FIGURE FOR SOLUTIONS TO
 ADDITIONAL EXERCISES, SET D

These exercises are posted in http://math.ucr.edu/~res/math133/perpexercises.pdf, and the written solutions are posted in http://math.ucr.edu/~res/math133/perpsolutions.pdf.

D3.

The idea in the hint is to show that \mathbf{M} is the intersection of \mathbf{P} with the plane \mathbf{Q} through \mathbf{X} such that $\mathbf{L} \perp \mathbf{Q}$. In the drawing the perpendicular projection of \mathbf{L} onto the plane \mathbf{P} is drawn in pink. Observe that this projection \mathbf{N} is a line through \mathbf{X} and \mathbf{M} is also the line through \mathbf{X} which is perpendicular to the plane of \mathbf{L} and \mathbf{N} (try to prove this assertion using vectors - it is not particularly difficult!).

D4.

Since $2 x>a$ it follows that $\boldsymbol{x}^{2}-\left[a^{2} / 4\right]$ is positive and hence one can construct a right triangle whose sides have lengths a and $x^{2}-\left[a^{2} / 4\right]$. The hypotenuse of such a triangle must have length equal to \boldsymbol{x} by the Pythagorean Theorem. The second drawing indicates what should happen if we take the mirror image of this triangle with respect to the line containing the side of length $\boldsymbol{x}^{2}-\left[a^{2} / 4\right]$. In order to complete the proof it is necessary to give reasons why this picture is accurate and one obtains an isosceles triangle with the desired properties.

