SOLUTIONS TO ADDITIONAL EXERCISES FOR III.1 AND III.2

Here are the solutions to the exercises at the end of the file polyangles.pdf.

P1. Since the sum of the measures of all three face angles is at most 360° and the sum of two of the measures is 320° , it follows that the measure of the third is at most 40° .

P2. Let Q be the plane which is the perpendicular bisector of [BC], so that a point is on Q if and only if it is equidistant from B and C. It will suffice to prove that V, A, M are all equidistant from B and C; note that the three points in question cannot be collinear, for if they were then A would lie in the plane containing V, B, C.

We are given that V and M are equidistant from B and C, so we need only show that the same is true for A. Since d(V, A) = d(V, A), $|\angle AVC| = |\angle AVB|$, and d(V, B) = d(V, C), by **SAS** we have $\triangle AVB \cong \triangle AVC$, and this implies the desired equality d(A, B) = d(A, C).