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Figure 3.7.6 Polar coordinates map [1,3] x [0, 7] to top half of an annulus
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Under the polar coordinate change of variables

We wish to evaluate

x =1 cos(0)

and
y = rsin(0),

the annular region D corresponds to the closed rectangle
E={(r6):1<r<3,0<6<mn},

as illustrated in Figure 3.7.6. Moreover, x2 + 3> = r? and, as we saw in the previous

example,
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Hence

Note that in this case the change of variables not only simplified the region of integra-
tion, but also put the function being integrated into a form to which we could apply the
Fundamental Theorem of Calculus.



