Remarks on dihedral and polyhedral angles

The following pages, which are taken from an old set of geometry notes, develop the
basic properties of the two basic 3 — dimensional analogs of plane angles in a manner

consistent with the setting of this course. One of the 3 — dimensional analogs is the

dihedral angle, which consists of two half — planes having a common edge together
with that edge. Intuitively, it looks like a piece of paper folded in the middle; this concept
is discussed in Section 15.3 of Moise. For dihedral angles, there is no vertex point as
such, but instead there is an edge. There is another concept of 3 — dimensional angle.
for which there is a genuine vertex point, and the simplest examples are the trihedral
angles. Intuitively, these look like the cormners of rectangular blocks with three flat
vertices joined at the common vertex or corner point, but one allows the angles of the

three planar faces to take any value between 0 and 180 degrees. More generally, one
can consider the comners of other solid objects as well; for example, the top of a pyramid

with a square base can be viewed as defining a 4 —faced corner, and one can do the
same for the top of a pyramid whose base is an arbitrary convex polyhedron in a plane.

Applications to spherical geometry. f we combine Theorem 1 (the “Triangie
Inequality for trihedral angles™) with the standard arc length formula s = r@ for
arcs in a circle of radius r, we can derive obtain one version of a fundamental result
about distances between points on a sphere:

The shortest curve between two nonantipodal points A and B on a
sphere is given by the (shorter) great circle arc joining A fo B.

The term “antipodal” means that the straight line joining A to B passes through the
center of the sphere.

Notational and bibliographic conventions. One difference in notation between the
following pages and the course notes needs to be mentioned; in this document the

distance d(A, B) between two points A and B is denoted by | AB|. The bibliographic
references are given in the following online document:

htto://math.ucr.edu/~res/math133/oldreferences.pdf




In this chapter we shall define trihedral and polyhedral angles,
prove two fundamental inequalities on the measures of the angles

determined by the plane faces, »

15,1 DEFINITIONS AND FUNDAMENTAL INEQUALITIES

The most basic three-dimensional angles are dihedral‘ angles;
the reader is referred to Moise, Section 15.3 for a discussion of
their basic properties, (see [Welchons and Krickenberger], Chapter II,
pages 57-66, for a continuation).

In a dihedral angle, the common edge of the two half-planes
can be viewed as a one-dimensional "vertex set". Taihedwa! anéd more
generally pofyhednal angles have zero~dimensional or point vertices.
The top of a pyramid and the adjacent sides is a typical example of

a2 polyhedral angle. One can divide polyhedral angles into two classes.

A

~The nice ones are the convex angles, such as the pyramié example {a
formal definition will be given later). -There are aiso nonconvex
polyhedral angles; roughly speaking, nonconvex polyhedral angles
are to convex polyhedral angles as nonconvex polygons are to convex
ones. Therefore in the formal discussion we shall only discuss

convex polyhedral angles.




Just as the triangle is the simplest polygon and all +triangles
are convex, so alsc is the trihedral angle the simplex polyhedral
angle, and trihedral angles are always convex. So we begin with

trihedral angles.
Definition. Let A,B,C,D be four noncoplanar points.

Tnihednal angle (A - BCD is defined to be
LBAC U LCAD U £BAD U Int ZBAC U Int CAD U Int £BAD,

The {aces of the trihedral angle are the "closed interiors”

LBAC L Int 2LBAC,
LCAD U Int LCAD,

LBAD U Int LBAD.

The point A dis the veatex, and /BAC, LCAD, ZBAD are called the
face angles,

Notantionaf remank, Dihedral angles have Zwo hyphens in the middle

and trihedral angles have only one.
For reasons of space it is not possible to go through all the

properties of trihedral angles that appear in the old standard solid

geometry books. Many points that are intuitively clear require very

complicated explanations. In any case, the following two results
are both important and give information about trihedral angles that

has 2 great deal of practical valune.




THEOREM 1, (Tniangle Inequality]. 1In trihedral angle (A - BCD one

has

jepac) + |ccap| > |cmaD].
Note. Compare this to the planar where C ¢ Int /BAD; in that

case one has equality.

THEOREM 2, [(Angfe Sum Inequality}. In trihedral angle /A - BCD one

has

[£BAC] + |LCAD] + |zBAD] < 360°.

These theorems reflect a basic geometrical fact: A set of
coplanan points cannoX be lsomefrie 1o a sel of noncoplanan podints. {Compare
the discussion in Section B.5)}., Physically, this means that a
tripoed whose leds are locked into rigid positions with respect to
each other -cannot be moved so that the three feet and the top all

lie on a flat surface.

NOTE. Theorem 1 and its prood are valid in neutral geometny.

PROOF OF THEOREM 1., 1If |[zpaB] < |zcap] or |[zDAB| < |LBAC| the

inequality is immediate, s0 we may as well assume that |[ZDAB| » |sCap},

A

|eBACE.




Choose E ¢ [AB and G &€ {AD, and let K ¢ Int LDAB be a
point such that |[/RAB| = |{zBAC] (< /BaD|). By the Crossbar’
Theorem there is a point F € (BD} N (AC. Choose H € (AC =0
that |aE| = |AF|. Then AEAH . AEAF by S.A.S., and therefore
e} = |EF]|.

By Fhe Triangle Ineguality ({(for ordinary plane triangles)

and E ~ F - G we have
|EE] + |BG| > |EG| = |EF| + |[FGI;

since |EH] = |EF], we conclude that |HG| > [FG].

Since |HA] = |HF| and |BG| > |FG|, the Hinge Theorem

implies that |zHAG] > [/FAG|. On the other hand,
|£BAD]| = {/BAF]| + |/FAG| < |iBAP| + |sHAG].

Since |LBAF = /RAB| is equal to [ZBAC| and@ (HAG = £CAD, the

ineguality above reduces to
jeBaD| < [sBAC] + [sc2D| B

PROOF OF THEDREM 2. The two main tools are Theorem 1 and the

angle sum theorem for Euclidean triangles.

A




Consider the trihedral angles /B - ACD, £C - ABD, {D -~ AEC.

Applying Theorem 1 to each of them, we obtain the following

inequalities:

(i) |zBpe| < |zBDA] + ]saDC|
(i) [4DCB| < [£PCA] + |zBCA}
"(iii) |epBe} < |[sDBA| + |cBA].

Since the angle-sum of a triangle is 180° we have the

following egualities:

{iv) |£BDC| + {4PCB| + |iDBC| = 180°

{(v) |{iBAaD] = 180° - {zADB} ~ |./ABD]|
{vi)} [4BAC| = 180° - | aCB| - | ABC]
(vii) |.cap} = 180° - |.ADC]| - |ZACD|.

Adding {v)}=(vii) together, we obtain

|zBap| + {iBac| + |Lcap| =
3180 - |/ADB| - [/ABD| - II.AC;B[ - |¢4aBC] -~ |saDC]| - |zACD]
= 3-180 - ([saDB| - |zADC|) -~ (]iBCA]| + |zDcal)
- {|eDBA] + [sCBA]). -

Substitution of inequalities (i)}~(iii) in the latter expression

yield
[¢BAD| + |zBAC] + |LCAD] < 3.180 - |zBDC| - ]zDBC| - |zBCD],

and by (iv) the right hand side is equal to 3+180 - 180 = 360,

as claimed #H




There is also a converse to these fundamental inequalities.

THEOREM 3., Let «a,8,y be three positive real numbers satisfying

the following conditions:

(1) sa+8>y,B+y >0, vy+a>8,

(ii) o + B + v < 360,

Then there is a polvhedral angle /V -ABC  such that |.VBC| = @,

lzveaf = g, |cvaB| = v =

The proof will pot be given here; a proof using coordinates
appears in Appendix A. See [Frame] for a thorough discussion of

measurement data associated to trihedral angles.

EXERCISES
A

1. The angle-sum of the face angles of a trihedral angle is 320
degrees. What is the upper limit for the measure of the largest

face angle?

2. Let trihedral angle [V-ABC satisfy |[,AVC| = |ZaVB|, 1let [VB|
= |vC|, and let M be the midpoint of [BC]. Prove that line BC

is perpendicular to plane VAM.




