SOLUTIONS TO ADDITIONAL EXERCISES FOR III. 1 AND III. 2

Here are the solutions to the additional exercises in perpexercises.pdf. Illustrations to accompany these solutions are given in the online file

```
perpfigures.pdf
```

in the course directory.
D1. We shall follow the hints. Take a basis B for V (which has r elements) and extend it to a basis for \mathbb{R}^{n} by adding a suitable set of $n-r$ vectors A; order the basis so that the elements of B come first. If we apply Gram-Schmidt process to obtain an orthonormal basis C of \mathbb{R}^{n} from $B \cup A$, then by construction the first r vectors in C will form an orthonormal basis for V. Let A^{\prime} be the last $n-r$ vectors in C; we claim that A^{\prime} forms an orthonormal basis for V^{\perp}.

First of all, every vector in A^{\prime} lies in V^{\perp}, for every vector in V has the form $\sum_{j \leq r} t_{j} \mathbf{c}_{j}$ and the dot product of such a vector with \mathbf{c}_{k} is zero if $k>r$. Therefore V^{\perp} contains the $(n-r)$-dimensional vector subspace spanned by A^{\prime}. To see that nothing else can be contained in V^{\perp}, consider a vector \mathbf{y} which is not a linear combination of the vectors in A^{\prime}. Since C is an orthonormal basis, we must have $\mathbf{y}=\sum_{j \leq n} t_{k} \mathbf{c}_{j}$ where $t_{m} \neq 0$ for some $m \leq k$. But the latter implies that $\mathbf{y} \cdot \mathbf{c}_{m}=t_{m} \neq 0$, and therefore \mathbf{y} cannot lie in V^{\perp}. Thus the vectors in A^{\prime} form a basis of this subspace and hence its dimension is $n-r$.

To conclude, as noted in the hint it suffices to prove that V is a vector subspace of $\left(V^{\perp}\right)^{\perp}=V$ and the dimensions of these two subspaces are equal. The first statement follows since $\mathbf{v} \in V$ implies $\mathbf{v} \cdot \mathbf{x}=0$ for all $\mathbf{x} \in V^{\perp}$, and the first follows because the dimension of $\left(V^{\perp}\right)^{\perp}=V$ is equal to

$$
n-\operatorname{dim} V^{\perp}=n-(n-r)=r=\operatorname{dim} V
$$

Since $V_{1} \subset V_{2}$ and $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}$ imply $V_{1}=V_{2}$, the equality of V and $\left(V^{\perp}\right)^{\perp}=V$ follows immediately.

Note. One important consequence of the preceding exercise is the following: If V and W are vector subspaces of \mathbb{R}^{n} such that $V \neq W$, then $V^{\perp} \neq W^{\perp}$. - For if $V^{\perp}=W^{\perp}$, then their orthogonal complements, which by the exercise are V and W respectively, would also have to be equal.

D2. By the preceding exercise we know that $\operatorname{dim} V^{\perp}=2$ and $\operatorname{dim} W^{\perp}=1$. Furthermore, since V and W^{\perp} are distinct 1 - dimensional subspaces, it follows that the dimension of their intersection is strictly less than 1 and hence the intersection must be $\{\mathbf{0}\}$.

Since V and W^{\perp} are distinct 1 -dimensional vector subspaces, it follows that their orthogonal complements V^{\perp} and $\left(W^{\perp}\right)^{\perp}=W$ are distinct 2 -dimensional vector subspaces (see the note following the solution of D1). Therefore the linear sum $V^{\perp}+W$ properly
contains each of them (otherwise they would be equal), so its dimension is at least 3 ; since we are in \mathbb{R}^{3}, the dimension must be exactly 3 and the linear sum is just \mathbb{R}^{3}. Applying the Dimension Formula we see that

$$
\operatorname{dim} W \cap V^{\perp}=\operatorname{dim} W+\operatorname{dim} V^{\perp}-\operatorname{dim} \mathbb{R}^{3}=2+2-3=1
$$

D3. Write the line and plane as $\mathbf{x}+V$ and $\mathbf{x}+W$ respectively; the assumptions imply that V is not equal to W^{\perp} and hence $M=\mathbf{x}+\left(W \cap V^{\perp}\right)$ is a line which is contained in both $P=\mathbf{x}+W$ and in the plane $Q=\mathbf{x}+V^{\perp}$ Since Q is the unique plane through \mathbf{x} which is perpendicular to L, it follows that M has the properties described in the statement of the exercise.

To see that there is only one line, suppose that M^{\prime} has the required properties. Then it follows that $M^{\prime} \subset Q$, and since $M^{\prime} \subset P$ is assumed we know that M^{\prime} is contained in $P \cap Q$; since the latter is a line, it follows that we have $M^{\prime}=P \cap Q$, and since the intersection is M we have $M^{\prime}=M$.

D4. The condition $a<2 x$ follows from the Triangle Inequality for triples of noncollinear points. Conversely, if we have $a<2 x$, then we also have

$$
0<h=\sqrt{x^{2}-\frac{a^{2}}{4}}
$$

By the Protractor and Ruler Postulates we can construct a right triangle $\triangle A B C$ such that $A B \perp B C, d(A, B)=a / 2$, and $d(B, C)=h$. By the Pythagorean Theorem we know that $d(A, C)=90^{\circ}$. Now take $D \in(A B$ such that $d(A, D)=a$. It then follows that $d(B, D)=a / 2$ and by SAS and perpendicularity we have $\triangle A B C \cong \triangle D B C$. It follows that $d(D, C)=d(A, C)=x$, and therefore the triangle $\triangle A B C$ is an isosceles triangle such that the lengths of two sides are equal to x and the length of the third side is equal to $a . ■$

