An example involving arc length

Here is an example in which the differentiation and antidifferentiaion can be handled efficiently using the methods of single variable calculus classes:

Problem. Let

$$
\mathbf{x}(t)=\left((t+1)^{3 / 2},(t+2)^{3 / 2}\right)
$$

for $t \geq 0$. Find the arc length $s(t)$ of the curve from time 0 to time t, and express t as a function of the arclength s.
Solution. First use the arc length formula to find $s(t)$:

$$
\begin{gathered}
s(t)=\int_{0}^{t} \sqrt{x_{1}^{\prime}(u)^{2}+x_{2}^{\prime}(u)^{2}} d u=\int_{0}^{t} \sqrt{\left(\frac{3}{2} \sqrt{u+1}\right)^{2}+\left(\frac{3}{2} \sqrt{u+2}\right)^{2}} d u= \\
\frac{3}{2} \int_{0}^{t} \sqrt{2 u+3} d u=\left.\frac{3}{2} \frac{1}{2} \frac{2}{3}(2 u+3)^{3 / 2}\right|_{0} ^{t}=\frac{1}{2}\left[(2 t+3)^{3 / 2}-3^{3 / 2}\right] .
\end{gathered}
$$

To express t in terms of s solve this equation for s.

$$
\begin{gathered}
s=\frac{1}{2}\left[(2 t+3)^{3 / 2}-3^{3 / 2}\right] \Longrightarrow 2 s=(2 t+3)^{3 / 2}-3^{3 / 2} \Longrightarrow \\
2 s+3^{3 / 2}=(2 t+3)^{3 / 2} \Longrightarrow\left(2 s+3^{3 / 2}\right)^{2 / 3}=2 t+3 \Longrightarrow \\
t=\frac{1}{2}\left[\left(2 s+3^{3 / 2}\right)^{2 / 3}-3\right]
\end{gathered}
$$

