Summary of approaches to the Second Fundamental Form

The Second Fundamental Form measures the change in the normal direction to the tangent
plane as one moves from point to point on a surface X, and its definition requires a specific choice
of a smooth vector valuked function N on ¥ such that for each point p on the surface the vector
N(p) is a unit normal to the tangent plane for ¥ at p. As indicated in the notes, it is possible
to extend N to a smooth function defined on some small open neighborhood of p in R? (this uses
the fact that one can locally “flatten” the surface by a smooth change of variables). The vector
valued function N is generally called an orientation of the surface, and a surface together with
an orientation is called an oriented surface.

Every surface which is given by either of
(1) a smooth regular 1-1 parametrization o(u,v),

(2) the level set of some smooth function F(z,y,z) = 0 on which VF(z,y,z) # 0, can be
oriented fairly easily.

In the first case, one can take N to be the unit vector pointing in the same direction as the
partial derivative cross product o, X o,, and in the second case one can take N to be the unit
vector pointing in the same direction as the gradient VF'. Locally there are exactly two choices of
orientation and they differ by a 4 sign. Most basic examples of surfaces turn out to be orientable,
but the Mdbius strip is an example of a surface which is not.

If our surface is given by a regular smooth parametrization o(u,v) which is 1-1 (the latter is
always true locally), then the classical definition of the Second Fundamental Form is a formal dot
product of differential expressions:

—dN-do = — (N,du+N,dv)-(o,du+o,dv) =
—((Ny -oy)dudu + (N, -0, + N, -0y)dudv + (N, -0,)dvdv)

This might look a little suspicious because it involves symbols like differentials, but it turns out
that such notation can be justified using the language of differential forms (in particular, this is
not like a heuristic derivation of some physical or engineering formula containing steps like “take a
flat metal sheet of infinitesimal thickness dx”).

Even in relatively simple cases the computation of the partial derivatives N, and N, can be
very messy, so it is useful to have alternate formulas for the computation of the coefficients of du du,
dudv, and dv dv. For parametrized surfaces the formulas

Ny -ouw = _N'Uu,ua Ny -0, = _N'Uu,v = Ny-o,, Ny-op, = _N‘Uv,v
are extremely useful.
Shape operators

In some situations it is convenient to describe the Second Fundamental Form of a regular
geometric surface in a manner which does not depend upon the choice of a local parametrization.
There is a corresponding description of the First Fundamental Form; namely, if 7, (X) denotes the
2-dimensional space of tangent vectors at the point p of the surface 3, then the first fundamental
form at p is merely the restriction of the standard dot or inner product on R? to the subspace
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T,(X). The corresponding description of the Second Fundamental Form at p involves a somewhat
different function ¢, (v, w) which is defined for ordered pairs of vectors in T,(X), takes values in
the real numbers, and satisfies the following analogs of inner product identities:

op(v,w+w') = pp(v,w) + pp(v,w)
op(v+0,w) = @p(v,w) + @, (v, w)
op(v,cw) = cop(v,w) + pp(cv,w)

ep(v,w) = @p(w,v)

In these identities v, v’, w,w’" are vectors in T},(3) and c is a scalar. A mapping ¢ which has these
properties is called a symmetric bilinear form, and hence the First and Second Fundamental
Forms of a surface are families of symmetric bilinear forms for the 2-dimensional vector spaces
T, (%).

The two fundamental forms I,, and II, are related by a family of linear transformations
8p 1 T, (X) — Tp(2)

collectively known as the shape operator or Weingarten map. Section IV.2 of the notes describes
these maps in a manner that does not depend upon a choice of local parametrization. However,
these maps can be described very explicitly if one is given a 1-1 local parametrization o as follows:
Assume that the local parametrization is defined on an open region U, and write the parametrization
as o(uy,us); we shall use subscripts to denote ordinary and higher order partial derivatives of o
with respect to appropriate variables (these partial derivatives are 3-dimensional vector valued).
In this notation the partial derivatives o1 (p) and o2(p) will be a basis for T, (X).

Since a linear transformation on a finite-dimensional vector space is uniquely determined by
its values on a basis, it is only necessary to define $,, for o1 (p) and o2 (p). Specifically, the definition
is

$,(01(p)) = Ni(p), $,(02(p)) = Na(p) .

Here N, denotes a partial derivative of N viewed as a function on the open region U via the
parametrization o : U — 3. Although it might not be immediately obvious whether or not these
partial derivatives lie in T,(X), this fact follows because if we partial differentiate |N|? = 1 then
we obtain the identities 2N; - N = 0 for j = 1,2; since T},(X) is the set of all vectors in R® which
are perpendicular to N, this proves that N; and Ny lie in T,(X) so that we can define $, in the
desired manner.

The Second Fundamental Form is then given by
IL,(v,w) = I,(3,(v),w) .

All of the properties except IL, (v, w) = IL,(w, v) follow immediately from this definition. Straight-
forward algebraic considerations imply that this last property will hold if we can show that

I,(8y(01),02) = Ip($,(02),01) .

But this identity is a consequence of the following sequence of equations:

I,(8p(01),02) = Ip((N1),02) = —I,((N),012) = I,((N2),01) = I,($,(02),01)



