
Exercises for Unit I I I   

(Basic Euclidean concepts and theorems) 
 

Default assumption: 
 

All points, etc. are assumed to lie in R
2
 or R

3
. 

 

 I I I.1 : Perpendicular lines and planes 
 
 
1.  Suppose that P, Q and T are three distinct planes, and suppose that they have at 
least one point in common but do not have a line in common.  Prove that they have 

exactly one point in common. 
 

2.  Suppose P and Q are two planes which intersect in the line L  =  x + U, where 

the 1 – dimensional vector subspace U spanned by the unit vector u.  Express these 

planes as translates of two dimensional subspaces, with P  =  x + V and Q  =  x + W.   
Let a and b be unit vectors in V and W respectively such that a and b are perpendicular 

(or normal ) to u.  Prove that the (cosine of the) angle ∠∠∠∠(x + a) x (x + b) is equal to the 

(cosine of the) angle between the normals to P and Q; note that these normals are given 

by a × u and b × u.  [ Hint :  Express the dot product of the normals in terms of the dot 

product of a and b.  Apply the formula for (v × w) ⋅⋅⋅⋅ (y × z) derived in Section I. 2. ] 
 

 
 

Note.  If we let [P(x + a) denotes the union of L with the set of all points on the same 

side of P as x + a, and we let [Q(x + b) denotes the union of L with the set of all points on 

the same side of Q as x + b, then the union of [P(x + a) and [Q(x + b) is an example of a 
dihedral angle, and the result of the exercise states that two standard methods for 

defining the measure of this dihedral angle yield the same value. 
 

3.  Let X be a point in the plane P.  Prove that there is a pair of perpendicular lines L 
and M in P which meet at X and that there is no line N in P through X which is 
perpendicular to both L and M.  [ Hint :  Try using linear algebra. ] 
 



4.  Assume the setting of the previous exercise, but also assume that P is contained 

in R
3
.   Prove that there is a unique line K through X which is perpendicular to both L 

and M. 
 

5.  Let L and M be lines which intersect at Y, and for each X in L – {Y}, let MX 
denote the foot of the unique perpendicular from X to M.  Prove that for each positive 

real number a there are exactly two choices of X for which d(X, MX )  =  a.  [ Hint :  

Parametrize the line in the form Y + t V for some nonzero vector v, let W be a nonzero 
vector such that L and M lie in the plane determined by Y, Y + V, and Y + W with W 

perpendicular to V, and express d(X, MX ) in terms of t and the length of W. ] 
 

 

I I I.2 : Basic theorems on triangles 

 

 

1.   (Review of topics from Section II.4) Suppose that we are given ����ABC and 

����DEF, and let G and H denote the midpoints of [BC] and [EF] respectively.  Prove that 

����ABC  ≅≅≅≅  ����DEF if and only if that ����GAB  ≅≅≅≅  ����HDE. 

 
 

2. Suppose that ����ABC is an isosceles triangle with d(A, B)  =  d(A, C), and D is a 

point of (BC) such that [AD bisects ∠∠∠∠ BAC.  Prove that D is the midpoint of (BC) and 

that |∠∠∠∠ ADB|  =  |∠∠∠∠ ADC|  =  90°°°°. 
 

3. Suppose we are given isosceles ����PRL with d(R, P)  =  d(L, P).  Let S and T be 

points on (RL) such that R∗S∗T,  d(R, S)  =  d(L, T), and  d(P, S)  =  d(P, T).  Prove 

that ����RTP  ≅≅≅≅  ����LSP and |∠∠∠∠ PSR|  =   |∠∠∠∠ PTL|. 
 

4. Suppose we are given two lines AE and CD, and suppose that they meet at a 
point B which is the midpoint of [AE] and [CD].  Prove that AC || DE.   
 

5. Suppose that we are given lines AE, BD and FG which contain a common point 

C and also satisfy A∗F∗B, B∗C∗D, and D∗G∗E.  Suppose also that d(A, C)  =  d(E, C) 

and d(B, C)  =  d(C, D).  Prove that ����ABC  ≅≅≅≅  ����EDC and ����AFC  ≅≅≅≅  ����EGC.  [ Hint :   

Part of the proof is to show that the betweenness properties A∗C∗E and F∗C∗G, 

suggested by the drawing, are true. ] 
 



 
 

6. Suppose that ����ABC is an isosceles triangle with d(A, B)  =  d(A, C), and let D 

and E be points of (AB) and (AC) respectively such that d(A, D)  =  d(A, E).  Prove that 
BC || DE. 
 

7. Suppose that we are given ����ABC, and let D be a point in the interior of ����ABC 

such that [AD bisects ∠∠∠∠ CAB, [BD bisects ∠∠∠∠ CBA, and |∠∠∠∠ ADB|  =  130°°°°.  Find the 

value of |∠∠∠∠ ACB|.   
 

8. Suppose that we are given points A, B, C such that A∗B∗C, and let DE  ≠ AC 

such that D∗B∗E, CE ⊥⊥⊥⊥ AC, and DE ⊥⊥⊥⊥ AD.  Prove that |∠∠∠∠ DAB|  =  |∠∠∠∠ BEC|. 
 

9.  Prove the following result due to Heron of Alexandria:  Let P be a plane, let L be 
a line, let A and B be points on the same side of L in P, and let C be the mirror image of 
B with respect to L (formally, choose C so that L is the perpendicular bisector of [BC] ).  

Define a positive real valued function f on L by f(X)  =  d(A, X) + d(X, B) .  Then the 
minimum value of f(X) occurs when X lies on (AC).   
 

 
 

[Hint:  Why is d(X, B)  =  d(X, C), and how is this relevant to the problem? ] 
 

10.  Given ����ABC, let X, Y and Z be points on the open segments (AB), (BC) and 

(AC) respectively.  Prove that the sum of the lengths of the sides of ����ABC is greater 

than the sum of the lengths of the sides of ����XYZ.  
 

 



 

11.  Given ����ABC, let D and E be the midpoints of (BC) and (AC) respectively.  

Prove that d(D, E)   =   ½ d(A, B). 
 

12.  Given ����ABC, let D be the midpoint of (BC).  Prove that d(A, D)  <   ½ [ d(A, B)  

+  d(A, C) ].  [ Hint :  Let F be the midpoint of (AB), and apply the previous exercise. ] 
 

 
 

13.  Given ����ABC, let X be a point in the interior of ����ABC.  Prove that  

|∠∠∠∠AXB|  +  |∠∠∠∠BXC|  +  |∠∠∠∠CXA|   =   360 °. 
 

 
 

[ Hint :  There is one large triangle in the picture, and it is split into three smaller ones; 

the angle sum for each triangle is equal to 180 °. ] 
 

14.  Prove the Sloping Ladder Theorem:  Suppose we are given right triangles 

����ABC and ����DEF with right angles at C and F respectively such that the hypotenuses 

satisfy d(A, B)  =  d(D, E).  If d(E, F)  <  d(B, C), then d(A, C)  <  d(D, F). 
 

 
 

15.  In ����ABC, one has d(A, C)  <  d(B, C).  If E is the midpoint of [AB], is ∠∠∠∠CEA 

acute (measurement less than 90 °) or obtuse (measurement greater than 90 °)?  Why? 
 

16.  Using the strong triangle inequality for noncollinear triples of points, determine 
which of the following triples cannot be the set of lengths for the sides of a triangle. 
 

(a) 1, 2, 3 

(b) 4, 5, 6 

(c) 15, 15, 1 

(d) 5, 1, 8 



 

17.  Two sides of a triangle have lengths 10 and 15.  Between what two numbers 
must the length of the third side lie?  
 

18.  Let n be a positive integer.  Explain why there is a right triangle ����ABC with a 

right angle at C such that ( i ) the sides all have integral lengths,  ( ii ) d(A, B)  =  n + 1 

and d(A, B)  =  n,  provided the odd integer (2n + 1) is a perfect square, and conclude 

that there are infinitely many values of n for which there is a right triangle ����ABC with 

right angle at C satisfying ( i )  and ( ii ).  Find all n < 100 for which such triangles exist.   

[ Hint :  Recall that the sum of the first k odd (positive) integers is equal to k
2
. ] 

 

19.  Prove the Hinge Theorem:  Given triangles ����ABC and ����ABD which satisfy 

d(A, C)  =  d(A, D),  then d(B, C)  <  d(B, D) if and only if |∠∠∠∠CAB|  <   |∠∠∠∠DAB|. 

 
 

20.  Assume that we are given ����ABC such that the sides opposite vertices A, B, C 

have lengths a, b, c and the vertex angles at A, B, C have measures αααα, ββββ, γγγγ 

respectively.  Then several results of this section show that a, b, c and αααα, ββββ, γγγγ satisfy 
certain restrictions.  For example, we have [1] the sum of any two lengths is greater 

than the third, [2] b  =  c if and only if γγγγ  =  ββββ and similarly if the roles of the variables 

are interchanged, [3] αααα + ββββ + γγγγ  =  180°, [4] c
2
  <  a

2
 + b

2
  if and only if γγγγ  <  90°.   

Determine which of these reasons imply that one cannot construct a triangle whose 
measures are partially given as follows (in any given example more than one reason 
might be needed): 
 

(a)     a  =  8,   b  =  c  =  6,    ββββ  =  γγγγ  =  60°.  
 

(b)     a  =  6,   b  =  7,   c  =  9,    γγγγ  =  93°.  
 

21.  In section I I.4 we noted that there is no general Side – Side – Angle congruence 
theorem in geometry.  One easy way to construct an explicit counterexample is to start 

with an isosceles right triangle ����ABC with a right angle at the vertex B, take the point D 

such that A∗C∗D and d(B, C)  =  d(C, D),  and consider the triangle correspondence 

����BDC ↔ ����BDA, which satisfies the SSA condition.  Find the measures of  ∠∠∠∠ CBD,  

∠∠∠∠ ABD,  ∠∠∠∠ DAB and  ∠∠∠∠ DCB. [ Hint :  Why is ����BCD isosceles?] 
 

 

I I I.3 : Convex polygons 

 

 
1. Suppose that A, B, C, D form the vertices of a convex quadrilateral, and let P, Q, 
R, S be the midpoints of [AB], [BC], [CD] and [DA] respectively.  Prove that PQ || RS 



and QR || PS. [ Hint :  In each case, the lines are parallel to one of the diagonals of the 
original convex quadrilateral.] 
 

2. Suppose that A, B, C, D form the vertices of a convex quadrilateral, and let P, Q, 
R, S be the midpoints of [AB], [BC], [CD] and [DA] respectively.  Prove that [PR] and 
[QS] meet at their common midpoint.  [ Hint :  Apply the preceding exercise.] 
 

3. Suppose that A, B, C, D form the vertices of a parallelogram, and suppose that E 
and F are the midpoints of [AB] and [CD] respectively.  Prove that E, B, F, D form the 
vertices of a parallelogram.  [ Hint :  There is a simple proof using vectors.] 
 

 
 

4. Suppose that A, B, C, D form the vertices of a trapezoid, with AB || CD, and 

assume that d(A, D)  =  d(C, D).  Prove that [AC bisects ∠∠∠∠ DAB.  
 

5. Suppose that A, B, C, D form the vertices of a parallelogram, and suppose that E 

and F are points of (BD) such that B∗F∗E and d(B, F)  =  d(D, E).  Prove that AE || CF. 
 

 
 

6.  A parallelogram is a rhombus if its four sides have equal length.  Prove that a 
parallelogram is a rhombus if and only if its diagonals are perpendicular to each other. 
 

7.  Suppose that A, B, C, D form the vertices of a square, and let E be a point in the 

interior of the square such ����ABE is an equilateral triangle.  Find |∠∠∠∠EDC| and |∠∠∠∠ECD|.   
 

 
 

 

8.  Prove a converse to Proposition I I I.3.1:  If A, B, C, D are coplanar points such 
that no three are collinear, then they form the vertices of a convex quadrilateral if the 
open diagonal segments (AC) and (BD) have a point in common. 
 



9.  Suppose that A, B, C, D are points in R
3
 such that no three are collinear.  Prove 

that they form the vertices of a convex quadrilateral if and only if D lies in the interior of 

∠∠∠∠ ABC and D and B lie on opposite sides of AC.  [ Hint :  Recall that they form the 
vertices of a convex quadrilateral if and only if the open diagonal segments (AC) and 
(BD) have a point in common. ] 
 

10.  Suppose that A, B, C, D are points in R
2
 such that no three are collinear, and 

express D as an affine combination D  =  xA + yB + zC, where  x + y + z  =  1.   Using 
the preceding exercise, show that A, B, C, D form the vertices of a convex quadrilateral 

if and only if  x  and  z  are positive and  y is negative.   
 

11.  Suppose that A, B, C, D are points in R
2
 such that no three are collinear, and 

suppose that AB || CD.  Prove that A, B, C, D form the vertices of a convex quadrilateral 

if and only if C – D is a positive multiple of B – A (such a quadrilateral is a parallelogram 

if C – D  =  B – A and it is a trapezoid in the other cases).   
 

Standing hypotheses:  In Exercises 7 – 11 below, points A, B, C, D in R
2
 form 

the vertices of a convex quadrilateral such that AB || CD.  The lengths of C – D 

and B – A will be denoted by x and y respectively. 
 

12.  Prove that the line joining the midpoints of [AD] and [BC] is parallel to AB and 

CD, and its length is  ½ (x  +  y) .  Also, prove that the line joining the midpoints of the 
diagonals [AC] and [BD] is parallel to AB and CD. 
 

13.  Suppose that x  <  y, and let E be the unique point on (AB such that d(A, E)  =  

x.   Prove that E lies on (AB) and AD || CE (hence A, E, C, D form the vertices of a 
parallelogram). 

 
 

14.  Suppose again that x  <  y, and let E be as above.  Prove that the following are 
equivalent: 
 

(1) d(A, D)   =   d(B, C) 
 

(2) |∠∠∠∠ DAB|   =   |∠∠∠∠ CBA| 
 

(3) |∠∠∠∠ ADC|   =   |∠∠∠∠ BCD| 
 

A trapezoid satisfying one (and hence all) of these conditions is called an isosceles 
trapezoid. 
 

15.  Suppose that A, B, C, D as above are the vertices of an isosceles trapezoid.  
Prove that the line joining the midpoints of [AB] and [CD] is the perpendicular bisector of 
these segments. [ There is a drawing on the next page. ] 



 
 

16.  Suppose we are given an isosceles trapezoid as in the preceding exercise such 

that  A  =  (– ½ y, 0),   B  =  (½ y, 0),   C  =  (½ x, h), and  D  =  (– ½ x, h),  where h  >  

0.  Prove that the open diagonal segments (AC) and (BD) meet at a point (0, k) on the 

y – axis, and express k/(h – k) in terms of x and y.  
 

17.   Suppose that we are given A, B, C, D in R
2
 whose coordinates are given by the 

equations A  =  (p, 0),  B  =  (0, q),  C  =  (– p, 0) and D  =  (0, – q), where p, q  >  0.  
 

(a)  Prove that A, B, C, D form the vertices of a rhombus.  [ Hint :  First of all, show that 

d(A, B)  =  d(B, C)  =  d(C, D)  =  d(D, A).  Next, note that A – B   =   D – C and use 
this to show that AB || CD.   Finally, modify the preceding step to show that AD || BC. ]  
 

(b)  Prove that the distance between the parallel lines AB and CD is equal to the 
distance between the parallel lines AD and BC.  [ Hint :  Let T be the orthogonal linear 

transformation defined by T (x, y)  =  (x, – y),  and view T as an isometry of R
2
.  What 

are the images of A, B, C, D under T?  What are the images of the lines AB, AD, BC 

and CD under T?   Using these conclusions, prove that if F ∈∈∈∈ AB and G ∈∈∈∈ CD are such 

that the line FG is perpendicular to both AB and CD, then T(F) ∈∈∈∈ AD and T(G) ∈∈∈∈ BC 
are such that the line T(F)T(G) is perpendicular to both AD and BC.  Why will the result 
follow from this? ] 
 

 
  

18.  Given a square whose sides all have length a, it is possible to obtain a regular 
octagon by cutting away four isosceles right triangles at the edges as suggested by the 

figure below.  Suppose that b is the length of the sides of the regular octagon 

constructed in this fashion.  Express the value of b in terms of a.  [ Hint :  Let c be equal 
to the lengths of the legs of the isosceles right triangles that are removed to form the 

octagon.  Find two equations relating a, b and c. There is a drawing on the next page.]  
 



 
 

19.   Suppose that we are given four points A, B, C, D in R
2
 which form the vertices of a 

convex quadrilateral (in the given order).  Let E be a point on (CD), and let F be the foot 
of the perpendicular from E to AB.  Prove that if F lies on (AB), then (EF) is contained in 
the interior of the convex quadrilateral ABCD. 

 
 

20.   Prove an analog of Pasch’s Theorem for convex quadrilaterals:  Suppose that A, B, 

C, D in R
2
 form the vertices of a convex quadrilateral and L is a line in R

2
 which 

contains exactly one point of (AB).   Prove that either L contains one of the vertices C, D 
or else it contains a point from one of the open sides  (BC),  (CD)  and  (AD). 

 

21.   Suppose we are given four points  A 1, A 2, A 3, A 4  in R
2
 such that no three are 

collinear, let  A 5  =  A1, and let  L i  =  A i A i + 1, so that exactly two of the given four 

points are on L i and the remaining two are not.  Prove that for at least one choice of  i  

the “remaining two” points of { A 1, A 2, A 3, A 4 } both lie on the same side of L i. 
 

22.   A convex quadrilateral ABCD is said to be a convex kite (or deltoid) if  d(A, B)  =  

d(A, D)  and   d(C, B)  =  d(C, D).   Prove that the line of the diagonal AC in such a 
quadrilateral is the perpendicular bisector of the diagonal segment [BD], and also prove 

that |∠∠∠∠ABC|  =   |∠∠∠∠ADC|. 



 

 

I I I.4 : Concurrence theorems 

 

 

1.  Let ����ABC be a triangle in R
2
.  Define a real valued function g on R

2
 by g(X)  =  

d(X, A) 

2
 + d(X, B)

 2
 + d(X, C) 

2
.  Prove that g(X) takes a minimum value when X is the 

centroid of ����ABC.  
 

2.  Suppose that the circumcenter V of ����ABC lies in the interior of that triangle.  

Prove that all three vertex angles of that triangle are acute (i.e., measure less than 90 °).  

[ Hint :  Consider the three triangles ����VBC, ����VAB, ����VAC.  Explain why they are 

isosceles, and show that   |∠∠∠∠VBC|  +  |∠∠∠∠VAB|  +  |∠∠∠∠VAC|   =  90 °. ]    
 

3.  Suppose we have a right triangle with a right angle at B, and let V be the 

midpoint of [AC].  Explain why d(V, B)  =  d(A, C),  so that V is the circumcenter of the 

triangle.  [ Hint:  Using the final result in Section I.4 of the notes, show that the foot of 
the perpendicular from V to BC is the midpoint E of the segment [BC].  Why does this 

imply that ����VBC isosceles? ] 
 

 
 

4.  Suppose that we have a triangle ����ABC such that the circumcenter V lies in the 

interior of the triangle, and let R be the radius of that circle.  Let |∠∠∠∠BAC| =  ββββ.  Prove 
the following strong version of the Law of Sines:  
 

Rb ⋅⋅⋅⋅
====

ββββ

2

1sin
 

 

 
 

[ Hint :  Let D be the midpoint of [AC], and find d(V, A) and |∠∠∠∠ VAC| in terms of b, ββββ and 

R .  What does this imply about d(A, D)   =  ½ b ?  You might want to use some of the 

conclusions obtained in the solution to Exercise 2. ] 
 



Note.  The solution to Exercise 3 implies similar results for triangles 
with one right angle, and in fact the same conclusion holds if one of the 
angles in the triangle is obtuse (the argument is similar but slightly more 
complicated).   

 

5.  The following instructions were found on an old map: 
 

Start from the right angle crossing of King’s Road and Queen’s Road.   Proceed 
due north on King’s Road and find a large pine tree and then a maple tree.  
Return to the crossroads.  Due west on Queen’s Road there is an elm, and due 
east on Queen’s Road there is a spruce.  One magical point is the intersection of 

the elm – pine line with the maple – spruce line.  The other magical point is the 

intersection of the spruce – pine line with the elm – maple line.  The treasure lies 
where the line through the magical points meets Queen’s Road. 
 

A search party found the elm 4 miles from the crossing, the spruce 2 miles from the 

crossing, and the pine 3 miles from the crossing, but they found no trace of the maple.  
Nevertheless, they were able to locate the treasure from the instructions.  Show how 
they were able to do this.    [ Hints:  The treasure was eight miles east of the crossing.  
Probably the best way to do this problem is to set up Cartesian coordinates with King’s 

Road and Queen’s Road as the coordinate axes. ] 
 

6.  Find the circumcenter of the triangle in the coordinate plane with vertices (1, 1), 

(5, 5) and (4, 0). 
 

7.  Find the orthocenter of the triangle in the coordinate plane with vertices (± 1, 0) 

and (0, 2).     [ Hint:  The line L joining (1, 0)  and (0, 2) has equation y  +  2x  =  2.  

Find the equation of the line M which is perpendicular to L and passes through (1, 0). 

Explain why the orthocenter is the point where M meets the y – axis. ] 
 

Note.  For both exercises 6 and 7, the numerical answers for the coordinates are 

expressible in relatively neat terms.   The same applies to exercise 9. 
 

8.  Find the incenter of ����ABC if  A = ( 1, 0 ),  B  = ( 0, 0 ), and  C  = ( 0, sqrt(3) ); 

the conditions of the problem imply that there is a right angle at B and a  60° angle at  C.         

[ Hint:  The bisector for the angle at B has equation  y  =  x.  Find the equation of the 

line which bisects the angle at A. ] 
 

9.  Find the circumcenter of the triangle in R
2
 with vertices (0, 0), (3, 4), and (6, 0), 

and determine the circumradius of this triangle. 
 

10.  Given a 120° – 30° – 30° isosceles triangle ����ABC, determine whether each of 
the circumcenter and orthocenter lies inside the triangle, on one of the vertices, on one 
of the sides between two vertices, or outside the triangle.  You may assume that the legs 

of the isosceles triangle are [AB] and [AC], where A lies on the y – axis and [BC] is 

contained in the x – axis. 
 

11.  Suppose that we are given three noncollinear points a, b, c in R
2
 or R

3
.  Prove 

that the angle bisector for ∠∠∠∠ a b c is the ray [bx, where x  =  b + y and y is given by 
 



.
2

1
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[ Hint:  Let u and v be the unit vectors in the displayed expression, and let p  =  b + u 

and q  =  b + v, so that ∠∠∠∠ abc   =   ∠∠∠∠ pbq.  Then x is the midpoint of [pq]. ] 
 

12.  Apply the result of the previous exercise to the angle in R
2  

for which a  =  (3, 4), 

b = (0, 0) and c = (2, 1)  to find a point x on the bisector of ∠∠∠∠ a b c other than b, and find 
the slope of the line bx (which goes through the origin). 
 

 

I I I.5 : Similarity 

 

 
1.  Prove that an affine transformation which preserves perpendicularity must be a 
similarity transformation. 
 

2.  Let T be a similarity transformation of R
n
 with a ratio of similitude k which is not 

equal to 1.  Prove there is a unique point z such that T(z)  =  z.  [ Hint :  Write T(z)  =  

kAz + b, where A is given by an orthogonal matrix.  Then the conclusion is equivalent to 

saying that there is a unique z such that (kA – I)  z  =  b.   By linear algebra the latter 

happens if and only if there is no nonzero vector v such that kAv  =  v.  Assume to the 
contrary that such a vector exists, and using the orthogonality of A, explain why the 

length of the vector on the left side is equal to k |v|, and note that the length of the vector 
on the right side is just |v|.  Why does this yield a contradiction? ]  
 

3.  Let ����ABC be a 3 – 4 – 5 right triangle with a right angle at C such that d(A, C)  

=  3,  d(B, C)  =  4, and  d(A, B)  =  5.  Let D be the point on (BC) such that [CD 

bisects ∠∠∠∠ACB.  Compute the distances d(A, D) and d(D, B). 

 
4.  Suppose we are given ����ABC, and let D ∈∈∈∈ (AB) be such that |∠∠∠∠DCA|  =  |∠∠∠∠ABC|.  

Prove that d(A, C) is the mean proportional between d(A, B) and d(A, D).  [ There is a 
drawing for this exercise on the next page, in which the shaded angles have equal 
measures. ] 



 
 

5.  Let ����ABC be given, and let Z be a point on (AB.  Let X and Y be points on the 
same side of AB as C such that AX, CZ and BY are all parallel to each other, and also 

assume that B∗C∗X and A∗C∗Y.  Prove that 
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6. Suppose that we are given positive real numbers a1, … , an and b1, … , bn such 
that  
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7. ( i )  Suppose that we are given ����ABC and ����DEF such that ����ABC  ~  ����DEF 

with d(B, C)  ≤  d(A, C)  ≤  d(A, B).    Prove that d(E, F)  ≤  d(D, F)  ≤  d(D, E).     
 

 ( ii )  Suppose that we are given ����ABC with d(B, C)  ≤  d(A, C)  ≤  d(A, B) and that 

(A′′′′, B′′′′, C′′′′)  is a rearrangement of (A, B, C)  such that ����ABC ~ k ���� A′′′′B′′′′C′′′′.   Prove that 

k  =  1.  [ Hint :  Split the proof into cases depending upon whether ����ABC is equilateral, 
isosceles with the base shorter than the legs, isosceles with the legs shorter than the 

base, or scalene; i.e., no two sides have equal length. ]    
 

8. Suppose that we are given ����ABC ~ ����DEF, and let G and H be the midpoints of 

[BC] and [EF] respectively.  Prove that ����ABG ~ ����DEH.  
 



9. Suppose we are given the right triangle ����ABC such that d(A, B)  = 13,  

d(A, C)  =  5 and d(B, C)  =  12, so that C is the right angle vertex.  If X  ∈∈∈∈  (AB) is 

such that [CX bisects ∠∠∠∠ ACB, find d(A, X). 
 

10.  Suppose we are given an isosceles triangle ����ABC in the coordinate plane R
2
 

whose vertices are given by A  =  (0, h), B  =  (– x , 0), and C  =  (x, 0).    Then the 

incenter J (where the angle bisectors meet) lies on the y – axis.  Find its y – coordinate.  
[ Hint:  What does the Angle Bisector Theorem imply? ] 

 

 

I I I.6 : Circles and classical constructions 

 
 

1. Let ΓΓΓΓ be a circle with center Q, let [AB] and [CD] be chords of ΓΓΓΓ (so that the 
endpoints lie on the circle), and let G and H be the midpoints of [AB] and [CD].  Prove 

that d(Q, G)  =  d(Q, H) if and only if d(A, B)  =  d(C, D), and d(Q, G)  <  d(Q,H) if and 

only if d(A, B)  >  d(C, D). 
 

2. Let ΓΓΓΓ be a circle with center Q, and let L be a line containing a point X on ΓΓΓΓ.  

Prove that X is the only common point of ΓΓΓΓ and L if and only if QX is perpendicular to L.  

(These are the usual synthetic descriptions for the tangent line to ΓΓΓΓ at X.)    [ Hint :  If L 

also meets ΓΓΓΓ at another point Y, explain why ∠∠∠∠QXY is acute. ]    
 

3. Let ΓΓΓΓ be a circle with center Q, let X be a point in the exterior of ΓΓΓΓ,  and let A and 

B be two points of ΓΓΓΓ which lie on opposite sides of QX such that XA and XB are tangent 

to ΓΓΓΓ in the sense of the preceding exercise.  Prove that d(X, A)  =  d(X, B).  
 

4.  Let ΓΓΓΓ be a circle in the plane, let A be a point in the interior of ΓΓΓΓ,,,, and let X be a 

point different from A.  Prove that the ray [AX meets ΓΓΓΓ in exactly one point.  [Hint :  By 

the line – circle theorem, the line AX meets ΓΓΓΓ in two points B and C.  Why do these 
points lie on opposite rays? ] 
 

5.  (SsA Congruence Theorem for Triangles)  Suppose we have ����ABC and 

����DEF such that |∠∠∠∠CAB|  = |∠∠∠∠FDE| and d(B, C)  =  d(E, F)  >  d(A, B)  =  d(D, E) .  

Prove that ����ABC  ≅≅≅≅  ����DEF by supplying reasons for the steps listed below: 
 

(1)  There is a point G ∈∈∈∈ (AC such that d(A, G)  =  d(E, F) .   

(2)  ����GAB  ≅≅≅≅  ����FDE .  

(3)  d(B, G)  =  d(E, F)  =  d(B, C) .   

(4)  G lies on the circle ΓΓΓΓ with center B and radius d(B, C) . 

(5)  A lies in the interior of ΓΓΓΓ. 

(6)  (AG meets ΓΓΓΓ in exactly one point. 

(7)  C lies on (AG and ΓΓΓΓ. 

(8)  C = G. 

(9)  ����ABC = ����ABG, and ����ABC  ≅≅≅≅  ����DEF . 



 

6.  Let ΓΓΓΓ    be a circle whose center is Q, and let A be a point in the same plane that is 

not on ΓΓΓΓ and not equal to Q.  Prove that the distance from A to a point X on ΓΓΓΓ is 
minimized for a point Y which also lies on the open ray (QA.  [ Hint :  There are two 
separate cases depending upon whether A is in the interior or exterior of the circle.   In 

the first case the point Y satisfies Q∗A∗Y, and in the second case it satisfies Q∗Y∗A.  

Show first that if W is the other point on ΓΓΓΓ ∩∩∩∩ QA, then the distance is not minimized at 

W; this leaves us with the cases where X does not lie on QA.  The “larger angle is 
opposite the greater side” theorem is useful in the two separate cases when X does not 

lie on QA.... ] 
 

7.  Let ΓΓΓΓ1111     and ΓΓΓΓ2222     be concentric circles in the same plane, let Q be their center, and 

suppose that the radius p of ΓΓΓΓ1111 is less than the radius q of ΓΓΓΓ2222    ....   What is the set of all 

points X such that the shortest distance from X to ΓΓΓΓ1111 equals the shortest distance from X 

to  ΓΓΓΓ2222    ?  Give a proof that your assertion is correct.   
 

8.  Prove the assertion in the notes about finding a triangle with given SAS data:   

Specifically, if we are given positive real numbers b and c, and αααα is a real number 

between 0 and 180, then there is a triangle ����ABC such that  d(A, B)  =  c,  d(A, C)  =  

b, and |∠∠∠∠CAB|  =  αααα 
°....    

 

9.  Prove that a line cannot contain three distinct points of a circle, or equivalently 
that no three points of a circle are collinear.   [ Hints :  Let L be the line, and let Q be the 

center of the circle, and suppose that L contains three points of the circle Γ Γ Γ Γ with center 

Q and radius r.  There are two cases depending upon whether or not Q ∈∈∈∈ L.  Use the 
Ruler Axiom to prove the result in the first case.  In the second case, if the circle 
contains three points of the circle, explain why we can label then X, Y, Z such that 

X∗Y∗Z.  Show that  |∠∠∠∠QXY|  =  |∠∠∠∠QYX|  =  |∠∠∠∠QZY|  =  |∠∠∠∠QXY|  using the Isosceles 

Triangle Theorem.  On the other hand, why do we also know that  |∠∠∠∠QYX| + |∠∠∠∠QXY|  =  

180 °,    and why does this yield a contradiction? ] 
 

10.  Let A, B, C be three distinct noncollinear points.  Prove that there is a unique 
circle containing them. 
 

11.  Let A and B be distinct points, let D be the midpoint of [AB], and let ΩΩΩΩ be the 

set of all points X such that X = A,  X = B, or X does not lie on AB and AX ⊥⊥⊥⊥ XB.  

Prove that ΩΩΩΩ is the circle with center D and radius ½ d(A, B). 
 

12.  Let L and M be the coordinate axes in R
2
, and let S be the set of all points Z 

such that d(Z, L)  +  d(Z, M)   =   d(Z,Q) 

2
, where d(Z, K) is distance from a point Z to the 

foot of the perpendicular to the line K containing Z and Q denotes the origin.  Prove that 
S is the union of four circular arcs; describe each arc in terms of its endpoints, the 
centers of the circles, and whether it is a minor arc, semicircle or major arc.  [ Hint :   
Look first at the set of points in S which also lie in the closed first quadrant of points 

whose coordinates are both nonnegative. ] 
 



13.  Let  ΓΓΓΓ be a circle with center Q, let A be a point on that circle,  and let ΩΩΩΩ be the 

set of all points X such that either X = A or else is the midpoint of the segment [AB] for 

some B  ∈∈∈∈  ΓΓΓΓ.  Prove that ΩΩΩΩ is a circle whose center is the midpoint of [AQ].   [ Hint :   

First consider the special case where Q is the origin and A is the point with coordinates 

(a, 0); use coordinates to prove the result in this case.  One can then modify the 
argument to work in the general case by taking U to be the unit vector in the direction of 

A – Q and defining V to be a unit vector in a perpendicular direction. ] 
 

14.  Let  ΓΓΓΓ be a circle with center Q, let A, B, C, D be four points on ΓΓΓΓ such that Q 

does not lie on AB or CD, and let E and F be the feet of the perpendiculars from Q to AB 

and CD respectively.  Prove that d(A, B)   =   d(C, D) if and only if d(Q, E)   =   d(Q, F).  
[ This result is often stated in the form, two chords of a circle have equal length if and 
only if the distances from the center of the circle to these chords are equal. ] 
 

15.  Suppose that A, B, C, D are the vertices of a convex kite as defined in Exercise 

III.3.22.  Prove that there is a circle Γ Γ Γ Γ such that all four sides of the quadrilateral ABCD 

are tangent lines to Γ.  Γ.  Γ.  Γ.  [ Hint :   By the definition of a convex kite we have  d(A, B)  =  

d(A, D)  and   d(C, B)  =  d(C, D).  Explain why the diagonal [AC] is contained in the 

bisectors for both |∠∠∠∠DAB| and |∠∠∠∠BCD|, explain why the bisector of ∠∠∠∠ABC meets the 

open diagonal (AC) in some point Q, and explain why [DQ bisects ∠∠∠∠ADC.  Finally, 
explain why the point Q is equidistant from all four sides of ABCD, and use this to find 

the circle ΓΓΓΓ. ] 

 

 

I I I.7 : Areas and volumes 

 

 
1.  Prove that the area of the region bounded by a rhombus is equal to half the 
product of the lengths of its diagonals. 
 

2.  Using Heron’s Formula, derive a formula for the area of the region bounded by 

an equilateral triangle whose sides all have length equal to a. 
 

3.  Is there a formula for the area of the region bounded by a convex quadrilateral in 
terms of the lengths of the four sides (and nothing else)?  Give reasons for your answer. 
[ Footnote :   Compare this with the formula of Brahmagupta, which is stated in the notes 
and is valid if the vertices all lie on a circle. ] 
 

4.  Suppose that the radius of the circle inscribed in ����ABC is equal to q.  Using 

Heron’s Formula, prove that q is equal to sqrt( (s – a)(s – b)(s – c)/ s ).  [ Hint :   Look 

at the drawing for Theorem I I I.4.8, and explain why this figure leads to a formula for 

the area of the triangle in terms of q and s . ] 
 

5.  In the drawing below, the blue lines are the axes in the coordinate plane, the 

points S, T, U and V have coordinates (1, 1), (–1, 1), (–1, –1) and (1, –1) respectively, 

and the large circle containing them has equation  x
2
 + y

2
  =  2.   The point Q is the 

center of this circle, the point X is (0, 1), the smaller semicircles have radius 1, and the 



numbers A, B, C denote the areas of the regions bounded by the appropriate curves.  

Using the standard formula AREA  =  ππππ    r 

2
  for a solid region bounded by a circle of 

radius r, show that A  =  C and use this to evaluate C explicitly as a radical expression 
involving positive integers.  An informal argument will be acceptable.   Here is a 
drawing which depicts the data of the problem: 
 

 
 

[ Hint :   Show that the area B + C of the smaller semicircular regions is half the area of 

the semicircular region bounded by [US] and the semicircle containing U, S and T . ] 
 

Notes :   This relationship was discovered by Hippocrates of Chios (470 – 410 B. C. E.), 

who was not the same person as the celebrated physician Hippocrates of Kos (460 – 
377 B. C. E.).   Further information on problems of this sort is summarized following the 
solution to this exercise (see the solutions file for this section), and there also is a 

detailed discussion of the topic at a fairly elementary level in Chapter 10 of the following 
book: 
 

T. Dantzig,  Mathematics in Ancient Greece (Reprint of the 1955 

book, The Bequest of the Greeks).  Dover, New York, 2006. 
 

The original addition of this book is also available at the following online site: 
 

http://ia310936.us.archive.org/1/items/bequestofthegree032880mbp/bequestofthegree032880mbp.pdf 

 


