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III . Basic Euclidean concepts and theorems

III.3 : Convex polygons

1. We shall use the theorem stating that the line joining the midpoints of two sides of
a triangle is parallel to the third side (see Section I.4). Applying this to ∆ABD and ∆CBD, we
conclude that PS||BD and QR||BD. Therefore it follows that either PS||QR or else PS = QR.
Suppose that the latter is true; we know that PS and A lie on the same side of BD, while QR
and C lie on the same side of BD. Thus PS = QR implies that A and C lie on the same side of
BD. However, this is impossible because we know that A and C lie on opposite sides of BD (the
diagonal segments of a convex quadrilateral have a point in common). Therefore we have PS||QR.

A similar argument holds for PQ and RS. Both of these lines are parallel to AC by applying
the triangle theorem to ∆ABC and ∆ADC, showing that PQ||AC and RS||AC. We can now
argue as in the previous paragraph that PQ 6= RS, so that the lines PQ and RS are parallel. It
follows that P, Q, R, S form the vertices of a parallelogram.

2. By the preceding result we know that P, Q, R, S form the vertices of a parallelogram,
and it follows that (PR) and (QS) meet at their common midpoint.

3. Following the hint, we shall use vector methods. The parallelogram condition implies
that C = B + D − A (see the exercises for Unit I), and the midpoint conditions imply that
E = 1

2 (A+B) and F = 1
2 (C +D). To show that E, B, F, D form the vertices of a parallelogram,

it will suffice to show that F = B + D − E.

If we substitute the expression C = B + D − A in the midpoint equation for F , we find that
F = D + 1

2 (B −A), and if we substitute the expression for E in terms of A and B into B +D −E,
we find that the latter is also equal to D + 1

2 (B − A). Combining these equations, we find that
F = B + D − E as desired, so that the four points in the given order form the vertices of a
parallelogram.

4. First of all, we know that C lies in the interior of 6 DAB. Next, by the Isosceles
Triangle Theorem we know that | 6 DAC| = | 6 DCA|. Now AB||CD and the Alternate Interior
Angle Theorem imply that | 6 DCA| = | 6 CAB|, and thus we have | 6 DAC| = | 6 CAB|, which
means that [AC bisects 6 DAB.

5. We know that 6 ADE = 6 ADB and 6 CBF = 6 CBD. Since AD||BC, the Alternate
Interior Angle Theorem implies that | 6 ADE| = | 6 CBF |. Since A, B, C, D form the vertices of a
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parallelogram, it follows that d(A,D) = d(B,C); combining these observations with the assumption
that d(B,F ) = d(D,E), we conclude that ∆ADE ∼= ∆CBF . Therefore we have that | 6 AED| =
| 6 CFB|, and by the Supplement Postulate for angle measurement we then also have

| 6 AEF | = 180 − | 6 AED| = 180 − | 6 CFB| = | 6 CFD| .

Now A and C lie on opposite sides of EF = BD, and if we combine this with the displayed equation
and the Alternate Interior Angle Theorem we conclude that AE must be parallel to CF .

6. Before proving this result, for the sake of completeness we include a verification that
the diagonals (AC) and (BD) of a parallelogram ABCD meet in their common midpoint, which
we shall call E. The fastest say to do this is algebraically, using the fact that C = B + D − A and
then checking directly that 1

2 (A + C) = 1
2 (B + D).

Suppose now that we have a parallelogram ABCD which is a rhombus. Then d(A,B) =
d(C,B) and d(A,D) = d(C,D) imply that BD is the perpendicular bisector of [AC] and hence
AC ⊥ BD.

Conversely, suppose that AC ⊥ BD. Since E is the midpoint of both [AC] and [BD], it
follows that AC is the perpendicular bisector of [BD] and BD is the perpendicular bisector of
[AC]. The first conclusion implies that d(B,A) = d(D,A), and since we have d(A,B) = d(C,D)
and d(B,C) = d(A,D) for every parallelogram it follows that all four sides of ABCD have the
same length.

7. Since ∆EAB is an equilateral triangle, we have | 6 EAB| = | 6 EBA| = | 6 AEB| = 60.
The point E is assumed to lie in the interior of the square, so we then have

90 = | 6 DAB| = | 6 EAB| + | 6 EAD| = 60 + | 6 EAD|

90 = | 6 CBA| = | 6 EBA| + | 6 EBC| = 60 + | 6 EBC|

and therefore we have | 6 EAD| = | 6 EBC| = 30. Since the sides of a square have equal length,
it follows that ∆EAD ∼= ∆EBC by SAS. This means that | 6 AEB| = | 6 CEB| and d(D,E) =
d(C,E). The latter in turn implies 6 EDC| = | 6 ECD|.

In order to compute the measures of the angles in the preceding sentence, we need one more
property of the figure. Since ∆ABE is equilateral and ABCD is a square, it follows that d(A,D) =
d(A,B) = d(A,E) and d(B,C) = d(A,B) = d(B,E), so that ∆AED and ∆BEC are isosceles and
hence | 6 AED| = — 6 ADE—and— 6 BEC—= | 6 BCE|.

To simplify the algebra, let x = | 6 EDC| and y = | 6 EDA|. The preceding observations then
imply that x + y = 90 and 30 + 2y = 180. If we solve these equations for x and y we obtain y = 75
and x = 15, and therefore it follows that | 6 EDC| = | 6 ECD| = 15.

8. By the assumption in the exercise we know that (AC) and (BD) meet at some point E.
Since we have A ∗ E ∗ C and B ∗ E ∗ D, it follows from the theorems on order and separation that

C and D lie on the same side of AB,
A and B lie on the same side of CD,
B and C lie on the same side of AD, and
A and D lie on the same side of BC.

Therefore the four points A, B, C and D (taken in the alphabetical ordering) form the vertices of
a convex quadrilateral.
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9. Follow the hint and use the conclusion of the preceding exercise. If the four points form
the vertices of a convex quadrilateral (taken in the alphabetical ordering), then (AC) and (BD)
have a point E in common by the proposition in the notes. The point E then lies in the interior
of 6 ABC, and since we have B ∗ E ∗ D it follows that the open ray (BE = (BD also lies in the
interior of 6 ABC. Furthermore, since B ∗E ∗D holds and E ∈ AC, it follows that B and D lie on
opposite sides of AC.

Conversely, suppose now that D lies in the interior of 6 ABC and D and B lie on opposite
sides of AC. The first of these implies that the open ray (BD meets (AC) in some point E, and the
second implies that (BD) meets AC in some point F . Since both E and F lie on the intersection
of the (distinct!) lines AC and BD and these lines have at most one point in common, it follows
that E = F . Finally, since E ∈ (AC) and F ∈ (BD), it follows that (AC) and (BD) have a point
in common, which must be E − F .

10. By the preceding exercise the points form the vertices of a convex quadrilateral (taken
in the alphabetical ordering) if and only if D lies in the interior of 6 ABC and B and D lie on
opposite sides of AC. The first of these implies x and z are positive, and the second implies that
y is negative.

Conversely, suppose we have the conditions on the barycentric coordinates in the preceding
sentence. Since y is negative, it follows that B and D lie on opposite sides of AC, and since the
other two barycentric coordinates are positive it follows that D lies in the interior of 6 ABC.

11. The assumptions are equivalent to saying that C − D is a nonzero multiple of B − A,
so write C − D = k(B − A), where k 6= 0. We then have

D = kA − kB + C

and since the coefficients on the right hand side add up to 1 they give the barycentric coordinates
of D with respect to A, B and C. By the preceding exercise, we know that the four points form the
vertices of a convex quadrilateral (taken in the alphabetical ordering) if and only if k is positive.

12. By the preceding exercise we know that C −D = k(B−A), where k > 0. As before we
have D = kA − kB + C, and the conditions y = d(A,B) and x = d(C,D) also imply x = ky. The

midpoints G and H of [AD] and [BC] are then given by H = 1
2 (B+C) and G = (1+k)

2 A− k
2B+ 1

2C.
It follows that

H − G = (1+k)
2

(

B − A
)

so that GH is parallel to AB and CD, and furthermore we have

d(G,H) = (1+k)
2 · d(A,B) = (1+k)

2 · y = (y+ky)
2 = (x+y)

2

as stated in the exercise.

To prove the remaining parts of the exercises, it suffices to show that the midpoints of [AC]
and [BD] lie on the line GH. Let S and T denote these respective midpoints. Then we know that
GS is parallel to AB since it joins the midpoints of two sides of ∆ABD, and by Playfair’s Postulate
it follows that GS must be the same as GH, which is also a line through G which is parallel to
AB. Similarly, the lines HG and HT are parallel to AB, and therefore GH = HG = HT . Thus
we have shown that both S and T lie on GH. Note that S 6= T unless the quadrilateral is a
parallelogram (a standard result in plane geometry states that if the diagonals bisect each other,
then the quadrilateral is a parallelogram).
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13. First of all, we have A ∗ E ∗ B because E ∈ (AB and d(A,E) = x < y = d(A,B).
Choose k > 0 so that C − D = k(B − A) and hence x = ky. If m > 0 is chosen such that
E − A = m(B − A), then we have

m · d(A,B) = d(A,E) = d(C,D) = k · d(A,B

so that m = k. Therefore we also have E−A = k(B−A) = C−D. Since A, C, D are noncollinear,
this means that A, E, C, D (in that order) form the vertices of a parallelogram. In particular, we
know that AD is parallel to CE.

14. By the preceding exercise we know that A, E, C, D (in that order) form the vertices
of a parallelogram. Since consecutive angles of a parallelogram are supplementary, it follows that
| 6 DAB|+ | 6 AEC| = 180. However, by the preceding exercise we also know that A∗E ∗C and thus
by the Supplement Postulate we also know that | 6 AEC|+ | 6 CEB| = 180. Combining these, we see
that | 6 DAB| = | 6 CEB| in all cases. Furthermore, since the opposite sides of a parallelogram have
equal length, we also know that d(A,D) = d(E,C). We shall use this fact repeatedly in proving
the equivalence of the three conditions in the exercise.

Proof that (1) =⇒ (2). In this case we are given d(A,D) = d(B,C). By the discussion
above we have d(B,C) = d(A,D) = d(E,C). Therefore the Isosceles Triangle Theorem implies
that | 6 CEB| = | 6 CBE|, and since 6 CBE = 6 CBA it follows that | 6 CEB| = | 6 CBA|. On the
other hand, by the general discussion we have | 6 DAB| = | 6 CEB|, and therefore it follows that
| 6 DAB| = | 6 CBA| as required.

Proof that (2) =⇒ (3). Since consecutive angles in a parallelogram are supplementary, it
follows that | 6 ADC| = 180 − | 6 DAB|. Since | 6 DAB| = | 6 CBA|, it will suffice to show that
| 6 BCD| = 180 − | 6 CBA|. There are several ways to do this, but the fastest might be to switches
the roles of A and C with those of B and D in the preceding discussion; this can be done because
the hypothesis does not change if one switches symbols in this fashion. — An alternative approach
(which we shall only sketch) is to check that E lies in the interior of 6 BCD and that | 6 ECD| =
| 6 DAB| (opposite angles of a parallelogram have equal measure), so that | 6 BCD| = | 6 ECD| +
| 6 ECB| = | 6 ECD| + | 6 DAB| = | 6 ECD| + | 6 CEB|. Since | 6 ECD| + | 6 CEB| + | 6 ABC| = 180
it follows that | 6 BCD| = 180 − | 6 CBA| as required.

Proof that (3) =⇒ (1). One way of doing this is to show that (3) =⇒ (2) and (2) =⇒ (1).
Each of these can be done by reversing the steps in the preceding parts of the exercise.

15. Let X and Y be the midpoints of [AB] and [CD] respectively. By construction we
then have d(A,X) = d(X,B) and d(C, Y ) − d(Y,C)

By the preceding exercise we know that d(A,D) = d(B,C) and also that | 6 DAX| = | 6 CBX|
as well as | 6 ADY | = | 6 BCY |. It follows that ∆DAX ∼= ∆CBX and ∆ADY ∼= ∆BCY . These
congruences imply d(X,D) = d(X,C) and d(Y,A) = d(Y,B). The first of these implies that XY is
the perpendicular bisector of [CD], and the second implies that XY is the perpendicular bisector
of [AB]. Therefore the line XY is perpendicular to both AB and CD.

16. We need to find s and t such that 0 < s, t < 1 and sC + (1 − s)A = tD + (1 − t)B. If
we substitute the coordinate expressions for the four points A, B, C, D we obtain the following
equations for the coordinates:

1
2sy + (1 − s)(− 1

2x) = − 1
2 ty + (1 − t)( 1

2x)

sh = th
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The second equation implies s = t, and if we substitute this into the first equation we obtain

1
2sy + (1 − s)(− 1

2x) = − 1
2sy + (1 − s)( 1

2x)

which means that the right hand side is the negative of the left hand side and hence both are equal
to zero. Therefore the equations imply sy = (1 − s)x and k = sh.

We can solve this for s to obtain s = x/(x + y), and if we substitute this and k = sh into
k/(h − k), it follows that the latter is equal to x/y.

17. (a) Following the hint, one first notes that

d(A,B) = d(B,C) = d(C,D) = d(D,A) =
√

p2 + q2

and then one notes that A − B = (p,−q) = D − C. Therefore one has

AB = A + R · (p,−q) , CD = C + R · (p,−q)

so that the lines AB and CD are either parallel or identical. The latter is impossible because it
would imply that A, B, C would be collinear. Since the defining equation for AB is f(x, y) = qx+
py − pq = 0 and f(C) = q(−p) + p · 0 − pq = −2pq < 0, we know that A, B, C cannot be
collinear, and hence AB||CD.

If we interchange the roles of B and D in the preceding argument, we obtain the analogous
conclusion that AD||BC. Combining these with the observations in the first paragraph, we conclude
that A, B, C, D form the vertices of a parallelogram, and (by the first sentence of that paragraph)
this parallelogram is a rhombus.

(b) As suggested in the hint, let T be the orthogonal linear transformation on R2 defined by
T (x, y) = (x,−y); geometrically and physically, the mapping T corresponds to reflection about
the x-axis. By definition the map T sends A and C to themselves, and it interchanges B and D.
Since a set of points in R2 is collinear if and only if its image is collinear, it follows that T must
interchange the lines AB and AD, and it must also interchange the lines BC and BD.

Suppose now that F ∈ AB and G ∈ CD are such that FG ⊥ AB and FG ⊥ CD. Since T
preserves angle measurements, it follows that the line T (F )T (G) is perpendicular to both AD and
CB = BC. Furthermore, since T is distance-preserving, it follows that

d(F,G) = d ( T (F ), T (G) ) .

By construction, the left hand side is equal to the distance between the parallel lines AB and CD,
whild the right hand side of the equation is equal to the distance between the parallel lines AD
and BC.

18. As suggested by the drawing, we have b + 2c = a and b = c
√

2. Therefore we have

b = a − 2 c + a − 2b√
2

= a − b
√

2

, which means that a = (1 +
√

2)b; if we solve for b and put the result into simplified radical form,
we find that b =

(√
2 − 1

)

a.

19. By hypothesis we have A ∗ F ∗ B and C ∗ E ∗ D, which mean that E, F , A, and D
all lie on the same side of BC. For the same reasons, it also follows that E, F , B, and C all lie
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on the same side of AD. These imply that the closed segment (EF ) is contained on the side of
BC containing A and D, and it is also contained on the side of AD containing B and C. Next
C ∗E ∗D and A ∗F ∗B imply first that E is on the same side of AB as C and D, and furthermore
this side contains the open segment (EF ). Likewise, the order conditions imply that F is on the
same side of CD as A and B, and furthermore this side contains the open segment (EF ). Now the
interior of the quaerilateral is the intersection of the four half-planes which were discussed above,
and therefore we have verified all four conditions needed to show that (EF ) lies in the interior of
the convex quadrilateral.

20. Suppose that L meets (AC) in some point X, and consider ∆ABC. Then by Pasch’s
Theorem either L contains C or else L meets one of the sides (BC) or (AC). In all cases except
the last one, the conclusion of the exercise follows immediately.

On the other hand, if L contains a point of (AC), then we can consider ∆ACD. By Pasch’s
Theorem, we know that either L contains D or else L meets one of the sides (CD) or (AD). Thus
in the last case of the preceding paragraph the conclusion of the exercise also holds.

21. Suppose that A3 and A4 lie on opposite sides of A1A2. then there is a point X ∈
A1A2 ∩ (A3A4). Since no three of the original four points are collinear we know that X 6= A1, A2;
therefore exactly one of the points X,A1, A2 is between the other two. Now if A1 ∗A2 ∗X, then it
will follow that A1 and A2 are on the same side of A3A4, and likewise if A2 ∗A1 ∗X. Suppose now
that we have A1 ∗ X ∗ A2. Then it follows that A1 and X are on the same side of A2A3, and since
A3 ∗ X ∗ A4 holds we also know that A4 and X are on the same side of A2A3. Combining these
observations, we conclude that A1 and A2 are on the same side of A2A3, and hence the conclusion
of the exercise holds in all possible cases.

22. The distance conditions imply that both A and C lie on the perpendicular bisector
of [BD], and since they are distinct points it follows that AC must be the perpendicular bisector
of [BD]. We can now apply SSS to ∆ABC and ∆ADC to conclude that ∆ABC ∼= ∆ADC, and
from this it follows that | 6 ABC| = | 6 ADC|.

III.4 : Concurrence theorems

1. Let f denote the function under consideration, so that

f(X) = |X − A|2 + |X − B|2 + |X − C|2 = 3|X|2 − 2〈X, A + B + C〉 + |A|2 + |B|2 + |C|2 .

For the time being let us assume this function has an absolute minimum value somewhere. Given
a point P in the plane, write it as P = (P1, p2). Then the minimum occurs when the partial
derivatives of f vanish. This corresponds to the system of equations 6xi − 2(ai + bi + ci) = 0. The
solution to this system is given by xi = 1

3
, so that X is simply the barycenter of A, B and C.

How do we know that this is a minimum? If we apply the second derivative test we find that
the mised second partial derivative f1,2 = f2,1 is identically zero and that f1,1 and f1,2 are both
equal to 6 everywhere. Therefore the second partial derivatives satisfy f1,1f2,2 − f2

1,2 > 0, and
by standard results in multivariable calculus this means that f has a relative minimum at the
barycenter Y .

Why is this an absolute minimum? Here is one simple way to check this. The function f has
an absolute minimum over every disk defined by an inequality of the form x2

1 + x2
2 ≤ r2. We claim

that if r is sufficiently large then this minimum value cannot occur on the boundary, and since it
occurs at an interior point it must occur at some point where the first partial derivatives vanish.
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We have seen that the barycenter is the only such point, so this is where there must be an absolute
minimum.

Recall that the Triangle Inequality implies that |u − v| ≥
∣

∣ |u| − |v|
∣

∣ for all vectors u and v.
We shall use this fact in the next paragraph.

Let z0 ≥ 0 be the value of f at the barycenter Y , and choose r so large that r > |Y | and
|A| + √

z0. Then we have

|X − A|2 ≥
(

|X| − |A|
)2

> z0

and since f(X) ≥ |X − A|2 it follows that the value of f(X) on the circle of radius r is always
greater than z0 = f(Y ). Since |Y | < r, it follows that the absolute minimum cannot occur on the
boundary, so the argument of the preceding paragraph shows that the absolute minimum for this
value of r must be realized at the barycenter Y .

2. We have three isosceles triangles ∆V AB, ∆V BC and ∆V AC, and from these we
conclude that | 6 V AB| = | 6 V BA|, | 6 V BC| = | 6 V CB| and | 6 V AC| = | 6 V CA|. Since V lies in
the interior of ∆ABC it lies in the interior of all three vertex angles and hence we have

| 6 CAB| = | 6 V AC| + | 6 V AB|
| 6 ABC| = | 6 V BA| + | 6 V BC|
| 6 BCA| = | 6 V CB| + | 6 V CA|

Since | 6 CAB| + | 6 ABC| + | 6 BCA| = 180, it follows that

180 = | 6 V AC| + | 6 V AB| + | 6 V BA| + | 6 V BC| + | 6 V CB| + | 6 V CA| =

2
(

| 6 V BC| + | 6 V AB| + | 6 V AC|
)

and hence | 6 V BC| + | 6 V AB| + | 6 V AC| = 90. Now each angle measure is positive, and by the
preceding equations we have

| 6 CAB| = 90 − | 6 V BC|
| 6 ABC| = 90 − | 6 V AC|
| 6 BCA| = 90 − | 6 V AB|

and therefore each of the angle measures on the left hand side is less than 90, so that all the vertex
angles of the triangle are acute.

3. Follow the hint. If E is the midpoint of [BC] then V E is parallel to AB and hence
V E is perpendicular to BC. It follows that V E is the perpendicular bisector of [BC] and hence
d(V,B) = d(V,C), and since the latter is equal to d(V,A) it follows that V is equidistant from all
three vertices.

4. We shall use some of the observations that were made in the solution to Exercise 2 of
this section. In particular, one of the observations (mentioned in the hint) is that

| 6 V AC| = 90 − | 6 BAC| = 90 − β.

Since the hypotheses imply that d(V,A) = R and d(A,D) = 1
2d(A,C) = b, we may use the standard

trigonometric formula in Theorem III.2.9A to conclude that

cos (90 − β) = cos | 6 V AC| =
b

2R

7



and the formula in the exercise follows from this and the fact that sin β equals cos (90 − β).

5. First of all, we translate the problem into more mathematical terms. We are given
perpendicular lines X (Queen’s Road) and Y (King’s Road), and we are also given four points
E, M, P, S corresponding to the elm, maple, pine and spruce trees, with each of these points on
either X or Y . The positions of all the points except M are fixed in the problem, and all we know
about M is that it satisfies certain constraints. We are also told that the lines EP and MS meet
at some point A, the lines SP and EM meet at some point B, and the line AB meets Y at some
point T where the treasure is located. — The point of the exercise is to prove that T is the same
for all choices of M consistent with the conditions in the problem.

As suggested in the hint, we shall begin by choosing a coordinate system in which the two
main roads are the coordinate axes.1 Therefore we may assume that E = (−4, 0), P = (0, 3),
S = (2, 0), and M = (0, k) where k > 3. Standard results in analytic geometry imply that the
equations of the four lines EP , MS, SP and EM are given as follows:

EP : −3x + 4y − 12 − 0
MS : kx + 2y − 2k = 0
SP : 3x + 2y − 6 = 0
EM : −kx + +4y − 4k = 0

Two more applications of standard methods in analytic geometry then yield the coordinates for
the intersection points.

A ∈ EP ∩ MS has coordinates

(

8k − 24

4k + 6
,

18k

4k + 6

)

B ∈ SP ∩ ME has coordinates

(

24 − 8k

2k + 12
,

18k

2k + 12

)

We now want the point where AB meets the x-axis. In fact, it is straightforward to derive the
following:

FORMULA. Suppose we are given two points a and b in R2 such that the line ab meets

the x-axis. For x = a or b, write x in coordinates as (x1, x2), and let (a : b) denote the

2 × 2 matrix whose rows are given by a and b in that order. If q is the point where ab

meets the x-axis, then the first coordinate of q is given by the following expression:

det (a : b)

b2 − a2

We note that the denominator is nonzero, for if b2 = a2 then ab is parallel to the x-axis;
of course, the second coordinate of q must be zero since this point lies on the x-axis.

1 This is an informal way of proceeding, but it can be justified formally as follows: If we can
prove that T is the same for all possible choices of M when X and Y are the coordinate axes,
then the result is true in general. To see this, let G be a Galilean transformation which takes the
coordinate axes to X and Y respectively. Then the solution to the problem in the special case
implies that G−1(T ) is the same for all possible choices of G−1(M), and therefore it follows that
T is the same for all possible choices of M because G preserves lines (and intersections ot lines),
distances, and angle measurement.
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If we use this formula to compute the first coordinate of the point T , we find that this coordinate
is equal to 8 for all admissible choices of k. Thus one can find the point T without knowing the
explicit value for k.

Comments. It is somewhat remarkable that this fairly difficult problem was taken from
an old high school geometry text (E. E. Möıise and F. L. Downs, Geometry , Addison-
Wesley, 1964). — It is probably not at all clear how or why anyone came up with such a
problem, but in fact it is related to the Theorem of Desargues and its dual result, both of
which are discussed in Unit IV of the course notes (as noted elsewhere, Unit IV will not
be covered during this quarter). Further details appear in the following online file:

http://math.ucr.edu/∼res/progeom/treasure-problem.pdf
6. If V is the circumcenter of ∆ABC, then one can find V by solving the system of equations

|V − A|2 = |V − B|2 = |V − C|2 .

If we let V = (x, y) and substitute for A, B, C, then we obtain the equations x + y = 6 and
6x − 2y = 14. The solution to this system of equations is x = 13

4
and y = 11

4
.

7. The equation of the line M which is perpendicular to L (with equation y = 2x + 2 and
passes through (1, 0) must have the form y = − 1

2
x + C for some constant C. Since the line passes

through (1, 0) it follows that the constant must be 1
2 . Now the orthocenter is is a point which lies

on all three altitudes, so it is enough to find a point where two of the altitudes meet. Since the
altitude from (0, 2) is just the y-axis, the point in question turns out to be (0, 1

2 ).

Alternate approach. Another way to find the orthocenter of a triangle ∆ABC is to find
the circumcenter of the associated triangle ∆DEF , where D = C + B − A, E = A + C − B,
and F = A + B − C; recall that DE is the unique line through C which is parallel to AB, while
EF is the unique line through A which is parallel to BC and DF is the unique line through B
which is parallel to AC. — For the specific example in this exercise, we may take A = (0, 2),
B = (−1, 0) and C = (1, 0), so that D = (0,−2), E = (2, 2) and F = (−2, 2). The equations for
the circumcenter of ∆DEF reduce to 8x = 0 and 4x + 8y = 4, so that x = 0 and y = 1

2
. This

is the same conclusion that was obtained in the preceding paragraph.

8. The statement of the problem notes that there is a 60 degree angle at A and a 90 degree
angle at B; it follows that there is a 30 degree angle at C. Following the hint, we see that the
angle bisector for the vertex angle at B satisfies the equation y = x. Let D ∈ (BC) be the point
where the bisector of 6 BAC. Since the measure of the bisector of 6 DAC is 30◦, the slope of the
line containing this bisector is equal to tan 150◦ = − tan 30◦ = − 1

3

√
3, and it follows that the line

containing the bisector has equation

y =

√
3

3
(1 − x) .

The point where this line meets the bisector of 6 ABC satisfies the equations

x = y =

√
3

3
(1 − x)

and the solution of this system, which gives the incenter, satisfies

y = x =

√
3

3 +
√

3
=

3
√

3 − 3

6
.
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9. In coordinates, the equations defining the circumradius are x2 +y2 = (x−3)2 +(y−4)2 =
(x − 6)2 + y2. If we subtract x2 + y2 from all sides of this equation we obtain the system of linear
equations 0 = 25 − 6x − 8y = 36 − 12x. Solving these, we obtain x = 3 and y = 7/8.

The circumradius is equal to

√

32 +
7

8

2

=

√

242 + 72

82
=

√

252

82

and hence the circumradius is equal to 25/8 = 3 1
8 .

10. We shall make the assumptions stated in the problem, so that A = (0, h) for some h 6= 0
and B and C are (±

√
3h, 0); we might as well assume that B and C correspond to the − and +

choices respectively.

For the circumcenter question, we need to find the point where the perpendicular bisector of
[AC] meets the y-axis (the latter is the perpendicular bisector of [BC]). Now the slope of AC is
−1/

√
3 and the midpoint of [AB] is ( 1

2h
√

3, 1
2h), so the perpendicular bisector is the line which goes

through this midpoint and has slope
√

3. Therefore the perpendicular bisector of [AB] satisfies the
equation

y =
√

3
(

x − 1
2

√
3h

)

.

The point at which this line meets the y-axis is given by setting x = 0, and hence it has coordinates
(0,− 1

6h). Since this point’s y-coordinate has the opposide sign as the y-coordinate of A, it follows
that the circumcenter and A lie on opposite sides of the x-axis, which is BC. Therefore the
circumcenter does not lie in the interior of ∆ABC; furthermore, if the circumcenter lies on ∆ABC,
then it must be the midpoint of [BC] and hence it is the point (0, 0). It follows that the circumcenter
must lie in the exterior of ∆ABC.

For the incenter question, we need to find the point where the y-axis meets the (perpendicular)
altitude from B to AC. In this case we know that the slope is again

√
3 but now the line goes

through the point (−h
√

3, 0). The equation of this line is given by

y =
√

3
(

x + h
√

3
)

and it meets the y-axis at the point (0, 3h). If we let J be this point (which is the incenter) and
set Q = (0, 0), then it follows that Q ∗ A ∗ J . This means that Q and J lie on opposite sides of
both AB and AC. Since Q is the midpoint of [BC] it follows that B ∗ Q ∗ C so that Q lies on the
same side of AB as C and also on the same side of AC as B. Therefore J lies on the opposite side
of AB as C, and likewise with B and C switched. It follows that the incenter lies int the exterior
of ∆ABC.

11. Follow the hints, and choose u, v, p, q, x, y as indicated. The angles 6 pbq and
angleabc are identical because [bp = [ba and [bq = [bc. Also, ∆bpq is an isosceles triangle with
d(b,p) = d(b,q), and by construction x is the midpoint of [pq]. Therefore ∆bpx ∼= ∆bqx by
SSS,

12. In this case u = ( 3
5 , 4

5 ) and v = (2/
√

5, 1/
√

5), so that the point on the bisector is

x =
1

2

(

3

5
+

2√
5
,

4

5
+

1√
5

)

=

10



1

10

(

3 + 2
√

5, 4 +
√

5
)

.

If x = (u, v) with u 6= 0, then the slope of the line bx = 0x is just the quotient v/u, and thus in
this case the slope of the bisector is just

3 + 2
√

5

4 +
√

5
=

2 + 5
√

5

11

where the latter is obtained by multiplying the numerator and denominator of the left hand side
by 4 −

√
5.

11


