Another change of variables transformation

http://www2.math.umd.edu/~imr/241/changevar.html

The change of variables formula for multiple integrals is an extremely effective way of simplifying the computation of such objects. Frequently the crucial problem is to find a transformation T which maps some very simple region - for example, a solid rectangle - into a given region over which we want to integrate some function. In the drawing below, the given region is bounded by the circles with equations $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=1$ and $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=4$, and the parabolas with equations $\boldsymbol{y}=\boldsymbol{x}^{2}$ and $\boldsymbol{y}=3 \boldsymbol{x}^{2}$.

If we make the change of variables $\boldsymbol{u}=x^{2}+y^{2}$ and $v=y / x^{2}$, then the inverse transformation $(x, y)=$ $\boldsymbol{T}(u, v)$ to $(u, v)=\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}, y / \boldsymbol{x}^{2}\right)$ will send the solid rectangular region bounded by the four lines

$$
u=1, \quad u=4, v=1, v=3
$$

to the displayed region bounded by the circular and parabolic arcs. We can find \boldsymbol{T} explicitly by solving the change of variables equations for \boldsymbol{x} and \boldsymbol{y} in terms of \boldsymbol{u} and \boldsymbol{v} :

$$
y=\frac{1+\sqrt{1+4 v^{2}}}{2 v}, \quad x=\sqrt{\frac{1+\sqrt{1+4 v^{2}}}{2 v^{2}}}
$$

