
EXERCISES FOR MATHEMATICS 138A

WINTER 2012

Several problems are taken from the following book:

B. O’Neill, Elementary Differential Geometry (Second Edition). Academic Press, San
Diego, CA, 1997. ISBN: 0–125–26745–2.

I . Classical Differential Geometry of Curves

I.1 : Cross products

1. Verify that the cross product of vectors in R
3 satisfies the Jacobi identity :

a× (b× c) + b× (c × a) + c× (a× b) = 0 .

2. Let u, v, and w be orthonormal vectors in R
3 such that w = u × v (cross product).

Compute v ×w and w × u.

Note. The preceding result has the following consequence: Suppose that T is a linear

transformation on R
3 which takes the standard unit vectors e1, e2, and e3 to the orthonormal

vectors u, v, and w respectively. Then we have T (x× y) = T (x) × T (y) for all vectors x,y in R
3.

— The basic idea is merely that if a linear transformation preserves cross products on a basis, then
by the Distributive Law of Multiplication it must preserve all cross products.

I.2 : Parametrized curves

O’Neill, § 1.4 (2nd Ed. pp. 21–22): 2, 8

2. Find the unique curve such that γ(0) = (1, 0, 5) and γ ′(t) = (t2, t, et).

8. Sketch the following curves in R2 and find parametrizations for each:

(a) The set C of all points (x, y) such that 4x2 + y2 = 1.

(b) The set C of all points (x, y) such that 3x + 4y = 1.

(c) The set C of all points (x, y) such that y = ex.

Additional exercises

1. Find a parametrized curve α(t) which traces out the unit circle about the origin in the
coordinate plane and has initial point α(0) = (0, 1).

2. Let α(t) be a parametrized cure which does not pass through the origin. If α(t0) is
the point in the image that is closest to the origin and α′(t0) 6= 0, show that α(t0) and α′(t0) are
perpendicular.
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3. If Γ is the figure 8 curve with parametrization γ(t) = (3 cos t, 2 sin 2t), where 0 ≤ t ≤ 2π,
find a nontrivial polynomial P (x, y) such that the image of γ is contained in the set of points where
P (x, y) = 0. [Hint: Recall that sin 2t = 2 sin t cos t and sin2 t + cos2 t = 1; the latter implies that
cos2 t = sin2 t cos2 t + cos4 t.]

4. Two objects are moving in the coordinate plane with parametric equations x(t) =
(t2 − 2, 1

2
t2 − 1) and y(t) = (t, 5 − t2). Determine when, where, and the angle at which the objects

meet.

5.∗ Prove that a regular smooth curve lies on a straight line if and only if there is a point
that lies on all its tangent lines.

I.3 : Arc length and reparametrization

O’Neill, § 2.2 (2nd Ed. pp. 55–56): 3–5, 10, 11

3. Show that the curve α(t) = (cosh t, sinh t, t) has arc length function s(t) =
√

2 sinh t and
find a unit speed reparametrization of α.

4. Consider the curve α(t) = (2t, t2, log t) on the interval of all t such that t > 0. Show
that this curve passes through the points p = (2, 1, 0) and q = (4, 4, log 2), and find its arc length
between these points.

5. Suppose that β1 and β2 are unit speed reparametrizations of the same curve α. Show
that there is a number s0 such that β2(s) = β1(s0 + s) for all s. What is the geometric or physical
significance of s0?

10. Let J be some interval in the real line, and let α, β : J → R3 be curves such that the
tangent vectors α′ and β′ are parallel (same Euclidean coordinates) at each t. Prove that α and β
are parallel in the sense that there is a fixed vector c such that β(t) = α(t) + c for all t.

11. Prove that a straight line is the curve of shortest length in R3 joining two points as
follows: Let α : [a, b] → R3 be an arbitrary curve segment from p to q, and let u be the unit vector
pointing in the same direction as q− p.

(a) If σ(t) is the straight line segment defined by σ(t) = (1 − t)p + tq for t ∈ [0, 1], show that
its length is equal to |q − p|.

(b) Using the inequality |α′| ≥ α′ · u show that the length of α is greater than or equal to
|q − p|.

(c) Finally, show that if the length of α is |q−p|, then up to reparametrization α is a straight
line segment. [Hint: Write α′ = (α′ · u) + N where N · α = 0.]

Additional exercises

0. Find the length of the parametrized plane curve x(t) = (cos3 t, sin3 t) from t = 0 to
t = 2π.

1. Prove that a necessary and sufficient condition for the plane N · x = 0 to be parallel to
the line x = x0 + t · u is for N and u to be perpendicular.

2.∗ Suppose that F (x, y) is a function of two variables with continuous partial derivatives
such that F (a, b) = 0 but ∂

∂y F (a, b) 6= 0, and also suppose that g(x) is a function such that the set
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F (a, b) = 0 has the parametrization y = g(x) over the interval [a− h, a + h]. Prove that the length
of this curve is given by the integral

∫ a+h

a−h

|∇F (x, g(x) )|
|F2(x, g(x) )| dx

where F2 denotes the partial derivative with respect to the second variable. [Hint: Use the implicit
differentiation formula for g in terms of the partial derivatives of F .]

3.∗ (a) Given a > 0, consider the set of all continuously differentiable real valued functions
f on [0, 1] such that f(0) = 0 and f(1) = a > 0. Define L(f) by the formula L(f) =

∫ a

0
|f ′(t)| dt .

Show that the minimum value of L(f) is a, and if equality holds then f ′ is everywhere nonnegative.
[Hints: Since f ′ ≤ |f ′| a similar inequality holds for their definite integrals. This inequality of
integrals is strict if and only if f ′(t) < |f ′(t)| for some t, which happens if and only if f ′(t) < 0 for
that choice of t.]

(b) Let γ(t) be a regular smooth curve in R
2 or R

3 such that γ(0) = 0 and γ(1) is the first unit
vector e1 with first coordinate equal to 1 and the other coordinate(s) equal to zero. Prove that the
length of γ is at least 1, and equality holds if and only if γ is a reparametrization of the straight
line segment joining γ(0) to γ(1). [Hint: Write γ = (x, y, z) in coordinates, let β = (x, 0, 0) and
explain why the length of β is less than or equal to the length of γ, with equality if and only if
y = z = 0. Apply the first part of the problem to show that x(t) defines a reparametrization of the
line segment joining the endpoints.

Note. The file greatcircles.pdf in the course directory proves the corresponding result for
curves of shortest length on the sphere; namely, these shortest curves are given by great circle arcs.
As noted in the cited document, the argument uses material from later units in this course, and at
several points it is “somewhat advanced.” An more elementary proof for the distance minimizing
property of great circles can be derived fairly quickly from the first theorem in the online document

http://math.ucr.edu/∼res/math133/polyangles.pdf
and the standard formula which states that the length of a minor circular arc is equal to the product
of the radius of its circle times the measure of its central angle expressed in radians.

4. (a) If an object is attached to the edge of a circular wheel and the wheel is rolled along
a straight line on a flat surface at a uniform speed, then the curve traced out by the object is a
cycloid (there is an illustration in the file cyc-curves.pdf). If the circle has radius a > 0 and its
center starts at the point with coordinates (0, a), then the object starts at (0, 0) and its parametric
equations are given by the classical formula x(t) = a · (t − sin t, 1 − cos t).

Find the length of the cycloid over the parameter values 0 ≤ t ≤ 2π.

(b) In the classical geocentric theory of planetary motion which appears in the Almagest

of Claudius Ptolemy (c. 85–165), there is an assumption that planets travel in curves given by
epicycles. The simplest examples of these involve circular motion where the center of the circle is
moving in a circular path around a second circle (this is similar to the motion of the moon around
the earth, which is given by an ellipse while the earth itself is moving around the sun by a larger
ellipse; an illustration appears in cyc-curves.pdf; in the full theory one also allowed the second
circle to move around a third cycle, and so on). A typical example is given by the following formula,
in which the first circle has radius 1

4 , the second one is the unit circle about the origin, and the
body rotates four times around the small circle as the large circle makes one revolution around its
center:

x(t) = (cos t, sin t) + 1
4 (cos 4t, sin 4t)
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Find the length of this curve over the parameter values 0 ≤ t ≤ 2π.

Notes. For both parts of these exercises the standard formulas for | sin 1
2

θ | and | cos 1
2

θ |
may be useful.

I.4 : Curvature and torsion

0. Find the curvatures for the graphs of the following functions f(x) using the standard
parametrization (t, f(t), 0):

(a) f(x) = x3

(b) f(x) = tanx
(c) f(x) = ex

1. Suppose a curve is given in polar coordinates by r = r(θ) where θ ∈ [a, b].

(i) Show that the arc length is
∫ b

a

√

r2 + (r′)2 dθ.

(ii) Show that the curvature is

k(θ) =
2(r′)2 − rr′′ + r2

[r2 + (r′)2]3/2
.

2. Let α and β be regular parametrized curves such that β is the arc length reparametrization
of α. Let t be the parameter for α and s for β. Prove the following:

(a) dt/ds = 1/|α′|, d2t/ds2 = −(α′ · α′′)/|α′|4

(b) The curvature is given by

k(t) =
α′ × α′′

|α′|3

(c) The torsion is given by

τ(t) = −α′ × α′′ · α′′′

|α′ × α′′|2

(d) If the plane curve α has coordinate functions x and y, then the signed curvature of α at t
is equal to

k(t) =
x′y′′ − x′′y′

[(x′)2 + (y′)2]3/2

3.∗ Show that the curvature of a regular parametrized curve α at t0 is equal to the curvature
of the plane curve γ which is the perpendicular projection of α onto the osculating plane of α at
t0.

4. Consider the problem of designing a set of railroad tracks that contains a pair of parallel
tracks along with a third going from the first to the second smoothly. Mathematically, the parallel
tracks themselves may be viewed as corresponding to the parallel lines y = 0 and y = 1 in the
coordinate plane, and the track going from one to the other may be viewed as a regular smooth
curve that is the graph of a twice differentiable function f such that f(x) is zero if t ≤ 0, f(x) = 1
if t ≥ 1, and on [0, 1] the function f is given by a polynomial p(x). The existence of a second
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derivative ensures that the slope of the tangent line would be a continuous function of x, and in
addition we want to assume that the curvature is also a continuous function of x. Find a polynomial
p(x) of degree 5 such that all the required conditions are fulfilled. [Hint: If we are given a graph
curve with parametric equations (t, y(t)), then the curvature at parameter value t is given by the
formula

k(t) =
|y′′|

(1 + (y′)2)
3/2

and one step in the argument is to use this fact to compute p′′(0) and p′′(1). In fact, the conditions
of the problem uniquely specify the values of p and its first and second derivatives at both 0 and
1. Why does this mean the only values to find are the coefficients of x3, x4 and x5?]

Optional. Graph the function f using calculator or computer graphics.

5. For each of the following curves, compute the curvature as a function of the x-coordinate,
find where the curvature takes a maximum value, and explain why the curvature approaches 0 as
the x-coordinate approaches the indicated limits.

(a) The hyperbola y = 1/x, where x > 0 and the limiting values for x are 0 and +∞.

(b) The catenary y = cosh x = 1
2 (ex + e−x), where the limiting values for x are ±∞.

I.5 : Frenet-Serret Formulas

O’Neill, § 2.3 (2nd Ed. pp. 64–66): 1, 5

1. Compute the Frenet data (κ, τ,T,N,B) for the curve γ(s) =
(

4
5 cos s, 1 − sin s,− 3

5 cos s
)

.
Show this curve is a circle and find its center.

5. If A is the vector field τT+κB along the unit speed curve γ, show that the Frenet-Serret
formulas become V′ = A ×V for V = T, N or B.

Additional exercises

1. Let x be a regular smooth curve with a continuous third derivative, and let (T, N, B )
be its Frenet trihedron. Prove that there is a vector W (the Darboux vector) such that T ′ = W×T,
N ′ = W ×N, and B ′ = W ×B. What is the length of W?

2.∗ If x is defined for t > 0 by the formula

x(t) =

(

t,
1 + t

t
,

1 − t2

t

)

show that x is planar.

3. (a) Suppose that D is a diagonal n× n matrix with diagonal entries d1, · · · , dn. Show
that exp(D) is also a diagonal matrix and its entries are ed1 , · · · , edn . [Hint: If D is diagonal so
is every power Dk; what are the latter’s diagonal entries?]

(b) The trace of a square matrix is defined to be the sum of its diagonal entries. If D is a
diagonal matrix with trace t, explain why the determinant of exp(D) is equal to et. [Note: This
turns out to be true for arbitrary n × n matrices.]

4. If A and B are square matrices then their Lie bracket [A,B] is defined to be AB−BA.
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(a) Prove that the trace of a Lie bracket matrix is always zero. [Hint: Show that the trace is
linear function on the space of n × n matrices and that the traces of AB and BA are equal.

(b) Suppose that A and B are skew-symmetric n × n matrices (i.e., they are equal to the
negatives of their transposes). Show that their Lie bracket is also skew-symmetric. [Note: If n = 3
then the space of skew-symmetric 3× 3 matrices is 3-dimensional and the Lie bracket is essentially
the same as the ordinary cross product.]

(c) Let Ci,j be the n×n matrix which has a +1 in the (i, j) position, a −1 in the (j, i) position,
and zeros elsewhere. Compute the Lie bracket [C1,2, C2,3]; in principle, it is only necessary to do
this when n = 3.

(d) Show that the Lie bracket is anticommutative (algebraically, [B,A] = −[A,B]) and also
satisfies a version of the Jacobi Identity which holds for cross products:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

5. Compute exp(N) where N is the following 3 × 3 matrix:





0 0 0
x 0 0
y z 0



 .
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II . Topics from Multivariable Calculus and Geometry

II.1 : Differential forms

There are no assignments related to this section.

II.2 : Smooth mappings

Definition. A subset K of R
n is said to be convex if whenever x and y lie in K then the whole

line segment defined by the parametrized curve x + t (y − x) for t ∈ [0, 1] is contained in K.

1. (a) Prove that an open convex set is a connected domain [Hint: Imitate the proof for
the set of all point whose distance from some point p is less than some positive number r.].

(b) Describe an example of a connected domain in the plane which is not convex (you do not
need to prove that the domain satisfies these conditions).

2. Show by example that an intersection of two connected domains in R
2 is not necessarily a

connected domain. [Hint: Let U be the annular region defined by the inequalities 1 < x2 + y2 < 9
and let V be the horizontal strip defined by the inequality |y| < 1

2 . Verify that U is arcwise
connected using the polar coordinate mapping, which yields a continuous 1–1 mapping from the
convex set (1, 3) × [0, 2π) onto U . If U ∩ V were connected then by a result in the Appendix to
Chapter 5 in do Carmo, it would also be arcwise connected. Suppose now that x is a curve joining
the points (± 2. 0). By the Intermediate Value Theorem there must be some parameter value t0

such that the first coordinate of x(t0) is equal to zero. Why does this mean that x cannot lie
entirely inside U ∩ V ?]

3. Given an matrix A with real entries, let |A| denote the Euclidean length given by the
square root of the standard sum

∑

i,j |ai,j |2. If P and Q are two matrices with real entries such
that the product P Q can be defined, prove that |P Q| ≤ |P | · |Q|.

4. Let U be a convex connected domain in R
n, and let f : U → R

m be a smooth C1

function.

(a) Prove that

f(y) − f(x) =

∫ 1

0

([

Df (x + t (y − x))
]

(y − x)
)

dt

for all x, y ∈ U . [Hint: Explain why the integrand is the derivative of the function

f (x + t (y − x))

using the Chain Rule.]

(b) Suppose that the derivative matrix function Df satisfies |Df | ≤ M on U . Prove that

|f(y) − f(x)| ≤ M · |y − x|

for all x, y ∈ U .
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Note. An inequality of this sort is called a Lipschitz condition.

5. Find the first order approximation to the function

f(x1, x2, x3) = (x2
1 + x2

2 + x2
3, sinx2, x1x + cos x3)

at the point (1, 2, 3).

6. Find the first order approximation to the function

(u, v) = f(x, y, z) = (xyz2 − 4y2, 4y2, 3xy2 − y2z)

at (1,−2, 3).

7. Find a change of variables u = u(x, y), v = v(x, y) which takes the parabola y = x2

to the horizontal axis and the line y = 3 to the vertical axis; recall that these axes are defined by
v = 0 and u = 0 respectively.

II.3 : Inverse and Implicit Function Theorems

1. Suppose that f : R → R is a Cr function such that its derivative f ′ is everywhere
positive and the limits of f(t) as t → ±∞ are ±∞ respectively. Prove that f has a C r inverse
function.

2. Prove that F (x, y) = (ex + y, x − y) defines a 1–1 onto C∞ map from R
2 to itself with

a C∞ inverse.

3. Prove that F (x, y) = (xey + y, xey − y) defines a 1–1 onto C∞ map from R
2 to itself

with a C∞ inverse.

4. (a) Using the change of variables formula, explain briefly why the area of a set in R
2 is

the same as the area of its image under a rigid motion of the form T (x) = Ax + b, where A is a
rotation matrix

(

cos θ − sin θ
sin θ cos θ

)

(b) More generally, if we are given an arbitrary affine transformation as above, where the only
condition on A is invertibility, how is the area of a set F related to the area of its image T [F ]?

5. A smooth Cr mapping f from a connected domain U ⊂ R
2 into R

2 is said to be regularly

conformal at p = (u0, v0) ∈ U if the Jacobian of f is positive and for all regular smooth curve pairs
x and y satisfying x(s0) = y(s0) = p the angle between x′(s0) and y′(s0) is equal to the angle
between [f ox]′(s0) and [f oy]′(s0).

(a) Prove that the partial derivatives of the coordinate functions satisfy the Cauchy-Riemann

equations:
∂f1

∂x1
=

∂f2

∂x2
,

∂f2

∂x1
= − ∂f1

∂x2

[Hint: If A = Df(p), one needs to show that cos 6 (Ax, Ay) = cos 6 (x, y) for all nonzero vectore
x and y. Let a1 and a2 denote the columns of A, and let J denote counterclockwise rotation through
π/2. Why is a2 = c J(a1) for some constant c, and why does the determinant condition imply c is
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positive? Explain why A(e1 + e2) = a1 + a2 must be perpendicular to A(e1 − e2) = a1 − a2, and
use this to conclude that c = 1.]

(b) There is a modified version of this relation that holds among the partial derivatives if the
Jacobian is negative. State it and explain why it is true. [Hint: Consider what happens if one
composes f with the reflection map S(x, y) = (x, −y).]

Note. Functions satisfying the Cauchy-Riemann equations are also known as complex analytic

functions, and they are the central objects studied in complex variables courses.

6. For what values of (ρ, θ, φ) does the spherical coordinate mapping

(x, y, z) = (ρ cos θ sinφ, ρ sin θ sinφ, ρ cos φ)

satisfy the Jacobian condition in the Inverse Function Theorem? Explain why the complement of
this set is a line through the origin.

7. The pair of equations xy + 2z = 3xz, xyz + x − y = 1 has (1, 1, 1) as a solution. Show
that this pair of equations can be solved for any two of the unknowns in terms of the third in a
vicinity of (1, 1, 1).

8. If (x, y) = (s2 − s − 2, 3t), use the Implicit Function Theorem to determine values of
(s, t) for which this system can be solved locally for s and t.

9. Consider the equation xz + sinxy + cos xz = 1 near the solution (0, 1, 1). Can it be
solved near this point for x? For y? For z?

10. Show that the system

ex + e2y + e3u + e4v = 0 , ex + ey + eu + ev = 0

has a unique solution for (x, y, z, w) close to (0, 0, 0, 0).

II.4 : Congruence of geometric figures

1. Let F be an isometry of R
n, and let x and y be distinct points of R

n such that F (x) = x

and F (y) = y. Suppose that z is a point on the line joining x to y that can be expressed as
z = tx + (1 − t)y for some scalar t. Prove that F (z) = z also holds. [Hints: Use the fact that
F (w) = A(w) + b for some linear transformation A along with the identity b = tb + (1 − t)b.]

2. Prove that congruent curves have equal lengths.

3. A similarity transformation of R
n is a 1–1 onto mapping of the form T (x) = cAx + b,

where c > 0, A is given by an orthogonal n×n matrix, and b is some vector in R
n. If T is a proper

similarity in the sense that c 6= 1 (so that T is not an isometry), then prove that there is a unique
vector v such that T (v) = v. [Hint: This is equivalent to showing that there is a unique solution
to the equation (cA − I)x = b, and a uinque solution of this equation exists if and only if the
matrix cA − I is invertible. Why is the latter equivalent to showing that c−1 is not an eigenvalue
of A, and why do the orthogonality condition on A and c 6= 1 imply this fact?]
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4.∗ (a) An invertible n × n matrix A is said to be conformal if it preserves angles; i.e., if x

and y are nonzero vectors in Rn then

cos 6 (x,y) = cos 6 (Ax, Ay)

where the cosine may defined by the usual inner product formula.

(b) Suppose that A = CB where B is orthogonal and c > 0. Show that A is conformal.

(c) Suppose that A is conformal. Prove that the columns of A are perpendicular. [Hint: They
define the vectors Aei where the ei are the standard unit vectors in Rn.]

(d) Suppose that Li is the (positive) length of Aei. Compute Li/L1. [Hint: look at the angle
between e1 + ei and e1 and the angle between the images of these vectors under A.]

(e) Why do the preceding two parts of the problem imply that if A is conformal then A = cB
where B is orthogonal and c > 0?

(f) Let f be the map from R
2 to itself defined by f(u, v) = (u2−v2, 2uv). Prove that Df(u, v)

is conformal for all (u, v) 6= (0, 0). Do the same for g(u, v) = (u3 − 3uv2, 3u2v − v3). For both of
these exercises, it is helpful to use the Cauchy-Riemann equations from a previous exercise.

(g) Prove that a similarity transformation is conformal.
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III . Surfaces in 3-Dimensional Space

III.1 : Mathematical descriptions of surfaces

O’Neill, § 4.1 (2nd Ed. pp. 132–133): 1, 4bc, 5, 9

4(b, c). For which of the following is σ : R
2 → R

3 a 1–1 regular parametrization (so that
σ(u, v) = σ(u′, v′) if and only if (u, v) = (u′, v′))?

(b) σ(u, v) = (u2, u3, v).

(c) σ(u, v) = (u, v2, v3 + v).

5. (a) Prove that the set of all points (x, y, z) satisfying (x2 + y2)2 + 3z2 = 1 is a regular
geometric surface.

(b) For which values of c is the set of all points satisfying z(z − 2) + xy = c a regular surface?

9. Let σ : R
2 → R

3 be the mapping σ(u, v) = (u + v, u − v, uv). Show that σ is a regular
surface parametrization that is 1–1 and that the image of σ is the entire surface defined by the
equation z = 1

4
(x2 − y2).

Additional exercises

1. Write down equations defining the surfaces given by the following geometric conditions:

(a) The set of points that are equidistant from the point (0, 0, 4) and the xy-plane.

(b) The set of points that are equidistant from the point (0, 2, 0) and the plane defined by the
equation y = −2.

(c) The set of points that are equidistant from the points (0, 0, 0) and (1, 0, 0).

(d) The set of points for which the sum of the distances to (± 1, 0, 0) is equal to 5.

2. Let a,b and c be linearly independent vectors in R
3. Prove that there is a unique sphere

containing these three points and 0; i.e., show that the system of equations

|x − a|2 = |x − b|2 = |x − c|2 = |x|2

has a unique solution x.

3. If X(u, v) = (u2 − v2, u − v, u3 + 3v) = (x, y, z), find a nontrivial polynomial P (x, y, z)
such that the image of X is contained in the set of points where P (x, y, z) = 0.

4. If X(u, v) = (u, u2 + v, v2), find a nontrivial polynomial P (x, y, z) such that the image of
X is contained in the set of points where P (x, y, z) = 0.

III.2 : Parametrizations of surfaces

0. Describe parametric equations for the surface obtained by rotating the curve y = e−x

around the x-axis.

1. Let f(x, y, z) = (x + y + z − 1)2.
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(i) What are the critical points and values?

(ii) For which c is the level set for c a regular surface?

(iii) Same questions for xyz2.

2. Let Σ be a geometric regular smooth surface, let U be a connected domain in R
3 con-

taining Σ, and let g : U → R
3 be a smooth 1–1 onto map such that the Jacobian of g is nowhere

zero (hence it has a global inverse), its image is a connected domain, and more generally the image
of any connected subdomain of U is also a connected domain. Prove that g(Σ) is also a geometric
regular smooth surface.

3. Suppose we are given a positive valued function f(θ) with continuous first two derivatives,
and suppose that we consider the set S defined by the cylindrical coordinate equation r = f(θ), so
that it has a parametrization of the form X(r, θ) =

(

f(θ) cos θ, f(θ) sin θ, z
)

. Show that this is a
regular parametrization and find a normal vector to the tangent plane for X(r, θ).

4. Suppose now that we are given a positive valued function f(θ, φ) with continuous partial
derivatives, and consider the set defined by the spherical coordinate equation ρ = f(θ, φ), so that
a parametrization is given by

X(θ, φ) =
(

f(θ, φ) cos θ sinφ, f(θ, φ) sin θ sinφ, f(θ, φ) cos φ
)

.

Suppose that f is defined for (θ, φ) close to (0, 1
2π). Find the normal direction for the tangent

plane to the surface when (θ, φ) = (0, 1
2π), and prove that the normal direction at (0, 1

2π) is given
by ± (1, 0, 0) if and only if ∇f(0, 1

2π) = 0.

5. Consider the mapping

σ(u, v) =

(

u2

1 + v3
,

u2v

1 + v3
,

u3

1 + v3

)

and take the domain to be the set of all points in the open first quadrant (so that u, v > 0). Prove
that σ is a 1–1 regular parametrization and its image is the surface in the open first octant (points
whose three coordinates are all strictly positive) defined by the equation x3 + y3 = z2. Why does
this imply that the latter equation has infinitely many solutions for which x, y, z are all positive
integers? [Note: A basic number-theoretic result of P. de Fermat (1601–1655) states that there
are no solutions to x4 + y4 = z2 for which x, y, z are all positive integers.]

III.3 : Tangent planes

O’Neill, § 4.3 (2nd Ed. pp. pp. 150–153): 6bc, 10

10. In each of the cases below find an equation of the form ax + by + cz = d (with
(a, b, c) 6= (0, 0, 0) for the tangent plane:

(a) The sphere defined by x2 + y2 + (z − 1)2 = 1 at the point (0, 0, 0).

(b) The ellipsoid defined by
x2

4
+

y2

16
+

z2

64
= 1

at the point (1,−2, 3).
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(c) The helicoid parametrized by σ(u, v) = (u cos v, u sin v, 2v) at the point σ(2, π/4).

Additional exercises

0. Find equations defining the tangent planes to the given surfaces at the indicated points:

(a) The parametrized surface X(u, v) = (u, v,
√

uv) at (1, 1, 1)

(b) The parametrized surface X(u, v) = (2u cos v, 3u sin v, u2) at (0, 6, 4). [You need to find
(u, v) in this example.]

(c) The parametrized surface X(u, v) = (2u cosh v, 3u sinh v, 1
2u2) at (−4, 0, 2). [Same note as

in the previous exercise.]

1. Show that the tangent plane is the same at all points along a ruling of a cylinder.

Definition. A surface S is said to be globally convex at a point p if all points of S lie on
one of the half planes determined by this tangent plane at p (i.e., if the equation of the tangent
plane is a · x = b, then the points of the surface are completely contained in the set determined by
the inequality a · x ≤ b or the reverse inequality a · x ≥ b). A surface is said to be strictly globally
convex if in addition for each point p the intersection of S with the tangent plane consists only of
the point p.

The surface S is said to be locally convex or strictly locally convex at p if there is an open disk
D containing p such that S ∩ D is globally convex or strictly globally convex.

2.∗ Let X be a parametrized surface defined on a connected domain U , and let (a, b) ∈ U .
Define a level function L(u, v) by L(u, v) = [X(u, v), Xu(a, b), Xv(a, b)] (the vector triple product).

(a) Explain why the surface is locally convex at p = X(a, b) if and only if L has a relative
maximum or minimum at (a, b) and why the surface is strictly locally convex there if and only if L
has a strict relative maximum or minimum.

(b) Why does the gradient of L vanish at (a, b)?

(c) If H(a, b) is the determinant

∣

∣

∣

∣

∣

∣

[Xu,u(a, b), Xu(a, b), Xv(a, b)] [Xu,v(a, b), Xu(a, b), Xv(a, b)]

[Xv,u(a, b), Xu(a, b), Xv(a, b)] [Xv,v(a, b), Xu(a, b), Xv(a, b)]

∣

∣

∣

∣

∣

∣

explain why a surface is NOT locally convex at p if H(a, b) < 0. [Hint: Why does L have a
saddle point at (a, b)?]

(d) In the notation of the preceding part of the problem, show that the surface is strictly
locally convex at p if H(a, b) > 0. [Hint: Why does L have a strict local maximum or minimum?]

(e) If X is a graph parametrization of the form X(u, v) = (u, v, f(u, v) ), prove that H(a, b) is
a 2 × 2 determinant of a matrix whose entries are the corresponding second partial derivatives of
f at (a, b).

(f) Apply the preceding to show that if p ≥ 2 then the graph of the function

z = (1 − |x|p − |y|p)1/p

is strictly locally convex at all (x, y) such that |x|p + |y|p < 1. In particular, the case p = 2 merely
states that the usual sphere is strictly locally convex at each point (in fact, all these surfaces are
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globally strictly convex, but we shall not attempt to prove this). [Hint: If r > 1, explain why the
derivative of |x|r is equal to r |x|r−1. There are three cases, depending upon whether x is positive,
negative or zero.]

NOTE. By interchanging the roles of the three coordinates in the preceding result one can in fact
show that the sets defined by the equations |x|p + |y|p + |z|p = 1 are all regular smooth surfaces
and are strictly locally convex at all points.

Further study. Graph the intersection of this surface with the xz-plane for p = 3 and 4 using
calculator or computer graphics. Try this also for larger values of p and describe the limit of these
surfaces as p → ∞.

3.∗ Let S be the cylindrical surface with parametric equation(s) X(u, v) = (u cos u, u sin u, v)
for u ∈ (π/2, 9π/2) and v ∈ (−1, 1). This is a cylinder generated by the Archimedean spiral curve
in the plane given in polar coordinates by r = θ. Show that S is locally convex at each point but
not globally convex at some point in S (for example, at (2π, 0, 0) ). [Hints: Use the results of the
preceding exercise to show that the surface is locally convex, and draw a sketch to show that there
are points of this curve which lie on both sides of the tangent line to the curve at (2π, 0, 0). Can
you use this to find two points on the curve which lie on opposite sides of the tangent line?]

NOTE. One can modify the example in this exercise to get a surface that is strictly locally convex
but not globally convex at (2π, 0, 0) ) by taking sin v rather than v to be the third coordinate.

4.∗ For each of the following quadric surfaces, use the conclusion of Exercise 2 to determine
the sets of points p where the surface is locally convex and where it is strictly locally convex.

(a) The hyperboloid of two sheets defined by the equation z2 − x2 − y2 = 1, where the two
pieces are parametrized by X(u, v) = (sinh v cos u, sinh v sinu, ± cosh v).

(b) The hyperboloid of one sheet defined by the equation x2 + y2 − z2 = 1, parametrized by
X(u, v) = (cosh v cos u, cosh v sinu, sinh v).

(c) The elliptic paraboloid defined by the equation z = x2 + y2.

(d) The hyperbolic paraboloid defined by the equation z = y2 − x2.

4. Determine the tangent planes to the surface x2 + y2 − z2 = 1 at all points (x, y, 0) and
show they are all parallel to the z-axis.

5. Let f be a smooth function. Show that the tangent planes to the surface z = xf(y/x),
where x 6= 0, all pass through the origin.

6.∗ Show that if all the normals to a connected surface S pass through some point, then the
surface is part of a sphere. [Here is a version of the problem not involving connectedness: Under
the given conditions, prove that at each point p of the surface S, then some neighborhood of p in
S is contained in a sphere. — It is helpful to translate the surface so that the common point is the
origin.]

7. Show that the tangent planes of the common points for the spheres defined by |x|2 = 1
and |x− a|2 = 1 are perpendicular if and only if |a|2 = 2. How does this generalize if the radius of
one sphere is r and the radius of the other sphere is s?

8. Let d be an odd integer, let p, q, r be nonzero real numbers, and let f(x, y, z) = pxd +
qyd + rzd.

(a) Show that f(av) = adf(v) for all a > 0 and v in R
3, and also show that ∇f(x, y, z) = 0 if

and only if x = y = z = 0. Why does this imply that for all c > 0 the set S(c) of all (x, y, z) such
that f(x, y, z) = c is a geometric surface?
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(b) Suppose that w ∈ S(1), so that if a > 0 we have aw ∈ S(ad). Let P (1) and P (a) denote
the tangent planes to S(1) and S(ad) at w and aw respectively. Prove that either P (1) and P (a)
are parallel or else the 1-dimensional vector subspace spanned by w lies in both tangent planes,
and that the second option arises only if w and ∇f(w) are perpendicular. [Hints: Compare the
normal directions for P (1) and P (a), and explain why they are the same. Why does this mean
that the two tangent planes are either parallel or equal? Also, recall that if a line and a plane have
a point in common, then the line is contained in the plane if and only if a direction vector for the
line and a normal direction vector for the plane are perpendicular.]

III.4 : The First Fundamental Form

1. Show that the first fundamental form on the surface of revolution

X(u, v) = (f(u) cos v, f(u) sin v, g(v) )

is given by (f ′)2 du du + ( f2 + (g′)2 ) dv dv.

2. If the first fundamental form on a parametrized patch has the form du du + f(u, v) dv dv,
prove that the v-parameter curves cut off equal segments on all u-parameter curves (the former are
the curves where the v coordinate is held constant, and the latter are the curves for which the u
coordinate is held constant).

3. Compute the first fundamental forms of the following parametrized surfaces at points
where they are regular.

(i) The ellipsoid (a sinu cos v, b sin u sin v, c cos u).

(ii) The elliptic paraboloid (au cos v, bu sin v, u2).

(iii) The hyperbolic paraboloid (au cosh v, bu sinh v, u2).

(iv) The two sheeted hyperboloid (a sinhu cos v, b sinhu sin v, c cosh u).

(v) The upper half of the cone (z cos v, z sin v, z); in other words, the set of all points on this
cone for which z > 0.

4. Show that a surface of revolution about the x-axis can be parametrized so that E = E(v),
F = 0, G = 1.

III.5 : Surface area

1. Find the area of the corkscrew surface with parametrization X(r, θ) = (r cos θ, r sin θ, θ)
for 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.

2. Find the area of the parametrized Möbius strip

X(u, v) = (cos u, sinu, 0) + v ·
(

cos u cos(u/2), sinu cos(u/2), sin(u/2)
)

where u ∈ (0, 2π) and v ∈ (−h, h) with 0 < h < 1
2 . You may view the area as being given by an

integral over [0, 2π] × [−h, h].
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III.6 : Curves as surface intersections

1. The twisted cubic with parametric equations (t, t2, t3) is the intersection of the cylindrical
surfaces defined by the equations z−x3 = 0 and y−x2 = 0. What is the angle between the gradients
of these functions at the point (x, x2, x3)?

2. Show that the parametrized curve x(θ) = (1 + cos θ, sin θ, 2 sin(θ/2) ) is regular and lies
on the sphere of radius 2 about the origin and the cylinder (x − 1)2 + y2 = 1. Also show that the
normal vectors to the two surfaces are linearly independent at the points of intersection if y 6= 0.

3. Let f and g be two functions with continuous derivatives defined on the open unit disk
u2 + v2 < 1, and suppose there is a point (a, b) in this open disk where f(a, b) = c = g(a, b), so
that the graphs of the surfaces intersect at (a, b, c). Prove that the intersection is transverse if and
only if ∇f(a, b) ×∇g(a, b) 6= 0.

4.∗ Suppose that γ(s) is a regular smooth curve with nonzero curvature everywhere, and
suppose that the parametrization is in terms of arc length plus a constant. Let T(s), N(s), and B(s)
denote the Frenet trihedron for γ. Explain why X(s, u) = γ(s)+uN(s) and Y(s, v) = γ(s)+vB(s)
define ruled surfaces such that near some arbitrary point γ(s0) the intersection of their images
is equal to the image γ. [As usual, “near some point” means that there is a small open set W
containing the point such that the statement is true for points in W .]

III.7 : Map projections

1. Using the definition of the stereographic equations and the formula for the associated
map F : S2 − {(0, 0, 1)} → R

2 sending (x, y, z) to (u(x, y), v(x, y)), express x, y, z as functions of u
and v. [Hint: The geometry of the problem implies that

(x, y, z) = (1 − s) · (0, 0, 1) + s · (u, v,−1)

where s must be chosen so that the vector on the right hand side has length (squared) equal to 1.
Solve for s as a function of u and v.]

2. If we look at the stereographic map centered at the North Pole which takes the latter to
the origin, it seems obvious that meridians in the sphere correspond to lines through the origin in
the uv-plane and latitudinal circles in the sphere correspond to circles in the uv-plane centered at
the origin. Prove that these observations are mathematically correct. [Hint: The meridian curve
for longitude θ is given by the equation y = x tan θ and the latitudinale curves are the intersection
of the sphere with the planes z = c where c ranges strictly between 1 and −1. The radius of the
circle in the uv-plane will be a rational function of c.]

Note. The file invstero.pdf establishes another important property of stereographic pro-
jections; namely, they preserve the angles a which regular smooth curves intersect (i.e., they are
conformal).
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IV. Oriented Surfaces

IV.1 : Normal directions and Gauss maps

1. What are the images of the Gauss maps for the following surfaces? Take the unit normals
defined by positive multiples of the corresponding functions’ gradients.

(i) The hyperbolic cylinder defined by the equation xy = 1.

(ii) The paraboloid of revolution defined by the equation z = x2 + y2.

(iii) The hyperbolic paraboloid (saddle surface) defined by the equation z = x2 − y2.

(iv) The Möbius strip defined by the parametrization

X(u, v) = (cos u, sinu, 0) + v ·
(

cos u cos(u/2), sinu cos(u/2), sin(u/2)
)

where u ∈ R and v ∈ (−1, 1).

2. Prove that the image of the Gauss map for the ellipsoid

x2 +
y2

a2
+

z2

b2
= 1

(where a, b > 0) is the entire sphere. [Hint: A normal vector field over the surface is given by
(2x, 2y/a2, 2z/b2). Using this, reduce the problem to showing that if u2 + v2 + w2 = 1, then one
can find x, y, z, k such that k > 0, (x, y, z) lie on the ellipsoid, and (u, v, w) = k · (2x, 2y/a2, 2z/b2).
Show these equations have a solution; try expressing x, y, z in terms of u, v, w and solving for k.]

3. Let (Σ,N) be an oriented surface in R
3. Prove that if the image of the Gauss map for

(Σ,N) is all of the unit sphere S2, then every plane in R
3 is parallel to a tangent plane for Σ at

one or more of its points. Is the converse true? Prove it or give a counterexample.

4. Suppose we are given a regular smooth curve γ(t) with coordinate functions x(t) and y(t)
in the open first quadrant of the coordinate plane (in other words, both coordiantes are positive).
Let S be the surface of revolution obtained by rotating this curve about the y-axis, so that it has
a parametrization fo the form

(

x(t) cos θ, y(t), x(t) sin θ
)

.

(a) Suppose we know that (A,B, 0) is a unit normal vector to the curve for some parameter
value t0. Prove that the entire circle (a cos θ, b, a sin θ) lies in the image of the Gauss map.

(b) Suppose now that γ(t) is the standard parametrization of the circle (x− 2)2 +(y− 2)2 = 1,
so that x = 2 + cos t and y = 2 + sin t. Show that every unit vector in the xy-plane is the normal
vector to this curve for some parameter value t0, and using this and the first part of the problem
show that the Gauss map for the torus (doughnut shaped surface), which we take as given by
rotating the curve about the y-axis, is onto the unit 2-sphere.
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IV.2 : The Second Fundamental Form

O’Neill, § 5.1 (2nd Ed. pp. 200–201): 3bd

3(bd). For each of the surfaces below, find the rank of the shape operator S at the point
(0, 0, 0):

(b) The surface defined by z = 2x2 + y2.

(d) The surface defined by z = xy2.

Additional exercise

1. Suppose that Σ is an oriented surface whose Second Fundamental Form is identically
zero. Show that (locally) Σ is contained in some plane.

IV.3 : Quadratic forms and adjoint transformations

1. Let A be a symmetric 2 × 2 matrix.

(i) Show that A has two positive eigenvalues if and only if a1,1 and detA are both positive.

(ii) Show that A has one positive and one negative eigenvalue if and only if det A is negative.

(iii) Show that A has one zero eigenvalue and one positive eigenvalue if and only if detA = 0
and the trace of A is positive.

(iv) How do the criteria in (i) and (iii) change if positive is replaced by negative in the
condition on eigenvalues?

2. Let A be a symmetric 3 × 3 matrix, and let B be the 2 × 2 matrix obtained by deleting
the third row and column of A. As indicated in the notes, it follows that A has an orthonormal
basis of eigenvectors. Suppose that all of the eigenvectors are positive.

(i) Explain why the determinant of A is positive.

(ii) Explain why B also has positive eigenvalues and hence a positive determinant. [Hint:

Look at the quadratic form in two variables defined by the symmetric matrix B. Why is it positive
except at (0, 0), where the value ix 0? What does this mean for the eigenvalues of B?]

Note. A basic result in linear algebra called the Principal Minors Criterion gives a converse
to the preceding results; in the 3 × 3 case, it states that if A is a symmetric matrix such that
detA > 0, det B > 0 and a1,1 = b1,1 > 0, then all the eigenvalues for A are positive. A proof of
this fact is essentially given in the following online document:

http://math.ucr.edu/ res/math132/linalgnotes.pdf

The first step is to prove a version of Rayleigh’s Principle for 3 × 3 matrices: The minimum and
maximum values of the quadratic form determined by A for vectors of unit length are given by
the maximum and minimum eigenvalues. Thus the eigenvalues of the matrix are all positive if
and only if the value of the quadratic form is positive for all nonzero choices of variables; when
this happens we say that the symmetric matrix A is positive definite. One can then combine this
equivalence with the arguments on pages 84 and 89–90 in the displayed reference to obtain the
conclusion described above and its generalization to symmetric n × n matrices for all values of n.
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IV.4 : Normal, Gaussian and mean curvature

O’Neill, § 5.3 (2nd Ed. pp. 213–216): 3

3. Prove the following:

(a) The average value of the normal curvature in any two orthogonal directions at a point p

is the mean curvature H(p).

(b) The mean curvature H(p) is given by the integral

1

2π

∫ 2π

0

k(θ) dθ

where k(θ) is the normal curvature for the planar section curve given by the tangent vector cos θu1+
sin θu2 and u1, u2 are some orthonormal basis for the space of tangent vectors at p.

Additional exercises

1. Complete the computations of the Gaussian and mean curvatures for the hyperboloids
of one and two sheets, the ellipsoid, the hyperbolic and elliptic paraboloids, and the Möbius strip.
(NOTE: Since the Möbius strip is not orientable it is only meaningful to discuss the absolute value
of the mean curvature, which can be computed locally using any given local orientation),

2. (a) Suppose that p is a point on the (oriented) surface Σ at a maximum distance from
the origin. Prove that the Gaussian curvature at p is positive.

(b) Suppose that p is a point on Σ such that the function on Σ whose x-coordinate assumes
a maximum value. Prove that the Gaussian curvature at p is nonnegative, and give an example
to show that it is not necessarily positive. [Hint: If M is the maximum value, then all points of
the surface lie on one closed side of the plane x = M . Why must this be the tangent plane to the
surface at p?]

3. Suppose that p is a common point on two surfaces Σ1 and Σ2 such that the normals
of the two surfaces at p are linearly independent. Let C be the curve through p given by the
intersection of Σ1 and Σ2. Prove that the curvature κ at p for this curve satisfies

κ2 sin2 α = κ2
1 + κ2

2 − 2κ1 κ2 cos α

where κ1 and κ2 are the normal curvatures of the surfaces in the direction of C at p and α is the
angle between the normals to the surfaces at p.

4. The Third Fundamental Form of an oriented surface is defined by

III(x, y ) = 〈D N(p)](x), D N(p)](y), 〉 .

Prove that III− 2H II + K I = 0 where H and K are the mean and Gaussian curvatures. [Hint:

If A is a diagonalizable matrix explain why A2 − trace(A)A + (det A) I = 0 and use the fact that
if T is a self adjoint linear transformation then 〈T (x), T (y) 〉 = 〈T 2(x), y 〉.]

5. Assume that a surface Σ has the property that the principal curvatures κ± satisfy
|κ±| ≤ 1. Does it also follow that curvature of a curve on Σ also satisfies |κ| ≤ 1?

6. Show that if a surface is tangent to a plane along a curve, then the points of this curve
are either parabolic or planar.

19



7. Show that if the mean curvature H is identically zero on Σ and the latter has no planar
points, then the Gauss map from Σ to S2 has the following property:

〈DNp(w1), DNp(w2)〉 = −k(p)〈w1, w2〉

for all tangent vectors wi ∈ Tp(Σ). Show that the above condition implies that the angle of two
intersecting curves on S2 and the angle of their spherical images are equal up to sign.

8. Consider the following parametrized surface, known as Enneper’s surface:

X(u, v) =

(

u − u3

3
+ uv2, v − v3

3
+ vu2, u2 = v2

)

(a) Show that the coefficients of the First Fundamental Form are E = G = (1 + u2 + v2)2 and
F = 0.

(b) Show that the coefficients of the Second Fundamental Form are e = −g = 2 and f = 0.

(c) Show that the principal curvatures are ±2/E = ±2/G.

9. Suppose that Σ is a regular surface in R
3 and F : R

3 → R
3 is the similarity map sending

each x ∈ R
3 to cx where c is a fixed positive real number. Let Σ′ = F (Σ). How are the mean and

Gaussian curvatures of Σ and Σ′ related?

10. Suppose that Σ is a surface with Gaussian curvature K > 0 everywhere. Let Γ be a
regular smooth curve in Σ. Prove that the unsigned curvature of Γ is everywhere positive (remember
that the unsigned curvature is always nonnegative).

11. Let a(t) be a regular smooth plane curve (so its third coordinate vanishes). Then
the cone surface on a with vertex equal to the third unit vector e3 = (0, 0, 1) is given by the
parametrization (1 − v)a(u) + ve3 or equivalently in the ruled surface form a(u) + v(e3 − a(u) ).

(a) Show that this is a regular parametrization for v < 1.

(b) Compute the local First and Second Fundamental Forms in terms of the given parametriza-
tion. The answer should be expressed in terms of the variables u and v, the vector valued functions
a(u) and b(u), and the first and second derivatives of these functions.

(c) Compute the Gaussian curvature for the surface described above in terms of the same
quantities as in (a).

(d) Compute the mean curvature if a is the circle (c + r cos t, r sin t), where r > 0 and c is a
real number, and also for the piece of the parabola y = x2 − 1 for |x| ≤ 1.

(e) Set up the integrals for computing the areas of the portions of the surfaces in (c) lying
between the planes z = 1 and z = 0. You do not need to evaluate the integrals.

12. Let A be a symmetric 2 × 2 matrix. An asymptotic vector for A is a nonzero vector v

such that 〈Av,v〉 = 0.

(a) Suppose that A is an invertible matrix such that det A > 0. Explain why A cannot have
any asymptotic vectors. [Hint: Use Rayleigh’s principle. What can one say about the eigenvalues
of A in this case using the positivity of det A?]

(b) Suppose now that A is invertible and det A < 0. Prove that A has two linearly independent
asymptotic vectors such that every asymptotic vector is a multiple of one of these vectors. [Hint:
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Let u1 and u2 be orthonormal eigenvectors for A with corresponding eigenvalues λ1 ≥ λ2. What
does the determinant condition imply about the signs of these vectors? Given a nonzero vector
v = xu1 + yu2, find a necessary and sufficient condition on x and y for v to be an asymptotic
vector in terms of λ1 and λ2. You should get conditions of the form y = ± c x for some nonzero
constant c. What is it?]

(c) Suppose that A as in the preceding part of the problem and v1 and v2 are linearly inde-
pendent asymptotic vectors for A. Express the absolute value of the cosine of the angle between
these vectors in terms of the eigenvalues. [Note: Since v1 and −v2 are also linearly independent
asymptotic vectors, only the absolute value of the cosine is independent of the choices for v1 and
v2.]

(d) Continuing with the setting of the previous two parts of the problem, give a necessary and
sufficient condition on A for asymptotic vectors to be perpendicular to each other.

Motivation for Problem 12. The relevance to differential geometry arises from the notion
of asymptotic curves in a surface with negative Gaussian curvature. These curves, which play an
important role in the study of negatively curved surfaces, are regular smooth curves γ in an oriented
surface such that for each parameter value t we have

0 = 〈Sγ(t) γ′(t), γ′(t)〉

where (as usual) S denotes the shape operator for the oriented surface. Further information on
such curves (and many other important types of curves in a surface) is given in O’Neill.

IV.5 : Special classes of surfaces

O’Neill, § 5.4 (2nd Ed. pp. 222–227): 7, 16ab, 17

7. Find the curvature of the monkey saddle defined by z = x3−3x2y and express it in terms
of r =

√

x2 + y2.

16(ab). (Loxodromes) For a 6= 0 let fa : (−π/2, π/2) → R be the unique function such that
f ′−a(t) = at cos t and fa(0) = 0. If X is the geographic parametrization of the sphere by spherical
coordinates, the curve λa(t) = x(fa(t), t) is called a loxodrome.

(a) Prove that λ′
a always makes a constant angle with the due north-south vector field Xφ.

Thus λa represents a trip with constant (idealized) compass bearing.

(b) Show that the length of λa from the south pole (0, 0,−r) to the north pole (0, 0, r) (limit
values) is equal to

√
1 + a2 · π r.

17. (Tube) If β is a curve in R
3 with 0 < κ ≤ b, let

X(u, v) = β(u) + ε (cos bN(u) + sin v B(u) )

in which N and B are the principal normal and binormal of β. Thus the v-parameter curves are
circles of constant radius ε in planes orthogonal to β. Show the following:

(a) Xu ×X− v = −ε(1 − κε cos v)
(

cos bN(u) + sin v B(u)
)

.
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(b) If ε is small enough the function X is regular. Therefore X is a surface parametrization,
and it is called a tube surrounding β.

(c) The unit normal vector of the tube is given by cos bN(u) + sin v B(u).

(d) The Gaussian curvature is given by

K =
cos v

κ(u)ε(1 − cos v0
.

[Hint: Show that the Shape operator and Gaussian curvature satisfy S(Xu)×S(Xv) = K Xu)×
Xv.]

Additional exercises

1.∗ The graph of the function z = loge cos y − loge cos x, where |x|, |y| < 1
2π, is a piece of

a surface called Scherk’s minimal surface (see Exercise 5 from Section 5.5 of O’Neill). Prove that
this is a minimal surface and its Gaussian curvature is given by −e2z/(e2z sin2 x + 1)2.

2. Consider the surface S defined by the equation z = f(u, v). Prove that S is minimal if
and only if

fuu

(

1 + f2
v

)

− 2fufvfuv + fvv

(

1 + f2
u

)

= 0 .

The subscripts indicate (first or second order) partial derivatives with respect to the indicated
variables. This partial differential equation is called the minimal surface equation.
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