The angle sum of a triangle

This is a slightly shorter alternate proof of the following basic result:

Theorem III.2.13. Given $\triangle ABC$ in a Euclidean plane, we have the equation $|\angle ABC| + |\angle BCA| + |\angle CAB| = 180^\circ$.

<u>Proof.</u> We shall prove this using the setting of the Exterior Angle Theorem (= Theorem III.2.1). In the proof of the later result, **D** is a point such that **B*****C*****D**, while **E** is the midpoint of [**AC**] and **F** is chosen such that **E** is the midpoint of [**BF**]. The proof then shows that $|\angle BAE| = |\angle ECF|$ and **F** lies in the interior of $\angle ACD$.

Since we know that B*E*F and A*E*C, it follows that B and F lie on opposite sides of the line AC, so that $|\angle BAE|$ and $|\angle ECF|$ are alternate interior angles for the transversal AC. If we combine this with $|\angle BAE| = |\angle ECF|$, we can use Proposition III.2.10 to conclude that AB || CF. But the betweenness conditions at the beginning of this paragraph also imply that A and F are on the same side of BC, and therefore by Corollary III.2.12 and AB || CF it follows that $|\angle ABC| = |\angle FCD|$ (the two angles in this equation are corresponding angles for the transversal BC).

Since F lies in the interior of $\angle ACD$, we have $|\angle ACD| = |\angle ACF| + |\angle FCD|$; also, since $|\angle ACF| = |\angle BAC|$ and $|\angle FCD| = |\angle ABC|$, we may rewrite the equation in the first part of this sentence as $|\angle ACD| = |\angle BAC| + |\angle ABC|$. But by the Supplement Postulate we also have $|\angle ACB| + |\angle ACD| = 180^\circ$, and if we combine this with the previous equation we obtain the desired formula

 $|\angle ABC| + |\angle BAC| + |\angle ACB| = 180^{\circ}.\blacksquare$