
SOLUTIONS TO ADDITIONAL EXERCISES FOR III.1 AND III.2

Here are the solutions to the additional exercises in perpexercises.pdf. Illustrations
to accompany these solutions are given in the online file

perpfigures.pdf

in the course directory.

D1. We shall follow the hints. Take a basis B for V (which has r elements) and
extend it to a basis for R

n by adding a suitable set of n − r vectors A; order the basis
so that the elements of B come first. If we apply Gram-Schmidt process to obtain an
orthonormal basis C of R

n from B ∪ A, then by construction the first r vectors in C will
form an orthonormal basis for V . Let A′ be the last n − r vectors in C; we claim that A′

forms an orthonormal basis for V ⊥.

First of all, every vector in A′ lies in V ⊥, for every vector in V has the form
∑

j≤r tjcj

and the dot product of such a vector with ck is zero if k > r. Therefore V ⊥ contains the
(n − r)−dimensional vector subspace spanned by A′. To see that nothing else can be
contained in V ⊥, consider a vector y which is not a linear combination of the vectors in
A′. Since C is an orthonormal basis, we must have y =

∑

j≤n tkcj where tm 6= 0 for some

m ≤ k. But the latter implies that y · cm = tm 6= 0, and therefore y cannot lie in V ⊥.
Thus the vectors in A′ form a basis of this subspace and hence its dimension is n − r.

To conclude, as noted in the hint it suffices to prove that V is a vector subspace of
(

V ⊥
)⊥

= V and the dimensions of these two subspaces are equal. The first statement
follows since v ∈ V implies v · x = 0 for all x ∈ V ⊥, and the first follows because the

dimension of
(

V ⊥
)⊥

= V is equal to

n − dim V ⊥ = n − (n − r) = r = dim V .

Since V1 ⊂ V2 and dimV1 = dim V2 imply V1 = V2, the equality of V and
(

V ⊥
)⊥

= V
follows immediately.

Note. One important consequence of the preceding exercise is the following: If V and

W are vector subspaces of R
n such that V 6= W , then V ⊥ 6= W⊥. — For if V ⊥ = W⊥,

then their orthogonal complements, which by the exercise are V and W respectively, would
also have to be equal.

D2. By the preceding exercise we know that dim V ⊥ = 2 and dim W⊥ = 1. Further-
more, since V and W⊥ are distinct 1− dimensional subspaces, it follows that the dimension
of their intersection is strictly less than 1 and hence the intersection must be {0}.

Since V and W⊥ are distinct 1−dimensional vector subspaces, it follows that their or-

thogonal complements V ⊥ and
(

W⊥
)⊥

= W are distinct 2−dimensional vector subspaces
(see the note following the solution of D1). Therefore the linear sum V ⊥ + W properly
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contains each of them (otherwise they would be equal), so its dimension is at least 3; since
we are in R

3, the dimension must be exactly 3 and the linear sum is just R
3. Applying

the Dimension Formula we see that

dim W ∩ V ⊥ = dimW + dim V ⊥ − dim R
3 = 2 + 2 − 3 = 1

D3. Write the line and plane as x + V and x + W respectively; the assumptions
imply that V is not equal to W⊥ and hence M = x+

(

W ∩ V ⊥
)

is a line which is contained
in both P = x + W and in the plane Q = x + V ⊥ Since Q is the unique plane through x

which is perpendicular to L, it follows that M has the properties described in the statement
of the exercise.

To see that there is only one line, suppose that M ′ has the required properties. Then
it follows that M ′ ⊂ Q, and since M ′ ⊂ P is assumed we know that M ′ is contained
in P ∩ Q; since the latter is a line, it follows that we have M ′ = P ∩ Q, and since the
intersection is M we have M ′ = M .

D4. The condition a < 2x follows from the Triangle Inequality for triples of non-
collinear points. Conversely, if we have a < 2x, then we also have

0 < h =

√

x2 −
a2

4
.

By the Protractor and Ruler Postulates we can construct a right triangle ∆ABC such
that AB ⊥ BC, d(A, B) = a/2, and d(B, C) = h. By the Pythagorean Theorem we know
that d(A, C) = 90◦. Now take D ∈ (AB such that d(A, D) = a. It then follows that
d(B, D) = a/2 and by SAS and perpendicularity we have ∆ABC ∼= ∆DBC. It follows
that d(D, C) = d(A, C) = x, and therefore the triangle ∆ABC is an isosceles triangle such
that the lengths of two sides are equal to x and the length of the third side is equal to a.
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