SOLUTIONS TO ADDITIONAL EXERCISES FOR III. 1 AND III. 2

Here are the solutions to the exercises at the end of the file polyangles.pdf.
P1. Since the sum of the measures of all three face angles is at most 360° and the sum of two of the measures is 320°, it follows that the measure of the third is at most $40^{\circ} . \boldsymbol{\square}$

P2. Let Q be the plane which is the perpendicular bisector of $[B C]$, so that a point is on Q if and only if it is equidistant from B and C. It will suffice to prove that V, A, M are all equidistant from B and C; note that the three points in question cannot be collinear, for if they were then A would lie in the plane containing V, B, C.

We are given that V and M are equidistant from B and C, so we need only show that the same is true for A. Since $d(V, A)=d(V, A),|\angle A V C|=|\angle A V B|$, and $d(V, B)=d(V, C)$, by SAS we have $\triangle A V B \cong \triangle A V C$, and this implies the desired equality $d(A, B)=$ $d(A, C)$.

