
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 133 — Part 2a

Winter 2009

NOTE ON ILLUSTRATIONS. Drawings for several of the solutions in this file are available
in the following document:

http://math.ucr.edu/∼res/math133/math133solutions2afigures.pdf

I . Topics from linear algebra

I.4 : Barycentric coordinates

1. The general method is to take a typical point x and write x−a as a linear combination

x − a = ub− a − vc − a

from which one obtains the barycentric coordinate expression

x = (1 − u − v)a + ub + vc .

For all the problems below we have b− a = (2, 0) and c − a = (1, 1).

(a) In this case x− a = (1, 0) = 1
2
· (2, 0) + 0 · (1, 1). Hence u = 1

2
, v = 0, and t must be equal

to 1
2 .

(b) In this case x− a = (2, 1) = 1
2
· (2, 0) + 1 · (1, 1). Hence u = 1

2
, v = 1, and t must be equal

to − 1
2
.

(c) In this case x − a = (
√

2 + 1,
√

2) = 1
2 · (2, 0) +

√
2 · (1, 1). Hence u = 1

2 , v =
√

2, and t

must be equal to 1
2 −

√
2.

(d) In this case x − a = (1, 5) = −2 · (2, 0) + 5 · (1, 1). Hence u = −2, v = 5, and t must be
equal to −2.

(e) In this case x − a = (3,−1) = 2 · (2, 0) − 1 · (1, 1). Hence u = 2, v = −1, and t must be
equal to 0.

(f) In this case x− a = ( 1
2 ,− 1

2 ) = 1
2 · (2, 0) − 1

2 · (1, 1). Hence u = 1
2 , v = − 1

2 , and t must be
equal to 1.

2. We shall first show that if {v0, · · · ,vn } is affinely independent then the associated set
{v1 − v0, · · · ,vn − v0 } is linearly independent. — Suppose we have

n
∑

j=1

cj(vj − v0) = 0 .
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If we add v0 to both sides and rearrange terms, we obtain

v0 = v0 +

n
∑

j=1

cj(vj − v0) =



1 −
n
∑

j=1

cj



v0 +

n
∑

j=1

cjvj .

Now the left hand side is an expression of v0 as a linear combination of {v0, · · · ,vn } such
that the coeeficients add up to 1, and therefore by the affine independence assumption we know
that the corresponding coefficients on the left and right hand sides of the displayed equation(s)
are equal. In particular, this means that cj = 0 for all j; the latter in turn implies that the set
{v1 − v0, · · · ,vn − v0 } is linearly independent.

Conversely, suppose {v1 − v0, · · · ,vn − v0 } is linearly independent, and suppose that x is
an affine combination

∑

j tjvj , where
∑

j tj = 1. We then have

x − v0 =





n
∑

j=0

tjvj



 − v0 =





n
∑

j=0

tjvj



 −





n
∑

j=0

tj v0



 =

n
∑

j=1

tj(vj − v0).

If we now take an arbitrary expression of x as an affine combination
∑

j ujvj , where
∑

j uj = 1,
then the same sort of argument implies that

x − v0 =
n
∑

j=1

uj(vj − v0)

and by the linear independence of {v1 − v0, · · · ,vn − v0 } we therefore know that uj = tj for all
j ≥ 1. But then we also have

t0 = 1 −
n
∑

j=1

tj = 1 −
n
∑

j=1

uj = u0

so that all the corresponding coefficients tj and uj are equal and hence the set {v0, · · · ,vn } is
affinely independent.

3. We shall follow the hint. The lines ab and cd are given by a+V and c+V respectively
since b − a and d − c are nonzero scalar multiples of each other, and similarly the lines ad and
bc are given by a + W and b + W respectively. By the Coset Property, if either of these pairs of
lines has a point in common, then the two lines in the pair must be the same. However, this is
impossible in both cases. Since a, d and b are noncollinear, it follows that the lines ab and cd

cannot be equal, and likewise the lines ad and bc cannot be equal. Hence it follows that ab is
parallel to cd and ad is parallel to bc.

4. By the results of the previous problem we know that C = B + D − A. Since E is a
midpoint we know that E = 1

2 (A + B). Since F lies on DE and AC we may write

tA + (1 − t)C = F = uE + (1 − u)D

and if we substitute for C and E in the left and right sides we obtain the following equation:

(2t − 1)A + (1 − t)B + (1 − t)D = tA + (1 − t)C =
u

2
A +

u

2
B + (1 − u)D
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Since A, B and D are noncollinear and the coefficients on both sides of the equation add up to 1,
we may set the corresponding coefficients equal and conclude that 2t − 1 = 1

2u, 1 − t = 1
2u, and

1 − t = 1 − u. Solving these equations, we see that t = u = 2
3 , so that F − C = 2

3 (A − C) and
F −D = 2

3
(E−D). Further algebraic manipulation shows that A−F = (A−C)−(F−C) is equal to

1
3
(A−C) and likewise E−F = (E−D)− (F −D) is equal to 1

3
(E−D). The distance relationships

follow by taking the lengths of the vectors on both sides of the resulting two equations.

5. By assumption we know that the barycentric coordinate expression for each point pj is
given by the formula

pj = tja + ujb + vjc .

Suppose that the three points are collinear, so that p3 lies on the line p1p2. Then we have

p3 = wp2 + (1 − w)p1

for some scalar w. Combining this with the previous expansions for p1 and p2, we obtain the
following expression for p3:

t3a + u3b + v3c = p3 = w
(

t1a + u1b + v1c
)

+ (1 − w)
(

t2a + u2b + v2c
)

=

[wt2 + (1 − w)t1]a + [wu2 + (1 − w)u1]b + [wv2 + (1 − w)v1]c

The coefficients of a, b and c in the last expression add up to 1, and thus we may equate the
barycentric coordinates in the first and last expressions in the chain of equations displayed above.
We may rewrite these equations for barycentric coordinates in vector form as follows:

(

t3, u3, v3

)

= w ·
(

t2, u2, v2

)

+ (1 − w) ·
(

t3, u3, v3

)

Therefore the row of the matrix

A =





t1 u1 v1

t2 u2 v2

t3 u3 v3





are linearly dependent, and hence the determinant of this matrix is equal to zero.

Conversely, suppose that the determinant of the matrix A is zero. Then the rows are linearly
independent, so there are scalars x, y, z not all zero such that

x ·
(

t3, u3, v3

)

+ y ·
(

t2, u2, v2

)

+ z ·
(

t3, u3, v3

)

= 0 .

Since the three coordinates of the expression on the left hand side are all equal to zero, we have
the following equations:

xt1 + yt2 + zt3 = 0

xu1 + yu2 + zu3 = 0

xv1 + yv2 + zv3 = 0

These equations in turn imply the vector equation

xp1 + yp2 + zp3 = 0 .

If we add the three scalar equations we obtain

0 = (xt1 + yt2 + zt3) + (xu1 + yu2 + zu3) + (xv1 + yv2 + zv3) =

3



x(t1 + u1 + v1) + y(t2 + u2 + v2) + z(t3 + u3 + v3)

and since t1 + u1 + v1 = t2 + u2 + v2 = t3 + u3 + v3 = 1 the preceding equations
imply that x + y + z = 0.

We know that at least one of x, y, z is nonzero. Suppose that x 6= 0; then it follows that
−x−1y − x−1z = 1 and p1 = −x−1yp2 − x−1zp3, so that p1 lies on the line containing p2 and p3.
Similarly, if y 6= 0 then it follows that p2 lies on the line containing p1 and p3, and finally if z 6= 0
then it follows that p3 lies on the line containing p1 and p2. In all three cases the points p1, p2,
and p3 are collinear.

6. Following the hint, we shall use the criterion of the previous exercise. With the
hypotheses in Menelaus’ Theorem, we obtain the following criterion for D, E and F to be collinear:

0 =

∣

∣

∣

∣

∣

∣

t (1 − t) 0
0 u (1 − u)

(1 − v) 0 v

∣

∣

∣

∣

∣

∣

= tuv + (1 − t)(1 − u)(1 − v)

Since the vanishing of the right hand side is equivalent to the condition in the Theorem of Menelaus,
this proves the latter.

7. In this problem the hypothesis on D is equivalent to the equation t = −1, while the
hypothesis on E is equivalent to the equation u = 1

2 . Therefore the equation in the Theorem of
Menelaus becomes

u = −(−1)(1 − u) 1
2v

(−1) · 1
2
v = −2 · 1

2
(1 − v) = v − 1

which simplifies to v = 2
3 . Substituting this into the equation for F in Exercise 6, we get

F = 1
3A + 2

3C.

8. The hypotheses guarantee that none of the numbers t, u, v is equal to 0 and 1.
Furthermore, if we write the intersection point G in the forms

xB + (1 − x)E = yC + (1 − y)F

then the condition G 6= B,C implies that neither x nor y is equal to 1.

The hypotheses and elementary algebra also yield expressions for G as an affine combination
of A, B, C by the following chain of equations:

G = xB + (1 − x)E = xB + (1 − x)uC + (1 − x)(1 − u)A

G = yC + (1 − y)F = yC + v(1 − y)A + (1 − x)(1 − y)B

It follows that the corresponding barycentric coordinates in the right hand expressions equal, so
that we have the following relationships among the various coefficients:

y = (1 − x)u x = (1 − v)(1 − y) v(1 − y) = (1 − x)(1 − u)

As noted in the hint, the lines AD, BE and CF are concurrent if and only if G lies on AD, or
equivalently the points A, G and D are collinear. By the formula of Exercise 5, this happens if and
only if we have

∣

∣

∣

∣

∣

∣

1 0 0
0 t (1 − t)

(1 − x)(1 − u) x (1 − x)u

∣

∣

∣

∣

∣

∣

= 0 .
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Evaluating the determinant, we see that concurrence is equivalent to the equation tu(1 − x) =
(1− v)(1− y)(1− t). We have already seen that v(1− y) = (1−x)(1−u), and we know that all the
factors are nonzero (hence both sides are nonzero); therefore the equation in the previous sentence
is equivalent to

tuv(1 − x)(1 − y) = (1 − t)(1 − u)(1 − v)(1 − x)(1 − y)

and since (1− x) and (1− y) are nonzero it follows that the equation displayed above is equivalent
to tuv = (1 − t)(1 − u)(1 − v), which is the criterion stated in the theorem.

9. In this problem we have D = 1
2 (B + C) and E = uC + (1 − u)A, F = uB + (1 − u)A.

Since G lies on the lines AD, BE, and CF , we have an equation of the form

G = sA +
1 − s

2
B +

1 − s

2
C = rB + u(1 − r)C + (1 − u)(1 − r)A

for suitably chosed real numbers r and s. Both the second and the third expression are affine
combinations of G in terms of A, B and C, and therefore the corresponding coefficients must be
equal. Thus we have

1 − s

2
= r and u(1 − r) =

1 − s

2
= r .

The second string of equations yields

r =
u

1 + u

while the first yields

s = 1 − 2r =
1 − u

1 + u
.

If we substitute these quantities into the expression for G and also use the equation for D in the
first sentence of this solution, we conclude that

G =
1 − u

1 + u
A +

2u

1 + u
D .

10. By hypothesis, for each i = 0, · · · ,m we have wi =
∑

j ci,jvj where the sum runs
from j = 0 to j = k and

∑

j ci,j = 1 for each i. Suppose now that we may write y as an affine
combination

∑

i tiwi, where the sum runs from i = 0 to m and
∑

ti = 1. Then we have

y =
m
∑

i=0





k
∑

j=0

ci,jvj



 =

(m,k)
∑

i,j=(0,0)

tici,jvj =
k
∑

j=0

(

m
∑

i−0

tici,j

)

vj

and to show this linear combination of the vj ’s is an affine combination we need to show that

k
∑

j=0

(

m
∑

i=0

tici,j

)

= 1 .

But the left hand side is equal to

(m,k)
∑

i,j=(0,0)

tici,j =
m
∑

i=0





k
∑

j=0

ci,j




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and since each sum
∑

j ci,j = 1 the right hand side reduces to
∑

i ti, which we know is equal to 1.

11. Call the first point D and denote the remaining points by A, B and C respectively. We
need to find scalars v and w such that D − A = v(B − A) + w(C − A); in this problem we have
D − A = (1, 0), B − A = (2, 1) and C − A = (2,−1). Substituting in the numerical values, we
obtain the following equation(s):

(1, 0) = v (2, 1) + w (2,−1)

If we solve these for v and w we obtain v = 1
4

and w = 1
4
. It follows that if

D = uA + v B + w C

with u + v + w = 1, then we must have D = 1
2 A + 1

4 B + 1
4 C.

Yet another problem. Suppose that A = (0, 0), B = (1, 0) and C = (1, 1). Find the barycentric
coordinates of D = ( 1

2
, 2) with respect to A,B,C. — SOLUTION: The first step is to express

D − A as a linear combination of B − A and C − A; in other words, we want y and z such that
( 1
2
, 2) = y(1, 0)+ z(1, 1). This is equivalent to the system of equations 1

2
= y + z, 2 = z; the unique

solution for this system is y = − 3
2 and z = 2 (check this out!). To obtain the remaining barycentric

coordinate x such that D = xA + yB = zC where x + y + z = 1, we substitute into the formula
x = 1 − y − z to find that x = 1

2 .

12. The midpoint is given by

1

2

(

B + (2A − B)
)

=
1

2
(2A) = A .
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