies that the coefficients of αααα, ββββ, and γγγγ on the left 

and right hand sides of the equation above must be equal.  Therefore k  =  p  =  q  =  x, 

so that αααα
∗
  =  k αααα,  ββββ

∗
  =  k ββββ,  and  γγγγ

∗
  =  k γγγγ. 

 

Finally, suppose that A, B, C, and D be noncoplanar points in P(R
3
), and let X be a 

point which such that no four of A, B, C, D, and X are coplanar.  Let αααα′′′′, ββββ′′′′, γγγγ    ′, and δδδδ′′′′ be 

arbitrary homogeneous coordinates for A, B, C, and D respectively.   In this case we 

know that a set ξξξξ    of homogeneous coordinates for X must be a linear combination of αααα′′′′, 

ββββ′′′′, γγγγ    ′, and δδδδ′′′′, so we have ξξξξ  =  z αααα′′′′ + u ββββ′′′′ + v γγγγ    ′ + w δδδδ′′′′ for suitable scalars z, u, v, and 

w.  As before, if any of these scalars were nonzero, then X would lie in a plane three of 

the other points, so all four coefficients must be nonzero and therefore  αααα =  z αααα′′′′,   ββββ =  

u ββββ′′′′,  γγγγ =  v γγγγ    ′, and  δδδδ =  w δδδδ′′′′ also represent A, B, C, and D respectively, and for these 

choices of homogeneous coordinates we have  ξξξξ  =  αααα + ββββ + γγγγ + δδδδ.   
 

To prove the uniqueness statement for the last result, note again that if ξξξξ
∗
 is any other 

set of homogeneous coordinates for X, then ξξξξ
∗
  =  k ξξξξ  for some nonzero scalar k and 

therefore ξξξξ
∗
  =  k  ξξξξ  =    =    =    =   k  αααα + k     ββββ + k     γγγγ + k    δδδδ.  Since we also know there are nonzero 

scalars p, q and x such that αααα
∗
 =  p    αααα,        ββββ

∗
  =  q    ββββ,  γγγγ

∗
  =  x    γγγγ, and  δδδδ

∗
  =  y    δδδδ, it follows 

that  
 

k    αααα + k    ββββ + k    γγγγ + k    δδδδ      =  k ξξξξ  =    =    =    =  ξξξξ
∗
  =  αααα

∗
 + ββββ

∗
 + γγγγ

∗
 + δδδδ

∗
  =     =     =     =   p    αααα + q    ββββ + x    γγγγ + y    δδδδ. 

 

The assumption that A, B, C, and D are noncollinear implies that αααα, ββββ, γγγγ, and δδδδ are 

linearly independent, and the latter in turn implies that the coefficients of αααα, ββββ, γγγγ, and δδδδ 
on the left and right hand sides of the equation above must be equal.  Therefore we 

have k  =  p  =  q  =  x  =  y  as well as the corresponding vector equations αααα
∗
  =  k αααα,  

ββββ
∗
  =  k ββββ,  γγγγ

∗
  =  k γγγγ,  and  δδδδ

∗
  =  k δδδδ.� 
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The following proof for the planar case of Desargues’ Theorem illustrates how good 
choices for homogeneous coordinate can simplify the details in some computational 
arguments.  
 

Theorem 6.  (Desargues’ Theorem  —  planar case).   Suppose that we are given four 

coplanar points Q, A, B, C  ∈∈∈∈     P(R
3
) such that A, B, and C are noncollinear, and 

suppose we are given three other points A′′′′, B′′′′ and C′′′′ such that A′′′′ ∈∈∈∈    QA, B′′′′ ∈∈∈∈    QB, and 

C′′′′ ∈∈∈∈    QC.  Then the pairs of corresponding lines {AB, A′′′′B′′′′}, { AC, A′′′′C′′′′}, and {BC, 

B′′′′C′′′′} meet at points D, E and F respectively, and these three points are collinear. 
 

( NOTE:  The previous drawing for the noncoplanar case also applies equally well 
to the coplanar case;  no drawing is included here because there are already 

three figures for Desargues’ Theorem in these notes.) 
 

Proof.    Let  ψψψψ, , , , αααα, , , , ββββ, , , , and    γγγγ be homogeneous coordinates for Q, A, B, and C 

respectively.  Since A′′′′ is a third point on the line QA we know that homogeneous 

coordinates A′′′′ are given by p    ψψψψ + q    αααα,,,,    and as in the proof of the preceding theorem we 

know that both p and q     must be nonzero.  If we multiply these homogeneous 

coordinates by p  
–

 
1
,,,, we obtain a new set of homogeneous coordinates ξξξξ for A′′′′ of the 

form     ψψψψ + x αααα    ,,,,    where x is nonzero.  Similarly, one can find homogeneous coordinates 

ηηηη    and        ζζζζ for B′′′′ and C′′′′ of the forms ψψψψ + y ββββ        and ψψψψ + z γγγγ    ,,,,     where y and z are nonzero.   
 

Since (ψψψψ + y ββββ)  –  (ψψψψ + z γγγγ)  =  y ββββ –  z γγγγ,,,,    it follows that this vector gives homogeneous 

coordinates φφφφ for the point F where BC and B′′′′C′′′′ meet; similar considerations show that 

the intersection points D and E have homogeneous coordinates    δδδδ    and    εεεε which are given 

by the vectors x αααα –  y ββββ and x αααα –  z γγγγ respectively.  Since εεεε  =  δδδδ  +  φφφφ, it follows that 

the points D, E and F must be collinear.� 
 

There is also a corresponding version of Desargues’ Theorem for coplanar points in 
Euclidean geometry: 
 

Theorem 7.    Suppose that we are given four coplanar points Q, A, B, C ∈∈∈∈    R
3
 such 

that A, B, and C are noncollinear, and suppose we are given three other points A′′′′, B′′′′ 

and C′′′′ such that A′′′′ ∈∈∈∈    QA, B′′′′ ∈∈∈∈    QB, and C′′′′ ∈∈∈∈    QC.  Then exactly one of the following is 

true: 
 

(1) The pairs of corresponding lines  {AB, A′′′′B′′′′}, { AC, A′′′′C′′′′}, and {BC, B′′′′C′′′′} 

meet at points D, E and F respectively, and these three points are collinear. 
 

(2) Exactly one of the pairs of lines consists of parallel lines.  Furthermore, in this 

case if AB || A′′′′B′′′′, then these two lines are parallel to the line EF, where E is the 

common point of AC and A′′′′C′′′′, and F is the common point of BC and B′′′′C′′′′. 
 

(3) All three of the pairs of lines are pairs of parallel lines; in other words, we have 

AB || A′′′′B′′′′,  AC || A′′′′C′′′′,  and  BC || B′′′′C′′′′.   
 

This can be derived from the coplanar projective version of Desargues’ Theorem in the 
same way that its noncoplanar analog was derived from the noncoplanar projective 

version of Desargues’ Theorem.� 
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The 2 – dimensional Euclidean interpretations of Desargues’ Theorem when Q is a point 

at infinity are described in Theorems 9 and 10 on page 129 of Ryan. 
 
 

The plane dual of Desargues’ Theorem 
 
 

Having devoted a section of these notes to duality, it is hard to avoid the following: 
 

Question.  What happens if we dualize Desargues’ Theorem in P(R
2
)? 

 

The duals of the two triples of noncollinear points A, B, C and A′′′′, B′′′′, C′′′′ will be two 

triples of nonconcurrent lines that we shall denote by L, M, N and L′′′′, M′′′′, N′′′′.  The 

condition that the lines AA′′′′, BB′′′′, and CC′′′′  all pass through a point Q dualizes to a 

condition that the points determined by the three line intersections L  ∩∩∩∩  L′′′′,  M  ∩∩∩∩  M′′′′, 
and N  ∩∩∩∩  N′′′′ are collinear.   Let us call these points T, U, and V respectively.  The 
conclusion that three associated points be collinear dualizes to a statement that three 
associated lines be concurrent.  More precisely, if we take  
 

X ∈∈∈∈    M  ∩∩∩∩  N ,      Y ∈∈∈∈    L  ∩∩∩∩  N ,      Z ∈∈∈∈    L  ∩∩∩∩  M 
 

X′′′′ ∈∈∈∈    M′′′′  ∩∩∩∩  N′′′′ ,      Y′′′′ ∈∈∈∈    L′′′′  ∩∩∩∩  N′′′′ ,      Z ∈∈∈∈    L′′′′  ∩∩∩∩  M′′′′ 
 

then the conclusion of Desargues’ Theorem dualizes to an assertion that the lines XX′′′′,  
YY′′′′,  and  Z Z′′′′ are concurrent. 
 

What happens if we draw a figure to illustrate the dual conditions?  It turns out that we 
get exactly the same configuration as in Desargues’ Theorem with all the points 

renamed.  For the sake of convenience, we reproduce a figure from Section 1 below.  In 

the dual setting described above, the points T, U, and V correspond to the points D, E, 

and F which turn out to be collinear, and the six points X, Y, Z, X′′′′, Y′′′′, Z′′′′ respectively 

correspond to the points A, B, C, A′′′′, B′′′′, C′′′′.   
 

 
 

The conclusion of the dualized theorem states that the lines X X′′′′, YY′′′′, and Z Z′′′′  are 
concurrent.  Of course, this looks very much like an assumption in Desargues’ Theorem.  
To obtain more insight into the relationship between the theorem and its dual, consider 
the following reformulation of Desargues’ Theorem in the projective plane: 
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Suppose we are given two triples of noncollinear points A, B, C and A′′′′, 
B′′′′, C′′′′ such that all six points are distinct.  If the lines AA′′′′, BB′′′′, and CC′′′′ 
are concurrent, then the three points in the line intersections AB  ∩∩∩∩  A′′′′B′′′′, 
AC  ∩∩∩∩  A′′′′C′′′′, and BC  ∩∩∩∩  B′′′′C′′′′  are collinear. 

 

The dual of Desargues’ Theorem then has the following corresponding formulation. 
 

Suppose we are given two triples of noncollinear points A, B, C and A′′′′, B′′′′ C′′′′ 
such that all six points are distinct.  If the points in the three line intersections 

AB  ∩∩∩∩  A′′′′B′′′′, AC  ∩∩∩∩  A′′′′C′′′′, and BC  ∩∩∩∩  B′′′′C′′′′  are collinear, then the three lines 

AA′′′′, BB′′′′, and CC′′′′ are concurrent. 
 

In other words, we see that the dual of Desargues’ Theorem in the plane is 
essentially its converse.  
 

Although the truth of a statement about a projective plane does not always imply that the 
dual statement is also true, one can prove that Desargues’ Theorem implies its own dual 
statement: 
 

Theorem 8.  (Planar dual of Desargues’ Theorem)    Suppose we are given a projective 

plane in which Desargues’ Theorem is true.  Then the dual of Desargues’ Theorem is 

also true in that plane.� 
 

In particular, since the dual of Desargues’ Theorem is essentially its converse, it follows 

that the converse is also true in P(R
2
) by duality.� 

 

Desargues’ Theorem plays an extremely fundamental role in projective geometry, but an 
explanation of this fact would go far beyond the scope of this course.   
 
 

The (Hexagon) Theorem of Pappus 
 
 

We have already noted that that the statement of Desargues’ Theorem does not involve 
measurements, and in fact its proof in the noncoplanar case also does not use anything 

about measurements (one can also give a measurement – free proof for planes inside 

projective 3 – space but this requires more work; one reference is Wallace and West, 

Roads to Geometry, 3rd Ed., pp. 354 – 360).   Projective geometry deals mainly with 
such results involving the positioning and placement of geometrical figures.   Probably 
the earliest result of this sort in geometry was discovered by Pappus of Alexandria in the 

4th century A. D. , and it also plays an important role in projective geometry (again for 
reasons outside the scope of this course).  Frequently this result is called Pappus’ 

Theorem, but since this name is also used for certain other results (for example, 
theorems involving solids and surfaces of revolution that are studied in first year 

calculus), we shall add the term “Hexagon” in order to avoid ambiguities. 
 

Theorem 9.  (Pappus’ Hexagon Theorem)    Suppose  {A1, A2, A3}  and  {B1, B2, B3}  

are triples of noncollinear points in P(R2); assume that the two lines and six points are 

distinct.  Then the cross intersection points  
 

D  ∈∈∈∈        A2B3  ∩∩∩∩  A3B2,            E  ∈∈∈∈        A1B3  ∩∩∩∩  A3B1,            F  ∈∈∈∈        A1B2  ∩∩∩∩  A2B1 
 

are collinear. 
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Here is a drawing to illustrate the theorem. 
 

 
 

(Source: http://mathworld.wolfram.com/PappussHexagonTheorem.html ) 
 

As before, if we take the original six points to be ordinary points in the Euclidean plane, 
then the conclusion breaks down into three separate cases.  It is possible to prove the 
Euclidean result by classical methods, but once again it is by no means easy to do so. 
 
There is an interactive figure for this theorem at the following site: 
 

http://www.pandd.demon.nl/cabrijava/pascal_pap.htm 
 

Unfortunately, the text for this is also in Dutch (as for the previous figure illustrating 
Desargues’ Theorem), but once again it is possible to vary the six points and lines by 
clicking on them and dragging them. 
 

Proof of Papppus’ Hexagon Theorem.   At most one of the six points lies on both 

lines.  If we permute the indexing variables {1, 2, 3} we can arrange things so that any 

common point would be either A3 or B3, and hence we might as well assume that none 

of the points A1, A2, B1, B2 lie on both lines.  It follows that no three of these points are 
collinear. 
 

By the coordinate choice theorem for four points, we may choose homogeneous 

coordinates αααα1, αααα2, ββββ1, ββββ2 for A1, A2, B1, B2 such that  ββββ2  =  αααα1 + αααα2 + ββββ1.  Since A3 

lies on the line A1A2 and B3  lies on the line B1B2,  as in the proof of the planar 

Desargues’ Theorem we can find homogeneous coordinates αααα3 and ββββ3 for A3 and B3 

such that  
 

αααα3  =  αααα1 + p    αααα2 ,              ββββ3  =  ββββ1 + q    ββββ2 
 

for suitable scalars p and q .  Also, since F ∈∈∈∈        A1B2  ∩∩∩∩  A2B1, we know there are 

scalars x, y, u, v such that homogeneous coordinates φφφφ for F are given by 
 

φφφφ′′′′   =   u ββββ1 + v αααα2    =   x αααα1 + y ββββ2    =   (x + y)     α α α α 1 + y αααα2 + y ββββ1 . 
 

Equating the coefficients of the expressions on the left and right hand sides, we obtain 

the relations x + y = 0 and y = u = v.  Therefore F has homogeneous coordinates 

φφφφ given by ββββ1 + αααα2 .  Similarly, since E ∈∈∈∈        A1B3  ∩∩∩∩  A3B1, we may write homogeneous 
coordinates for E in the form  
 

εεεε′′′′   =   x αααα1 + y ββββ3    =   u    αααα3 + v ββββ1 
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for suitable scalars, and if we substitute the previously specified values for ββββ3 and αααα3 we 
obtain the following equations: 
 

x    αααα1 + y ββββ1 + q y ββββ2   =   (x + q y)     α α α α1 + q y    αααα2 + (y + q y)     ββββ1   =   u    αααα1 + p u    αααα2 + v ββββ1 
 

Equating coefficients as before, we find that E has homogeneous coordinates εεεε given by 

αααα1 + p    αααα2 + (1 + q 
–

 
1
p)     β β β β1 .   Yet another calculation of the same type shows that D has 

homogeneous coordinates δδδδ given by αααα1 + (1 + q 
–

 
1
 – q p

–
 
1
)        αααα2 + (1 + q 

–
 
1
)     β β β β1 .   It 

then follows that  
 

δδδδ – εεεε   =   (p – 1 – q 
–

 
1
 + pq

–
 
1
)     α α α α2  +  (p + q 

–
 
1
p – 1 – q 

–
 
1
)     β β β β 1 

 

is a multiple of φφφφ   =   ββββ1 + αααα2 .  Since φφφφ is a set of homogeneous coordinates for F, it 

follows that the three points D, E and F are collinear.� 
 

By duality, the preceding argument also yields the corresponding dual statement. 
 

Theorem 10.  (Dual of Pappus’ Hexagon Theorem)    Let { L1, L2, L3} and { M1, M2, M3 }  

be triples of nonconcurrent lines in P(R
3
); assume that the two points and six lines are 

distinct.  Let C i, j be the common point of L  i and M  j .  Then the lines  
 

A 2, 3 A 3, 2,            A 1, 3 A 3, 1,            A 1, 2 A 2, 1 
 

are concurrent.� 
 
 

Appendix — Pascal’s Theorem 

 
In several other languages Pappus’ Hexagon Theorem is often called Pascal’s 
Theorem because it may be viewed as a singular case of a result discovered by B. 

Pascal (1623 – 1662).  In order to state the result we need to extend the notion of a 
conic section to the projective plane.   
 

Definition.  A subset  ΓΓΓΓ of P(R
2
)  is said to be a conic (or conic section) if is the set 

of points whose homogeneous coordinates x satisfy a second degree equation of the 

form 
T
x Ax  =  0 for some symmetric 3 × 3 matrix A. 

 

Before proceeding, we shall dispose of two elementary issues. 
 

Proposition 11.    (1)  If one set ξξξξ    of homogeneous coordinates for a point X satisfies an 

equation of the form 
T
x Ax  =  0 (where A is not necessarily symmetric), then all sets of 

homogeneous coordinates for X also satisfy this equation.   
 

(2)  If ΓΓΓΓ is the set of points whose homogeneous coordinates satisfy an equation of the 

form 
T
x Ax  =  0 where A is not necessarily symmetric,  then there is a symmetric matrix 

B such that ΓΓΓΓ is also the set of points whose homogeneous coordinates satisfy the 

equation 
T
x Bx  =  0.   

 

Proof.   We begin with the first part.  If ξξξξ    is a set of homogeneous coordinates for X then 

every other set is given by kξξξξ    where k is a nonzero scalar.  Since 
T
ξξξξ  A ξξξξ  =  0, we have 
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T
((((kξξξξ))))  A ((((kξξξξ))))   =    k

2
 [T

((((kξξξξ))))  A ((((kξξξξ)))) ]    =    k
2
 0    =   0 

 

and thus the equation is satisfied by an arbitrary set of homogeneous coordinates for X. 
 

Suppose ΓΓΓΓ is the set of all x satisfying 
T
x Ax  =  0 where A is not necessarily symmetric,  

and consider the following  transposition identity: 
 

T[T
x Ax]    =    

T
x

T
 A

T(T
x)    =   

T
x (T

A)x 
 

Since the objects in these equations are all 1 × 1 matrices and every such matrix is 

equal to its transpose, it follows that  
T
x Ax  =  

T
x (T

A)x, which means that one of these 

is zero if and only if the other is zero.  Set B equal to the symmetric matrix A  +  
T
A; by 

the previous discussion we have 
 

T
x Bx    =    

T
x Ax  +  

T
x (T

A)x   =    2[ T
x Ax] 

 

so that 
T
x Ax  =   0 if and only if 

T
x Bx  =   0.� 

 

We should also note that every ordinary conic section in R
2
 determines a projective 

conic in P(R
2
);  the latter is often described as a projectivization of the original conic.  

To illustrate the assertion about projective versions of ordinary conics, if we are given a 

conic in R
2
 defined by a quadratic equation in two variables  

 

Ax
2
 + 2Bxy + Cy

2
 + 2Dx + 2Ey + F  =  0 

 

then the set of points on this conic is the set of ordinary points whose homogeneous 
coordinates satisfy the homogeneous quadratic equation 
 

Ax1
2
 + 2Bx1 x2 + Cx2

2
 + 2Dx1x3 + 2Ex2 x3 + Fx3

2
  =  0 

 

and the latter is just the set of solutions for the equation 
T
x Qx  =  0,  where Q is the 

following symmetric 3 × 3  matrix: 
 

















FED

ECB

DBA

 

 

Definition.  A conic is said to be nonsingular if one can choose the symmetric matrix to 
be invertible. 
 

Examples.  The standard nontrivial conic sections in the plane determine nonsingular 
projective conics in the sense of the definition above.  For example, the standard unit 

circle x 

2
 +  y 

2
 – 1  =  0, the hyperbola x 

2
 –  y 

2
 – 1  =  0, and the parabola  x 

2
  –  4y  =  

0 determine the projective conics defined by following invertible matrices: 
 

















−−−−

−−−−
















−−−−

−−−−
















−−−− 020

200

001

100

010

001

100

010

001
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We have already noted that the projectivization of an ordinary conic consists of the conic 
itself and possibly some ideal points, and thus it is natural to ask how many points are 
added when one passes to the projectivizations of the examples described above.  It is 
easy to work this out using the numerical information given above (and the fact that ideal 
points are those whose third homogeneous coordinates are zero), and in fact the circle 
has no ideal points while the hyperbola has two and the parabola has one. 
  

Conics in projective geometry.  Everyday experience shows that the photographic 
image of a circle or ellipse is normally an ellipse (in some exceptional cases the image is 
a circle, and in still others it may be a line), so it is not surprising that conics are objects 
of interest in projective geometry.  In fact, a large amount of work has been done on 
conics in the projective plane and their generalizations (for example, to projective 

quadrics in projective 3 – space) and such conics and quadrics have many important 

properties, but we shall limit ourselves to stating the previously mentioned theorem of 
Pascal. 
 

Theorem 12.  (Pascal’s Hexagon Theorem for conics)  Let ΓΓΓΓ be a nonsingular conic in 

P(R
2
), and let A1, A2, A3, A4, A5, A6   be points on ΓΓΓΓ.  Then the three intersection 

points       A1A2 ∩∩∩∩ A4A5,   A2A3 ∩∩∩∩ A5A6,       A3A4 ∩∩∩∩ A6A1       are collinear. 
 

Examples.   If ΓΓΓΓ is a circle and we are given an inscribed regular hexagon whose 

vertices are A1, A2, A3, A4, A5, A6   (in that order), then  A1A2 || A4A5,   A2A3 || A5A6, 

and A3A4 || A6A1; in this case the intersection points of the extended lines are all ideal 
points, and the validity of Pascal’s Theorem in this case can be checked directly 

because the three intersection points all lie on the line at infinity. 
 

 
 

A drawing to illustrate a more typical case of Pascal’s Theorem is given on the next 
page. 
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(Source:  http://mathworld.wolfram.com/PascalsTheorem.html ) 
 

Pappus’ Theorem is related to Pascal’s Theorem because a pair of intersecting lines 
can be viewed as a singular conic (for example, the solutions of the ordinary quadratic 

equation x 

2
 – y 

2
  =  0 are the points on the lines y  =  ±±±± x).  If we view {A1, A3, A5} as 

the triple of points on one of these lines and {A4 , A6 , A2} as the triple of points on the 
other, then one can view Pascal’s Theorem as an analog of Pappus’ Theorem for 
nonsingular conics.   The drawing below illustrates the analogy very clearly. 
 

 
 

This drawing also illustrates an important feature of Pascal’s Theorem.  Namely, there is 

no requirement that the hexagon  A1A2A3A4A5A6    be a convex polygon, and there is 

even no requirement that the sides of this “generalized hexagon” must meet only at 
common vertices.  In projective geometry, a “hexagon” normally refers to the union of 

the six relevant lines:   A1A2  ∪∪∪∪  A2A3  ∪∪∪∪  A3A4  ∪∪∪∪  A4A5  ∪∪∪∪  A5A6  ∪∪∪∪  A6A1 
 

Further information on conics in the projective plane and quadrics in projective 3 – 
space is given in the following online file: 
 

http://math.ucr.edu/~res/progeom/pgnotes07.pdf 
 

There are interactive sites for Pascal’s Theorem and its dual, which was first discovered 

by A. Brianchon (1783 – 1864), at http://www.pandd.demon.nl/cabrijava/pascal_pas.htm and 

http://www.pandd.demon.nl/cabrijava/pascal_bri.htm (the texts are again in Dutch, but as 
before one can simply click and drag the various points and lines). 
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I V .6    :    Cross ratios and projective collineations 
 
 

In the final section of this unit we shall return to some issues involving perspective 
projections, and we shall also discuss projective analogs of the affine transformations on 

R
n 

that were introduced in Section I I . 4.  Important relationships between such 
transformations and perspective projections will also be discussed. 
 
 

Perspective invariance 
 
 

One obvious question about the relation of a picture to its image is which features of the 
object are preserved by the picture and which are not.  Several facts are obvious even if 
one does not think about the theory of perspective drawing in terms of mathematics.  For 
example, it is clear that collinear points go to collinear points (and we have proved this 

mathematically in Section 1), but both absolute and relative distances are often badly 
distorted.  In particular, if C is the midpoint of A and B in the original object,  the image of 

C is generally not equal to the midpoint of the images of A and B, and in fact the image 
of the midpoint can be nearly anywhere on the segment joining the images of A and B.  
In the 15th century, the previously mentioned artist/writer Alberti raised a question that 

turns out to be important both practically and theoretically:   
 

If two different projections of an object are given, what 
properties are the same in both images? 

 
 

(Source:  http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/BEARDSLEY/node3.html ) 
 

As before, we know that lines are preserved but that distances can be badly distorted.  
In particular, the midpoint of the images of two points for one projection need not be the 
midpoint of the two corresponding image points in the other. 
 

 
Cross ratios 

 
 

If we are given two points a and b in the Euclidean plane or 3 – space and x is a point 

on the line ab, then we say that x divides a and b in the ratio  (1 – t ) : t if we have the 

equation x  =  b + t (a – b) or equivalently x  = (1 – t)b + t a.  Likewise, if p and q are 
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any real numbers, then we say that x divides a and b in the ratio  p : q  if (p, q) is a 

nonzero multiple of (1 – t , t ), where t is given as before.  Note that if x is between a and 

b then it follows that x divides a and b in the ratio  d(a, x) : d(b, x).   
 

As noted before, if we are given a perspective projection ΨΨΨΨ and three collinear points a, 

b and x such that x divides a and b in the ratio  p : q , then one cannot draw any general 

conclusions about the ratio in which    ΨΨΨΨ((((    x    )))) divides    ΨΨΨΨ((((    a    )))) and ΨΨΨΨ((((    b    ))))    .  However, if a, b, c 

and d are four collinear points one can define a number called the cross ratio of these 
points which does not change under perspective transformation.  As we shall see, the 
Euclidean definition is complicated, but it is straightforward to give a definition in terms of 
projective geometry. 
 

Definition.  Let n  =  2 or 3, and let A, B, C, and D be distinct collinear points in P(R
n
).  

Choose homogeneous coordinates αααα, ββββ, and γγγγ for A, B, and C such that γγγγ  =  αααα + ββββ,  

so that homogeneous coordinates for D are given by u    αααα + v    ββββ,  where u and v are 

nonzero scalars.  The cross ratio (A B C D) is defined to be the quotient u/v.  
Frequently some punctuation marks appear between consecutive points, with notation 

like (A, B, C, D) or (A, B; C, D). 
 

The preceding definition involves some choices for homogeneous coordinates, so before 
using it we must prove that the cross ratio defined above remains unchanged if we 
make different choices of homogeneous coordinates.    
 

First of all, we shall confirm that the cross ratio does not depend upon the choice of 

homogeneous coordinates at the last step; if δδδδ′′′′ is another set of homogeneous 

coordinates for D, then we have δδδδ′′′′  =  q δδδδ for some nonzero scalar q, which means that 

δδδδ′′′′  =  quαααα + qv    ββββ and the corresponding ratio is qu/qv, which is equal to the previously 

computed ratio u /v.   Next, we confirm that the value does not depend upon the initial 

choices for homogeneous coordinates for A, B, and C.  By the results of the preceding 

section, if we make any other such choices αααα
∗
,  ββββ

∗
,  γγγγ

∗
 then there is a nonzero scalar k 

such that αααα
∗
  =  k αααα,  ββββ

∗
  =  k ββββ, and  γγγγ

∗
  =  k γγγγ.   Suppose now that ββββ

∗
 is an arbitrary set 

of homogeneous coordinates for D. Then we have δδδδ
∗
 =  xαααα

∗
 + yββββ

∗
 for suitable scalars x 

and y, but we also know that δδδδ
∗
   =    xαααα

∗
 + yββββ

∗
   =   kx αααα + ky ββββ,,,, and since δδδδ

∗
 is a 

nonzero scalar multiple z δδδδ of the previous homogeneous coordinates for D, it follows 

that  x k αααα + y k ββββ   =   z u αααα + z v ββββ    .  Equating coefficients, we have x k  =  z u  and y k  

=  z v, and therefore we also have u/v  =  zu/zv  =  kx/ky  =  x/y, showing that the 

value obtained with the new choices agrees with the value obtained with the old ones.� 
 

The following realization property for cross ratios is simple but important for many 
purposes. 
 

Proposition 1.    Let  n  =  2  or  3, let A, B, and C be distinct collinear points in P(R
n
),  

and let k  ≠≠≠≠ 0, 1  be a scalar.  Then there is a unique point D on the line of A, B, and C 

such that D is distinct from the three original points and (A B C D)   =   k.  
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Proof.    It is easy to see that such a point exists.  Choose homogeneous coordinates αααα, 

ββββ, and γγγγ for A, B, and C such that γγγγ  =  αααα + ββββ     , and take D to be the point represented by 

the homogeneous coordinates δδδδ  =  k    αααα + ββββ     .   To prove uniqueness, let E be an arbitrary 

point such that (A B C E)   =   k, and let D be given as in the existence statement.  Then 

homogeneous coordinates for E are given by εεεε  =  x    αααα + y    ββββ    for suitable nonzero scalars 

x     and y,  and the cross ratio condition implies that  k  =  x/y, or equivalently k y  =  x.  

Therefore we have εεεε   =   k y    αααα + y    ββββ  =  k    δδδδ, so that d and e represent the same point in 

P(R
n
) and hence D  =  E.� 

 

There are 24 different orders in which four distinct collinear points A, B, C, D may be 
arranged, and one obvious problem is to determine what happens to the cross ratio if the 
given points are rearranged.  The answer is given by the following result: 
 

Theorem 2.    Let A, B, C, and D be distinct collinear points, and assume that the cross 

ratio (ABCD) is equal to k.  Then the cross ratios for the rearrangements of the four 

points are given as follows: 
 

             k   =   (A B C D)   =    (B A D C)   =    (C D A B)   =    (D C B A) 

         1/k   =   (A B D C)   =    (B A C D)   =    (D C A B)   =    (C D B A) 

    (1 – k)   =   (A C B D)   =    (C A D B)   =    (B D A C)   =    (D B C A) 

1/(1 – k)   =   (A C D B)   =    (C A B D)   =    (D B A C)   =    (B D C A) 

(1 – k)/k   =   (A D B C)   =    (D A C B)   =    (B C A D)   =    (C B D A) 

k/(1 – k)   =   (A D C B)   =    (D A B C)   =    (C B A D)   =    (B C D A) 
 

The proof of this result is a sequence of elementary and eventually boring computations, 
and it is left to the exercises; hints are given in the latter for minimizing the amount of 

computations needed to complete the proof.� 
 

The next result gives a standard and often useful formula for the cross ratio. 
 

Theorem 3.    Suppose that D1, D2, D3,  and  D4 are distinct points on the line containing 

the three points A, B, and C, and for each index value m suppose that (A B C Dm)  =  z m .  

Then the cross ratio (D1 D2 D3 D4) is given by the following expression:  
 

))((

))((
),;,(

3241

4231

4321
zzzz

zzzz
zzzz

−−−−−−−−

−−−−−−−−
====  

 

The name of the cross ratio suggests it should be somehow related to the ratio in which 

a point x on the line ab divides the two points a and b, and the next result shows that 
one can view the cross ratio (a b c d) of ordinary points as a quotient of two such ratios 

for a and b.   
 

Proof.   Choose homogeneous coordinates αααα,    ββββ,    γγγγ for A, B, C such that γγγγ  =  αααα + ββββ.  

By the cross ratio assumptions, we know that homogeneous coordinates δδδδm
∗
 for D m  are 

given by z m        αααα + ββββ.   A straightforward calculation shows that 
 

(z 1  –  z 2)    δδδδ3
∗
   =   (z 3  –  z 2)    δδδδ1

∗
 +  (z 1  –  z 3)    δδδδ 2

∗
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and similarly we have 
 

(z 1  –  z 2)    δδδδ4
∗
   =   (z 4  –  z 2)    δδδδ1

∗
 +  (z 1  –  z 4)    δδδδ 2

∗
 . 

 

Thus if δδδδ1  =  (z 3  –  z 2)    δδδδ1
∗
  and  δδδδ2  =  (z 1  –  z 3)    δδδδ 2

∗
,  then we have 

 

.
)(

)(

)(

)(
)( 2

31

41

1

23

24*

421 δδδδ
−−−−

−−−−
++++δδδδ

−−−−

−−−−
====δδδδ−−−−
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The cross ratio formula follows immediately from the equation above and the definition of 

the cross ratio.� 
 

Proposition 4.    Let  n  =  2  or  3, and suppose that a, b, c and d are four collinear 

points in R
n
 such that c divides a and b in the ratio 1 – t : t  and d divides a and b in the 

ratio 1 – s : s.  Then the cross ratio (a b c d) is given by the following quotient: 
 

s

s
t

t

−

−

1

1

 

 

Proof.    Recall that the homogeneous coordinates for an ordinary point x in R
n
 are 

given by the (n + 1) – dimensional (column) vector ξξξξ
∗
 corresponding to (x, 1) .  

Therefore, if we take αααα
∗
, ββββ

∗
, and γγγγ

∗
 to be the homogeneous coordinates for a, b, and c 

defined in this fashion then we have γγγγ
∗
 =  t    αααα

∗
 + (1 – t)    ββββ

∗
; of course, if we define δδδδ

∗
 

similarly with respect to d, then we also have δδδδ
∗
 =  s    αααα

∗
 + (1 – s)    ββββ

∗
.  The preceding 

sentence shows that if we make new homogeneous coordinates with αααα =  t    αααα
∗
 and ββββ =  

(1 – t)    ββββ
∗
,  then we have γγγγ

∗
  =  αααα + ββββ.   Furthermore, it follows that we may write  δδδδ

∗
  =  

x    αααα + y    ββββ     where x  =  (1 – t)/ t  and y  =  (1 – s)/ s .  The formula for (a b c d) follows 

immediately from these equations and the definition of the cross ratio.� 
 

The following identity is also useful in many contexts.   
 

Proposition 5.     Let a, b, c be distinct collinear points in R
n
 with c  = (1 – t)b + t a ,  

and suppose that J is the ideal point on the extended projective line containing a, b, and 

c.   Then (a b c J) is equal to (1 – t) / t . 
 

Important special case.  In the notation of the proposition, we see that t  =  ½  if and 

only if (a b c J)   =  – 1.   More generally, an ordered set of four collinear points W, X, Y, 

Z is said to be a harmonic set if we have (W X Y Z)   =  – 1.  By the previous result on 
the cross ratios for reorderings (or permutations) of the given four points, we know that if 

(WXYZ)   =  – 1 then we also have  
 

– 1   =   (W X Y Z)   =    (X W Z Y)   =    (Y Z W X)   =    (Z Y X W) 
 

=   (W X Z Y)   =    (X W Y Z)   =    (Z Y W X)   =    (Y Z W X) . 
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Proof of Proposition 5.    Define homogeneous coordinates for a, b, and c as in the 
proof of the preceding result.  It follows that J has homogeneous coordinates given by  
 

(b – a, 0)   =   ββββ
∗
 –  αααα

∗
   =   x    αααα + y    ββββ     

 

where  y  =  1/ (1 – t)  and  x  =  (– 1) /  t .  The formula for (a b c J) follows immediately 

from this equation and the definition of the cross ratio.� 
 
 

Perspective invariance of the cross ratio 
 
 

It is now time to prove that the cross ratio of four collinear points does not change under 
perspective projections.  One way of doing so is to dualize the notion of cross ratio to 

lines in the projective plane and planes in projective 3 – space using homogeneous 

coordinates for such objects.  We shall concentrate on the 2 – dimensional case and 
sketch the changes that are needed to handle everything in one higher dimension. 

In the planar case, we start with four distinct concurrent lines L1, L2, L3,  and  L4.  We 

then know that we can choose homogeneous coordinates λλλλ1, λλλλ 2, λλλλ 3 for the first three 

lines such that λλλλ 3  =   λλλλ1 + λλλλ 2 ,  and if we use the same vectors we can write 

homogeneous coordinates λλλλ 4 for L4 in the form u    λλλλ1 + v λλλλ 2 , where u and v are 

nonzero.  The cross ratio (L1  L2  L3 L4) is then defined to be the quotient u/v exactly as 

before, and the previous reasoning shows that the value of this quotient does not 

depend upon the choices of λλλλ1, λλλλ2, λλλλ 3 and λλλλ 4.  
 

Theorem 6.  (Plane duality principle for cross ratios)   Let L1, L2, L3, and L4 be distinct 

concurrent lines in P(R
2
) , and let M be another line which does not contain the point 

where the first four lines meet.  Let Am be the point at which M meets Lm , where  m  =  

1, 2, 3, 4.  Then we have (L1  L2  L3  L4)   =   (A1  A2  A3  A4). 
 

Before proving this result, we shall use it to show the perspective invariance of the cross 
ratio in the projective plane.   
 

Theorem 7.    (Perspective invariance of cross ratios)   Let L1, L2, L3, and L4 be distinct 

concurrent lines in P(R
2
) , let M and N be distinct lines which do not contain the 

common point of the original four lines, and for m  =  1, 2, 3, 4 take Am and Bm to be 

the intersection points of Lm with M and N respectively.  Then the cross ratios satisfy the 

equation (A1  A2  A3  A4)   =   (B1  B2  B3  B4). 
 

In the drawing below, the preceding theorem implies that (X Y W Z)  =  (x y w z).  
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(Source:  http://cellular.ci.ulsa.mx/comun/summer99/mcintosh/node3.html ) 
 

Proof of perspective invariance.   Two applications of the previous theorem show that 

(L1  L2  L3  L4)   =   (A1  A2  A3  A4)  and  (L1 L2  L3  L4)   =   (B1  B2 B3  B4) .� 
 

Proof of cross ratio duality principle.   Let x  =  (A1 A2  A3  A4)  and y  =  (L1 L2  L3  L4) .   

Choose homogeneous coordinates λλλλ1, λλλλ2, λλλλ3, λλλλ4 for L 1, L 2, L 3, L 4 and αααα1, αααα2, αααα3, αααα4 

for A1, A2, A3, A4  such that λλλλ3  =  λλλλ1 + λλλλ2  and   αααα3  =  αααα1 + αααα2 .  Then by construction 

we have λλλλ4   =  x λλλλ1 + λλλλ2  and   αααα4   =  y αααα1 + αααα2 .  Since A m ∈∈∈∈ L m for each m, we 

have λλλλ m  ααααm  =  0 for all m.    In particular, these equations imply  
 

0  =  λλλλ3 αααα3  =  (λλλλ1 + λλλλ2) (αααα1 + αααα2)  =  λλλλ1 αααα1 + λλλλ1 αααα2 + λλλλ2 αααα1 + λλλλ2αααα2  = 
 

0 + λλλλ1 αααα2 + λλλλ2 αααα1 + 0   =   λλλλ1 αααα2 + λλλλ2 αααα1 
 

so that λλλλ1 αααα2  =  – λλλλ2 αααα1 ; this number is nonzero because A2 does not lie on L1 and A1 

does not lie on L2 .  Therefore we see that  
 

0  =  λλλλ4αααα4  =  (x    λλλλ 1 + λλλλ2) (yαααα1 + αααα2)  =  y λλλλ2 αααα1 + x    λλλλ1 αααα    2  =  (x – y) λλλλ1    αααα    2 
 

and since λλλλ1 αααα    2 is nonzero it follows that  x – y  =  0, which means that x  =  y.� 
 

The  3 – dimensional case.   Regardless of whether we are working in the projective 

plane or projective 3 – space, we need to assume that the four concurrent lines lie in a 

single plane.  There are several ways of doing this, and we shall choose one which 

reflects 3 – dimensional duality.  In analogy with the 2 – dimensional case, if we are 

given four planes Q 1, Q 2, Q 3 and Q4 which all contain a given line, then we may define 

the cross ratio (Q 1 Q 2 Q 3 Q4) using homogeneous coordinates, and one has a duality 

principle for cross ratios which is analogous to the one presented above: 
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Theorem 8.  (3 – dimensional duality principle for cross ratios)   Let Q1, Q2, Q3, and Q4 

be distinct planes which all contain a single line in P(R
3
) , and let N be a line which 

does not contain the line common to the first four planes and is not contained in any of 

the original four planes.  Let Am be the point where N meets Qm for m  =  1, 2, 3, 4.  

Then we have (Q 1 Q 2 Q 3 Q4)  =  (A1A2 A3 A4). 
 

The proof is basically the same as in the 2 – dimensional case, the only difference being 

that we are working with homogeneous coordinates in R
4
 rather than R

3
.� 

 

Theorem 9.   (3 – dimensional perspective invariance of cross ratios)   Let L1, L2, L3, 

and L4 be distinct concurrent lines which all lie in some plane S in P(R
3
) , let M and N 

be distinct lines in S which do not contain the common point of the original four lines, 

and for m  =  1, 2, 3, 4 take Am and Bm to be the intersection points of Lm with M and N 

respectively.   Then (A1A2 A3 A4)  =  (B1B2 B3 B4). 
 

Sketch of proof.  In order to apply the preceding theorem, we need to find four planes 

Q1, Q2, Q3, and Q4 which all contain some auxiliary line and are somehow related to the 

lines L1, L2, L3, and  L4.   Let X be the point on S where the four lines meet, and let Y be 

a point which does not lie in S.  For each index value m take Qm to be the unique plane 

containing the line Lm and the point Y.  It then follows that the planes Q1, Q2, Q3, and Q4 

all contain the line XY.  By construction we also know that Qm ∩∩∩∩ S  =  Lm , and hence it 

follows that the planes Q1, Q2, Q3, and Q4 must be distinct.  We know that N is not equal 

to the common line XY of the planes Qm because it does not contain the point X ; we 

must also check that N is not contained in any of the planes Qm .  If this were so, then L 

would be contained in Qm  ∩∩∩∩  S  =  Lm , and since we know N  ≠≠≠≠  Lm for all m it follows 

that N is not contained in any of the four planes we constructed.  Similar considerations 

show that M is not equal to XY and is not contained in any of the planes Qm . 
 

By construction, the lines M and N meet the planes Qm in the points Am and Bm 

respectively.  Therefore the 3 – dimensional duality principle for cross ratios implies that 

(Q 1 Q 2 Q 3 Q4)  =  (A1A2 A3 A4)  and  (Q 1 Q 2 Q 3 Q4)  =  (B1B2 B3 B4) ,  which immediately 

yield the desired relationship (A1A2 A3 A4)  =  (B1B2 B3 B4).� 
 

Applications to making measurements.  Many textbooks on elementary Euclidean 
geometry contain discussions or exercises which indicate how one can use standard 
facts of Euclidean geometry to find distances or angle measurements when it is not 
possible to do by some direct means such as a ruler or protractor.  The theorems on 
perspective invariance of cross ratios can also be used in some situations to find the 
distance between two points indirectly from a photograph.  In the cross ratio drawing 
given above, suppose that the line whose points are denoted by small letters is on the 
picture and the other line is the one which has been photographed.  Then we can 

measure the distances between all the points x, y, z, w on the picture and use them to 

compute the cross ratio (x y w z).  By the theorems on perspective invariance, we know 

this is also the cross ratio (X Y W Z); often we may know the distances between three of 
the four points for some reason, and if we do then we can use the equality of the cross 
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ratios to find the distances between all of the four points.  Examples are discussed in the 
exercises. 
 
 

Projective collineations 
 
 

In this unit we have constructed projective extensions of the plane and 3 – space.  Our 

next objective is to explain how one can construct projective extensions of affine 

transformation defined for R
2
 and R

3
 to well – behaved transformations for P(R

2
) and 

P(R
3
) .   It will be convenient to begin by generalizing the abstract notion of collineation 

to projective spaces. 
 

Definition.    Let  n  =  2  or  3.   A projective collineation of P(R
n
) is a 1 – 1 onto 

mapping ΦΦΦΦ from P(R
n
) to itself such that the following hold: 

1. The mapping ΦΦΦΦ sends collinear sets to collinear sets and noncollinear sets to 
noncollinear sets. 

2. If n  =  3,  the mapping ΦΦΦΦ also sends coplanar sets to coplanar sets and 
noncoplanar sets to noncoplanar sets. 

 

Frequently it is convenient to have a weaker criterion for recognizing projective 
collineations; a reader who wishes to skip the proof of this characterization may do so 
because the details of the argument will not be cited at any later point. 
 

Proposition 10.    Let  n  =  2  or  3,  and let ΦΦΦΦ be a 1 – 1 onto mapping ΦΦΦΦ from P(R
n
) 

to itself.   Then ΦΦΦΦ is a projective collineation if and only if the following hold: 

(1) For each subset of three distinct points { X, Y, Z } in P(R
n
), the points X, Y, 

and Z are collinear if and only if their images ΦΦΦΦ(X), ΦΦΦΦ(Y), and ΦΦΦΦ(Z) are 

collinear. 

(2)  [ Only applicable if  n  =  3 ]   For each subset of four noncollinear points in 

P(R
n
), the points W, X, Y, and Z are coplanar if and only if their images ΦΦΦΦ(W), 

ΦΦΦΦ(X), ΦΦΦΦ(Y), and ΦΦΦΦ(Z) are coplanar. 
 

Proof.    By definition a projective collineation automatically satisfies the conditions in 
the theorem, so the real work in front of us is to prove that the two conditions imply that 

the map ΦΦΦΦ is a projective collineation. 
 

Let E be a subset of P(R
n
), and let ΦΦΦΦ[ E ] denote the set of points expressible as ΦΦΦΦ(X) 

for some X ∈∈∈∈ E .  Since two point sets are automatically collinear, we might as well 

assume that E  has at least three points.  Let X and Y be two points in E .  If the latter 

are collinear, then every other point Z ∈∈∈∈ E  will also lie on XY, and thus by the first 

condition in the proposition we know that ΦΦΦΦ(Z) will lie on the line joining ΦΦΦΦ(X) and ΦΦΦΦ(Y) 

and hence ΦΦΦΦ[ E ]  will be collinear.  On the other hand, if some points Z ∈∈∈∈ E  does not lie 

on XY, then we know that ΦΦΦΦ(Z) does not lie on the line joining ΦΦΦΦ(X) and ΦΦΦΦ(Y), so the set  

ΦΦΦΦ[ E ]  will not be collinear.  This completes the proof of the first statement in the 

theorem. 
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Suppose now that n  =  3; we need to prove the second statement of the theorem in 

that case.  The ideas are similar to those of the previous paragraph.  Let E and ΦΦΦΦ[ E ]    
be as before;  since sets with two or three points are automatically coplanar, we might 

as well assume that E has at least four points.  Let W, X, and Y be three noncollinear 

points in E; we are assuming that e is not collinear, so one can find such a triple of 

points .  If the set E is coplanar, then every other point Z ∈∈∈∈ E  will also lie in the plane 

WXY, and thus by the first condition in the proposition we know that ΦΦΦΦ(Z) will lie on the 

plane containing  joining ΦΦΦΦ(W), ΦΦΦΦ(X), and ΦΦΦΦ(Y) and hence ΦΦΦΦ[ E ]  will be coplanar.  On 

the other hand, if some point Z ∈∈∈∈ E  does not lie in the plane WXY, then we know that 

ΦΦΦΦ(Z) does not lie in the line joining ΦΦΦΦ(W) ΦΦΦΦ(X) ΦΦΦΦ(Y), so the set  ΦΦΦΦ[ E]  will not be 

coplanar.  This completes the proof of the second statement in the theorem.� 
 

The usual sorts of arguments now yield analogs of some simple results about 
isometries, similarities, and affine transformations. 
 

Proposition 11.    Let  n  =  2  or  3.   The identity map is a projective collineation from 

P(R
n
)  to itself.  If T is a projective collineation  from P(R

n
)  to itself, then so is its 

inverse T  

–
 

1
.  Finally, if T and U are projective collineations  from P(R

n
)  to itself, then 

so is their composite T        U.   
 

Such abstract principles are important, but we also need to find a method for 
constructing nontrivial projective collineations.  The next result does this for us. 
 

Theorem 12.  Let  n  =  2  or  3, and let A be an invertible (n + 1) × (n + 1) matrix with 

real entries.  Then there is an associated projective collineation    ΦΦΦΦ     A such that for each 

point X, if ξξξξ is a set of homogeneous coordinates for X then Aξξξξ is a set of homogeneous 

coordinates for ΦΦΦΦ     A (X).  Furthermore, the construction sending A to    ΦΦΦΦ     A has the 

following properties: 

1. If I denotes the identity map of R
n
, then ΦΦΦΦ     I is the identity map of P(R

n
). 

2. For all A and B, we have ΦΦΦΦ     AB   =   ΦΦΦΦ     A             ΦΦΦΦ     B . 

3. If B  =  A   

–
 

1
, then ΦΦΦΦ     B   =   (Φ(Φ(Φ(Φ     A))))  

–
 

1
. 

 

The projective collineations ΦΦΦΦ     A are said to be algebraically specified.  Since there are 

many invertible matrices A which take some nonzero vector x to a vector Ax which is not 

a scalar multiple of x, it is clear that there are algebraically specified projective 
collineations other than the identity.  In fact, we shall verify below that every affine 

transformation of R
n
 defines an algebraically specified projective collineation of P(R

n
).   

In fact, one of the exercises for this section proves the following:   
 

If A and B are invertible (n + 1) × (n + 1) matrices with real entries that 

are not (nonzero) scalar multiples of each other, then ΦΦΦΦ     A and ΦΦΦΦ     B define 

distinct projective collineations of P(R
n
).� 

 

Since two vectors which are nonzero scalar multiples of each other always define the 

same point, we know that, conversely, ΦΦΦΦ     A  =  ΦΦΦΦ     B if the two invertible matrices A and B 

are nonzero scalar multiples of each other. 
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Proof of Theorem 12.    The first step is to show that the construction described in the 

statement of the theorem is well – defined; in other words, if x is a set of homogeneous 

coordinates for a point then so is Ax, and if u and v represent the same point X, then Au 
and Av are both homogeneous coordinates for points and in fact they represent the 
same point.  Since x is a set of homogeneous coordinates for X, it is nonzero, and since 

A is invertible we also know that Ax is nonzero, so that it defines a point in P(R
n
).  

Furthermore, since u and v represent the same point, then v   =   c u for some nonzero 

scalar c and thus by linearity we have Av   =   c Au, which shows that Av and Au define 

the same point in P(R
n
).   This proves the existence of a mapping ΦΦΦΦA such that for 

each point X, if ξξξξ is a set of homogeneous coordinates for X then Aξξξξ is a set of 

homogeneous coordinates for ΦΦΦΦA(X). 
 

Next, we need to show that ΦΦΦΦ     A is 1 – 1 and onto.  To see that it is 1 – 1, observe first 

that if ΦΦΦΦA(X) =  ΦΦΦΦA(Y) and X and Y have homogeneous coordinates given by ξξξξ and ηηηη 

respectively, then we must have Aξξξξ  =  c Aηηηη for some nonzero scalar c.  Linearity then 

implies Aξξξξ = A(c ηηηη) and since an invertible matrix defines a 1 – 1 and onto mapping it 

follows that ξξξξ = c ηηηη.  Therefore ΦΦΦΦ     A is 1 – 1; to see it is onto, let Y ∈∈∈∈ P(R
n
), and let ηηηη 

be a set of homogeneous coordinates for Y.  The invertibility of A implies that ηηηη = Aξξξξ 

for some ξξξξ, and since ηηηη is nonzero we know that ξξξξ must also be nonzero.  By 

construction, if ξξξξ represents X we then have ΦΦΦΦA(X)  = Y. 
 

Finally, we need to show the conditions involving sets of 3 and 4 points.    Suppose first 

that X, Y, Z are distinct points in P(R
n
), and let ξξξξ,  ηηηη,  ζζζζ be homogeneous coordinates 

for these respective points.  Then by construction the points X, Y, Z are noncollinear if 

and only if the vectors ξξξξ,  ηηηη,  ζζζζ  do not span a subspace of dimension less than or equal 

to 2, and the latter holds if and only if ξξξξ,  ηηηη,  ζζζζ   are linearly independent.  Since 
invertible linear transformations send linearly independent points to linearly independent 

points and linearly dependent points to linearly dependent points, it follows that ξξξξ,  ηηηη,  ζζζζ 

are linearly independent if and only if  Aξξξξ,  Aηηηη,  Aζζζζ  are linearly independent, and by the 

reasoning of the previous sentence this is true if and only if ΦΦΦΦA(X), ΦΦΦΦA(Y), and Φ Φ Φ ΦA(Z) 

are noncollinear.  Combining these, we see that X, Y, Z are noncollinear if and only if the 

points ΦΦΦΦA(X), ΦΦΦΦA(Y), and Φ Φ Φ ΦA(Z) are.  —   Now suppose that W, X, Y, Z are distinct 

noncollinear points in P(R
3
), and let ωωωω,  ξξξξ,  ηηηη,  ζζζζ be homogeneous coordinates for 

these respective points; since a set of points is collinear if and only if every subset 
consisting of exactly three members is collinear, the preceding discussion implies that 

the points ΦΦΦΦA(W), ΦΦΦΦA(X), ΦΦΦΦA(Y), ΦΦΦΦA(Z) are also noncollinear, and from here we can 
give an argument very similar to the previous one for three distinct points.  Specifically, 

by construction the points W,  X, Y, Z are noncoplanar if and only if the vectors ωωωω,  ξξξξ,  

ηηηη,  ζζζζ  do not span a subspace of dimension less than or equal to 3, and the latter holds 

if and only if ωωωω,  ξξξξ,  ηηηη,  ζζζζ  are linearly independent.  Since invertible linear 

transformations send linearly independent points to linearly independent points and 

linearly dependent points to linearly dependent points, it follows that ωωωω,  ξξξξ,  ηηηη,  ζζζζ  are 
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linearly independent if and only if Aωωωω,  Aξξξξ,  Aηηηη,  Aζζζζ  are linearly independent, and by 

the reasoning of the previous sentence this is true if and only if ΦΦΦΦA(W), ΦΦΦΦA(X), ΦΦΦΦA(Y), 

ΦΦΦΦA(Z)  are noncoplanar.  Combining these, we see that the points W, X, Y, Z are 

noncoplanar if and only if their image points ΦΦΦΦA(W), ΦΦΦΦA(X), ΦΦΦΦA(Y), ΦΦΦΦA(Z) are.� 
 

Notational convention.    Given the standard equivalence between linear 

transformations from R 

n
 

+
 

1
 to itself and the set of (n + 1) × (n + 1) matrices (in which 

the matrix determines a linear transformation by left multiplication), it is sometimes 
useful to use similar terminology if we are given an invertible linear transformation from 

R 

n
 
+

 
1
 to itself; specifically, if T is such a linear transformation, then ΦΦΦΦ     T will denote the 

associated projective collineation on P(R
n
)  characterized by the sort of relationship 

described in the theorem:  If the nonzero vector ξξξξ represents the point X, then ΦΦΦΦ     T(X) is 

represented by T(ξξξξ). 
 

Projectivization of affine transformations.   We have already noted that an affine 

transformations of R
n
 extends to a projective collineation of P(R

n
).   Here is the formal 

statement of that result. 
 

Theorem 13.    If T is the affine transformation on R
n
 given by T(x)  = Ax + b, where A 

is an invertible n × n matrix and b is a vector in R
n
,  then the  (n + 1) ×  (n + 1) matrix 









====ΩΩΩΩ

10

bA
T  

 

defines an extension of T to an algebraically specified projective collineation ΨΨΨΨT of 

P(R
n
).  

 

Proof.   Let x be a vector in R
n
, and let ξξξξ   =  (x , 1)  give the standard homogeneous 

coordinates for the ordinary point in P(R
n
) given by x.  Then the block multiplication 

identity  








 ++++
====
















====ξξξξΩΩΩΩ

1110

bAxxbA
)(T  

shows that ΨΨΨΨT maps the ordinary point x to the ordinary point T(x).� 
 

Corollary 14.   The construction associating a projective collineation ΨΨΨΨT to an affine 

transformation T has the following properties: 
 

1. If I denotes the identity transformation on R
n
, then ΨΨΨΨI is the identity map 

on P(R
n
). 

2. For all affine transformations T and U, we have ΨΨΨΨTU   =   ΨΨΨΨT             ΨΨΨΨU . 

3. If S = T   

–
 

1
, then ΨΨΨΨS   =   ((((ΨΨΨΨT))))   

–
 

1
. 

 

Proof.     Since ΨΨΨΨ    T             ΦΦΦΦ     ΩΩΩΩ( T ),  where ΩΩΩΩ( T ) is the matrix ΩΩΩΩT described above (the 

notation is rewritten to avoid subscripts of subscripts), by the group theorem for 
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projective collineations it suffices to prove that ΩΩΩΩ(  I ) is the identity mapping, ΩΩΩΩ( T U)  =   

ΩΩΩΩ( T )ΩΩΩΩ( U) , and ΩΩΩΩ( T   

–
 

1
)  =   [ΩΩΩΩ(  T )]   

–
 

1
.  The first statement follows immediately from 

the description of ΩΩΩΩ( I ) given in the statement of the proposition, so we can focus our 

attention on the remaining two assertions. 
 

At this point it is helpful to review some observations about affine transformations from 

the discussion of them in Section I I.4.  First, if T(x)   =   Ax + b where A is invertible and 

b is some vector, then the inverse is given by T   

–
 

1
(y)   =   A 

–
 

1
 y  –  A 

 

–
  

1
b,  and using 

block multiplication of matrices one can check directly from this equation that  ΩΩΩΩ( T   

–
 

1
)  =   

[ΩΩΩΩ( T )]  

–
 

1
.  Second, if U is also an affine transformation and U(x)   =   Cx + d, where 

once again C is invertible, then we have T        U(x)    =    A    C(x)  +  ( Ab + d ), and again 

using block multiplication of matrices one can verify ΩΩΩΩ( TU)  =   ΩΩΩΩ( T )    ΩΩΩΩ( U)  directly from 

the formula for the composite.� 
 

Examples.    To see that not every projective collineation comes from an affine 
transformation, consider the permutation matrix A whose columns (from left to right) 

are the permuted unit vectors e2, … , en + 1, e1 .  Probably the easiest way to see that 

ΦΦΦΦ     A is not equal to ΨΨΨΨT for any affine transformation T is that each ΨΨΨΨT takes the ideal line 

or plane defined by xn + 1  =  0 into itself, and the mapping ΦΦΦΦ     A takes it to the line or 

plane defined by xn  =  0 . 
 

 

Fundamental Theorem of Projective Geometry 

 
In Units I I and I I I (particularly Sections I I.4 and I I I.5) we described three basic 
types of geometric transformations, and we also showed that substantial families of such 
transformations could be specified in algebraic terms, and in this section we described 
yet another type of geometric transformation (projective collineations) which can be 
viewed as containing all the others as special cases.  The table below lists the families 
considered in these notes; in each row the transformations are more general than the 
previous one, with the abstract synthetic geometric description in the first column and 
the key algebraically definable subfamilies in the second. 
 

 
 

Geometric transformation type 
 

Defined on 
 

Algebraically specified examples 

(Abstract) isometries R
n
 Galilean transformations 

Abstract similarity transformations R
n
 (Algebraically specified) similarity 

transformations 

(Abstract) affine collineations R
n
 Affine transformations (algebraically 

specified) 

(Abstract) projective collineations PPPP(R
n
) Algebraically defined projective 

collineations 
 

 

In each rows except the last, we have mentioned that all geometric transformations 
described in the first column are given by the algebraically defined transformations in the 
second.   One key part of the Fundamental Theorem of Projective Geometry states that 

the same also holds for projective collineations of PPPP(R
n
), where n  =  2 or 3. 
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Theorem 15.  (Fundamental Theorem of Projective Geometry)   Let n  =  2 or 3, and 

assume that the following hold: 
 

1. If n  =  2, then { X1, … , X4 }  and { Y1, … , Y4 } are sets of distinct points, no 

three of which are collinear. 
 

2. If n  =  3, then { X1, … , X5 }  and { Y1, … , Y5 } are sets of are distinct points, 

no four of which are coplanar. 
 

Then there is a unique projective collineation ΦΦΦΦ from PPPP(R
n
) to itself such that ΦΦΦΦ(Xk)  =  

Yk for k  =  1, … , n + 2. 
 

We shall prove the existence half of this theorem; this will be done by algebraic 
methods.  In contrast, the uniqueness part involves synthetic methods, and the proof 
requires a considerable amount of algebraic and geometric input that is beyond the 
scope of this course.  Here are one printed and one electronic reference for the proof:  
 

R.  Bumcrot, Modern Projective Geometry.  Holt, Rinehart and Winston, 
New York, 1969.  
 

http://math.ucr.edu/~res/progeom/pgnotes06.pdf 
 

Proof of existence in the Fundamental Theorem.   By the results from Section 5 on 

choosing homogeneous coordinates, there are homogeneous coordinates ξξξξ1, … , ξξξξn + 2 

and ηηηη1, … , ηηηηn + 2 for the points X1, … , Xn + 2  and Y1, … , Yn + 2  (respectively) such 

that  ξξξξ n + 2   =  ξξξξ1  + … + ξξξξ n + 1   and ηηηηn + 2  =  ηηηη1  + … +  ηηηηn + 1 , and we also know that 

the vectors  ξξξξ1, … , ξξξξ n + 1  and ηηηη1, …, ηηηη n + 1 give bases for R 

n
 
+

 
1
.   Therefore there is an 

invertible linear transformation T of R 

n
 
+

 
1 

such that T(ξξξξk)  =  ηηηη k for k  =  1, … , n + 1; 
by fundamental results from linear algebra we know that T is given by some invertible 

matrix A.   By the linearity of matrix multiplication, we also have A(ξξξξn + 2)  =  ηηηηn + 2, and 

therefore we have ΦΦΦΦA(Xk)  =  Y k for k  =  1, … , n + 2.� 
 

The following companion to the Fundamental Theorem of Projective Geometry is 
extremely important for many purposes. 
 

Proposition 16.  (Complement to the Fundamental Theorem)   Let n  =  2 or 3, and let 

T be a projective collineation of PPPP(R
n
).  If  W, X, Y, Z are distinct collinear points in 

PPPP(R
n
),  then so are their images, and we have (W X Y Z) =   ( T(W) T(X) T(Y) T(Z) ).  

 

Proof of Proposition  16 for algebraically specified projective collineations.     By 

the Fundamental Theorem we know that T  =  ΦΦΦΦ     A for some invertible matrix A.  Let ωωωω, 

ξξξξ, ηηηη, ζζζζ be homogeneous coordinates for W, X, Y, Z such that ηηηη  =  ωωωω + ξξξξ; then we 

have    ζζζζ  =  u ωωωω  + v ξξξξ, where the coefficients satisfy (WXYZ)  =  u/v.   By the 

construction of T  =  ΦΦΦΦ     A it follows that Aωωωω, Aξξξξ, Aηηηη, Aζζζζ  are homogeneous coordinates 

for T(W), T(X) , T(Y), T(Z).  The linearity of A implies that Aηηηη  =  Aωωωω + Aξξξξ as well as Aζζζζ  

=  u Aωωωω  + v Aξξξξ, and thus by the definition of cross ratio we conclude that (W X Y Z)  =  

u/v is equal to the corresponding cross ratio ( T(W) T(X) T(Y) T(Z) ).� 
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Projective collineations and perspective invariance 
 
 

We shall conclude this unit by indicating how one can use projective collineations to 
obtain some insight into Alberti’s question as formulated at the beginning of this section; 
recall this concerns the common properties shared by different perspective projections of 
the same object in space.  We shall only look at a very simple problem of this type, in 

which one has two fixed planes, say F and G, and we project from F to G using two 

distinct focal points which do not lie on either plane.  The drawing below depicts a 2 – 

dimensional analog in which F and G are replaced by two lines L and M ; the points P 

and Q represent the two focal points. This figure turns out to be entirely adequate for 

analyzing the 3 – dimensional case. 
 

 
 

Convention.    In the computations below we identify a 1 × 1 matrix with its unique 
scalar entry. 
 

In analogy with the drawing above, let F be the “object plane” and let G be the “image 

plane” for the perspective projection, and let N be the line in which they intersect; let W 

be the 3 – dimensional subspace of vectors in R
4
 whose homogeneous coordinates are 

representatives for the points of G, and let V be the 3 – dimensional subspace of 

vectors in R
4
 whose homogeneous coordinates are representatives for the points of G.  

The points C and D will represent projection centers for the perspective projections onto 

G.   By construction, neither C nor D lies on either of the planes F or G, and thus for all 

sets of homogeneous coordinates γγγγ    ′′′′, δδδδ′′′′, φφφφ′′′′ for C, D, F we know that φφφφ′′′′γγγγ    ′′′′ and φφφφ′′′′δδδδ′′′′ are 

nonzero.  There are nonzero multiples φφφφ and γγγγ    of φφφφ′′′′ and γγγγ    ′′′′ such that φφφφ    γγγγ = 1, and we 

choose our homogeneous coordinates for C and F such that this equation is satisfied. 
 

Every vector in R
4
 can be expressed (in fact, uniquely) as a sum αααα + q γγγγ where αααα ∈∈∈∈  W 

and q is a scalar.  If D is the second projection point as above, then we know that D 

does not lie on the plane G, and therefore it follows that  δδδδ  =  αααα + q    γγγγ where q must be 

nonzero.  Dividing by q, we see that homogeneous coordinate δδδδ for D can be chosen 

such that δδδδ  =  γγγγ + ββββ, where ββββ lies in W.  Note also that under these conditions every 

vector in R
4
 may also be expressed (uniquely) as a sum αααα′′′′ + p(γγγγ + ββββ), where αααα′′′′ ∈∈∈∈ W 

and p is a scalar. 
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We would like to define invertible linear transformations S and T on R
4
 such that for 

each point X on G, the associated projective collineation ΦΦΦΦS maps X to the intersection 

point of the line DX and the plane F, and similarly the associated projective collineation 

ΦΦΦΦ     T maps X to the intersection point of the line CX and the plane F.   Explicit formulas 

for the values of such linear transformations on a typical vector of the form αααα  +  k    γγγγ   =   

αααα′′′′ + m(γγγγ    + ββββ) are given as follows: 
 

S(αααα′′′′ + m (γγγγ + ββββ) )    =    (1 + φφφφ ββββ)    αααα′′′′  –  (φφφφ    αααα′′′′) (γγγγ + ββββ)  +  m (γγγγ + ββββ). 
 

T(αααα + k    γγγγ)   =   αααα  + (k – φφφφ    αααα)    γγγγ 
 

It follows that for all αααα ∈∈∈∈ W we have  
 

T 

–
 

1
S(αααα)   =   (1 + φφφφ    ββββ)αααα  –  (φφφφ    αααα)ββββ. 

 

Suppose now that we take a basis αααα1, αααα2, αααα3 for W such that αααα2 and αααα3 form a basis for 

V ∩∩∩∩ W (and thus we also know that αααα1 does not lie in W), and write the previously 

defined vector ββββ ∈∈∈∈ W as a linear combination x    αααα1 + y    αααα2 + z    αααα3.  Replacing αααα1 by a 

nonzero scalar multiple if necessary, we may assume that φφφφ    αααα1  =  1, and if we do so 

then we must also have x  ≠≠≠≠  – 1 in the expansion of ββββ.  If we apply the formula above 

for T 

–
 

1
S to the basis αααα1, αααα2, αααα3 described above, we have the following equations:  

 

T 

–
 

1
S(αααα1)   =    αααα1  –  y αααα2  –  zαααα3 

 

T 

–
 

1
S(αααα2)   =    (1 + x) αααα2 

 

T 

–
 

1
S(αααα3)   =    (1 + x) αααα3 

 

The preceding formulas show that T 

–
 

1
S is an invertible linear transformation on W, and 

with respect to the ordered basis { αααα1, αααα2, αααα3 }, the matrix of this linear transformation is 

given by 
 

.

10

01

001

















++++−−−−

++++−−−−

xz

xy  

 

If we multiply this matrix by the nonzero quantity 1/(1 + x) , then the new matrix defines 

the same mapping on the plane G, and if we make the change of variables  
 

x

z
c

x

y
b

x
a

++++

−−−−
====

++++

−−−−
====

++++
====

1
,

1
,

1

1
 

 

then the new matrix takes the form 
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10

01

00

c

b

a

 

 

where a, b, c depend upon the choice of D and for all such choices we have a   ≠≠≠≠   0; in 

fact, with different choices of D we can realize all such matrices, where a is an arbitrary 

nonzero number and b, c are arbitrary real numbers.   
 

Up to multiplication by a nonzero scalar, this form is nearly equivalent to the matrices 

described in Theorem 17 on page 129 of Ryan, the main difference being that the matrix 
in Ryan has only one possibly nonzero term off the main diagonal and ours may have 
two.   However, if we have two nonzero terms off the diagonal, then we can replace our 

basis αααα2 and αααα3 for V ∩∩∩∩ W by another basis αααα2′′′′, αααα3′′′′ such that the matrix with respect to 

the new basis αααα1, αααα2′′′′, αααα3′′′′ has at most one nonzero term off the diagonal. 
 

Notation.   The mappings from G to itself that are defined as above are called change of 

perspective transformations relative to F.  If G is the plane in PPPP(R
3
)  consisting of all 

points whose first homogeneous coordinate is equal to zero, then there is an obvious 

identification of G with PPPP(R
2
), and it follows immediately that these change of 

perspective transformations correspond to projective collineations of PPPP(R
2
). 

 
 

Change of object plane 
 
 

By the preceding discussion, if one changes the central focus point of a perspective 

projection from an object plane F to an image plane G, then the image of points under 

the first projection are mapped to the image of points under the second by special types 
of projective collineations.   Thus the common properties of the perspective projections 
considered above are basically the geometric properties of the projective plane that do 
not change under the special class of projective collineations described above.   
 

More generally, one can also ask about common properties of different perspective 

projections onto G if one moves the object plane F to some other location, say H, but 

keeps the image plane fixed.  In some sense this is the reverse of the “real life” situation 
in which one keeps the object fixed but can move the central focus point and the image 
plane, but the reverse model provides a better mathematical setting in which to analyze 
the common properties of different perspective projections if one does not insist that the 
object and image are both held fixed.   
 

Of course, if we let F vary, then the line of intersection F ∩∩∩∩ G will also vary over all the 

lines of G.  In particular, there are many ways of changing the plane F so that the line of 

intersection corresponds to the 2 –dimensional vector subspace spanned by αααα1 and αααα2 

or by αααα1 or αααα3.  If we do this, then we obtain 3 × 3 matrices like the preceding ones in 

which the rows and columns are rearranged by a permutation of { 1, 2, 3 }.   Now the 
matrices displayed above include all matrices that are obtained from the identity by two 
types of elementary row operations: 
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1. Multiplying one row by a nonzero scalar. 
 

2. Adding a multiple of one row to another. 
 

There is a third type of elementary row operation (switching two rows), but it turns out 
that this operation can be expressed in terms of the other two. 
 

Theorem 17.    Suppose that A is a square matrix obtained from the identity matrix by 
switching two rows.  Then A can be obtained from the identity by finitely many row 
operations of the other two types. 
 

The proof is not difficult, but in order to avoid a detour in the main discussion we shall 
postpone the proof to the end of this section.  If we combine the theorem on matrices 
with the previous discussion, we obtain the following result. 
 

Theorem 18.    Let T be an algebraically specified projective collineation of PPPP(R
2
), and 

view the latter as contained in PPPP(R
3
) as above.  Then T is expressible as a composite 

of change of perspective transformations.  
 

In particular, the preceding result implies that the common properties under general 

changes of perspective are the same as the geometrical properties of PPPP(R
2
) that are 

left unchanged (in mathematical language, invariant) under the entire family of 
projective collineations.  We mention this because in some sense it closes the loop, 
showing that the projective geometry, which arose from the theory of perspective, feeds 
back to yield fundamental insights into that theory. 
 

Proof of Theorem 18.    By hypothesis the collineation T has the form ΦΦΦΦA ,  where A is 
an invertible matrix.   Since every invertible matrix is a product of elementary matrices 
and every elementary matrix is a product of elementary matrices of the first two types 
described above, we know that A is expressible as a product of elementary matrices, 

say A  =   E1 … Ek .  If Tj is the algebraically specified projective collineation associated 

to the matrix E j , then it follows from the formal properties of this construction that T is 

equal to the composite T1  …  Tk.  By the preceding discussion, each of the 

collineations Tj is a change of perspective transformation, and thus we have expressed 

T as a composite of the desired type.� 
 
 

Appendix — Proof of the row reduction theorem 

 
We claim it is enough to do the latter in the 2 × 2 case.  In the general case, the matrix 

differs from the identity in only four entries; specifically, if one interchanges rows p and q 

where p and q, then the exceptional matrix entries are in positions (p, p), (p, q), (q, p) 

and (q, q).  If we restrict ourselves to operations which only involve rows p and q, then 
each elementary matrix we obtain will have the same property, and hence if we can do 

the 2 × 2 case we can spread it out more generally by just applying the operations to 

rows p and q rather than rows 1 and 2. 
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Turning to the special case, we check that the matrix of the linear transformation of R
2
 

which switches coordinates can be reduced to the identity by elementary row operations 
which either add a multiple of one row to another or multiply one row by a nonzero 
constant.  The explicit steps are indicated by the sequence of matrices displayed below. 
 









⇒⇒⇒⇒









−−−−
⇒⇒⇒⇒









−−−−
⇒⇒⇒⇒








⇒⇒⇒⇒









10

01

10

01

10

11

01

11

01

10

 

For the sake of completeness, we shall list the elementary operations by which each 
matrix in this display is obtained from the preceding one: 
 

1. Add the second row to the first. 
 

2. Subract the first row from the second. 
 

3. Add the second row to the first. 
 

4. Multiply the second row by  – 1. 
 

By the previous remarks, this completes the proof of the result on matrices.� 
 


