Addendum to § II.3

The Inverse Function Theorem implies that locally every regular smooth curve in \(\mathbb{R}^2 \) is given by an equation \(F(x,y) = 0 \) where \(F \) is real valued with continuous partial derivatives and \(\nabla F \) is never zero.

Theorem. Let \(Y: (t_0-h, t_0+h) \) be a regular smooth curve (\(Y \) continuous) in \(\mathbb{R}^2 \). Then there is an open neighborhood \(U \) of \(Y(t_0) \) in \(\mathbb{R}^2 \), an \(h' < h \), and a smooth real valued function \(F(x,y) \) on \(U \) such that

(i) \(\nabla F \) is never zero on \(U \)

(ii) If \((x,y) \in U \), then \((x,y) = Y(t) \) for some \(t \in (t_0-h', t_0+h') \) if and only if \(F(x,y) = 0 \).

Proof. Let \(N_0 \) be obtained by a 90° counterclockwise rotation of \(Y(t_0) \):

\[
N_0 = (-y'(t_0), x'(t_0)).
\]

Define \(G(u,v) \) on the vertical strip of all \((u,v)\) with \(u \) in \((t_0-h, t_0+h)\):

\[
G(u,v) = Y(u) + vN_0
\]
Then \(G(u,v) \) has derivative matrix
\[
D G(u,v) = \begin{pmatrix}
x'(u) & -y'(t_0) \\
y'(u) & x'(t_0)
\end{pmatrix}
\]

We have \(\det G(t_0,0) = \begin{vmatrix} x'(t_0) & -y'(t_0) \\ y'(t_0) & x'(t_0) \end{vmatrix} = \begin{vmatrix} y'(t_0) \\ x'(t_0) \end{vmatrix}^2 > 0 \), so

by the Inverse Function Theorem there are open neighborhoods \(U \) of \(x(t_0) = G(t_0,0) \) and \(W \) of \((t_0,0) \) such that \(G \) maps \(W \) to \(U \) in a 1-1 onto fashion and the inverse \(K: U \to W \)
\[
K(w_1,w_2) = (k_1(w_1,w_2), k_2(w_1,w_2)) \text{ has cont. first partials in each coord.}
\]

We can cut down \(U \) to \(W \) so that \(W \) is the set of all \((w_1,w_2)\) satisfying \(t_0 - \varepsilon < w_1 < t_0 + \varepsilon \), \(0 < \varepsilon \leq h \)

If we let \(F = k_2 \) then \(\nabla F \) is never zero and
\[
k_2(w_1,w_2) = 0 \iff (w_1,w_2) = \gamma(k_1(\overrightarrow{w_2}))
\]

* true because the Jacobian
\[
\frac{\partial (k_1, k_2)}{\partial (w_1, w_2)} \neq 0 \text{ on } U.
\]