SOLUTIONS FOR THE TAKE HOME ASSIGNMENT

1. (i) Compute the torsion of the curve $\gamma(t)=\left(t, t^{2}, t^{4}\right)$; there is a formula for expressing the torsion in terms of an arbitrary parametrization in one of the exercises.

SOLUTION.

Since the formula in the exercises is off by a sign, answers that are correct except for the sign will receive full credit.

The torsion depends on $\gamma^{\prime}, \gamma^{\prime \prime}$ and $\gamma^{\prime \prime \prime}$, so the first step is to compute these:

$$
\begin{aligned}
& \gamma^{\prime}(t)=\left(1,2 t, 4 t^{3}\right) \\
& \gamma^{\prime \prime}(t)=\left(0,2,12 t^{2}\right) \\
& \gamma^{\prime \prime \prime}(t)=(0,0,24 t)
\end{aligned}
$$

The torsion is given by

$$
\tau(t)=\frac{\gamma^{\prime} \times \gamma^{\prime \prime} \cdot \gamma^{\prime \prime \prime}}{\left|\gamma^{\prime} \times \gamma^{\prime \prime}\right|^{2}}
$$

and the numerator is the determinant of the matrix whose rows are $\gamma^{\prime}, \gamma^{\prime \prime}$ and $\gamma^{\prime \prime \prime}$. The usual determinant formula shows that the value for the numerator is $48 t$.

Computation of the cross product by the standard rule implies that $\gamma^{\prime} \times \gamma^{\prime \prime}$ is equal to $\left(16 t^{3},-12 t^{2}, 2\right)$, so that

$$
\left|\gamma^{\prime} \times \gamma^{\prime \prime}\right|^{2}=256 t^{6}+144 t^{4}+4
$$

and if we substitute this and the previously derived formula for $\left[\gamma^{\prime}, \gamma^{\prime \prime}, \gamma^{\prime \prime \prime}\right]$ we obtain the torsion as a function of t :

$$
\tau(t)=\frac{48 t}{256 t^{6}+144 t^{4}+4}=\frac{12 t}{64 t^{6}+36 t^{4}+1}
$$

(ii) Let F be a real valued function of two variables defined on an open region U of the coordinate plane such that the gradient ∇F is never $\mathbf{0}$ on U, and let $\gamma(s)$ be a curve with an arc length like parametrization (tangent vector always has length 1) whose image lies in the set of points of U such that $F(x, y)=0$ and whose curvature is nonzero. Prove that for all values of s the acceleration $\gamma^{\prime \prime}(s)$ is a scalar multiple of the gradient of F at $\gamma(s)$. [Hint: Prove first that $\gamma^{\prime}(s)$ is perpendicular to the gradient at $\gamma(s)$. What can we say about two nonzero vectors in the plane which are perpendicular to a given nonzero vector, and why is this true?]

SOLUTION.

Following the hint, start by showing $\gamma^{\prime}(s)$ is perpendicular to the gradient at $\gamma(s)$. By the hypotheses we know that $F(\gamma(s))=0$, and if we differentiate this with respect to s and apply the chain rule we obtain the equation

$$
0=\frac{d}{d s} F(\gamma(s))=\nabla F(\gamma(s)) \cdot \gamma^{\prime}(s)
$$

which means that the tangent vector is perpendicular to the gradient. On the other hand, the assumption of an arc length like parametrization means that $\left|\gamma^{\prime}(s)\right|^{2}=1$, and as usual if we differentiate this with respect
to s we obtain the equation $2 \gamma^{\prime}(s) \cdot \gamma^{\prime \prime}(s)=0$ which is equivalent to $\gamma^{\prime}(s) \cdot \gamma^{\prime \prime}(s)=0$. Hence both $\gamma^{\prime \prime}(s)$ and $\nabla F(\gamma(s))$ are perpendicular to the unit vector $\gamma^{\prime}(s)$. Since all these vectors lie in a 2 -dimensional vector space, the set of all vectors perpendicular to $\gamma^{\prime}(s)$ is a 1 -dimensional subspace. The condition $\kappa(s) \neq 0$ implies that $\gamma^{\prime \prime}(s)$ is nonzero, and since they lie in a 1-dimensional subspace we know that each is a nonzero multiple of the other.
2. (i) Let U be the set of all points in the coordinate plane except $(0,0)$, and let $T(u, v)$ be the transformation from U to itself given by

$$
(x, y)=T(u, v)=\left(\frac{u}{u^{2}+v^{2}}, \frac{-v}{u^{2}+v^{2}}\right)
$$

Compute the Jacobian of T and solve for u and v as functions of x and y. [Hint: Show that $u^{2}+v^{2}$ can be expressed very simply in terms of $x^{2}+y^{2}$.]

SOLUTION.

First compute the partial derivatives of the coordinate functions.

$$
\frac{\partial x}{\partial u}=\frac{v^{2}-u^{2}}{\left(u^{2}+v^{2}\right)^{2}}, \quad \frac{\partial y}{\partial u}=\frac{-2 u v}{\left(u^{2}+v^{2}\right)^{2}}, \quad \frac{\partial x}{\partial v}=\frac{2 u v}{\left(u^{2}+v^{2}\right)^{2}}, \quad \frac{\partial y}{\partial v}=\frac{v^{2}-u^{2}}{\left(u^{2}+v^{2}\right)^{2}}
$$

This means that the Jacobian is equal to

$$
\frac{1}{\left(u^{2}+v^{2}\right)^{4}} \cdot\left|\begin{array}{cc}
v^{2}-u^{2} & -2 u v \\
2 u v & v^{2}-u^{2}
\end{array}\right|=\frac{\left(v^{2}-u^{2}\right)^{2}+4 u v}{\left(u^{2}+v^{2}\right)^{4}}=\frac{\left(u^{2}+v^{2}\right)^{2}}{\left(u^{2}+v^{2}\right)^{4}}=\frac{1}{\left(u^{2}+v^{2}\right)^{2}}
$$

Next, solve for u and v as functions of x and y using the hint. One way to start is to express $x^{2}+y^{2}$ in terms of u and v.

$$
x^{2}+y^{2}=\frac{u^{2}}{\left(u^{2}+v^{2}\right)^{2}}+\frac{v^{2}}{\left(u^{2}+v^{2}\right)^{2}}=\frac{1}{u^{2}+v^{2}}
$$

Therefore we also have

$$
u^{2}+v^{2}=\frac{1}{x^{2}+y^{2}}
$$

which in turn implies that $x=u\left(x^{2}+y^{2}\right)$ and $y=-v\left(x^{2}+y^{2}\right)$, and if we solve for u and v we obtain the equations

$$
u=\frac{x}{x^{2}+y^{2}}, \quad v=\frac{-y}{x^{2}+y^{2}}
$$

which means that T is equal to its own inverse transformation!
Note. One can also approach this using simple facts about complex numbers. From this perspective the transformation has the form $T(z)=1 / z$, and $T=T^{-1}$ corresponds to the identity

$$
z=\frac{1}{1 / z}
$$

(ii) If L is the line defined by the equation $u+v=1$, then the image of L under T is contained in a circle. Find an equation in x and y which defines that circle.

SOLUTION.

Substitute the expressions for $u(x, y)$ and $v(x, y)$ into the equation $u+v=1$; the resulting equation is

$$
1=u+v=\frac{x}{x^{2}+y^{2}}+\frac{-y}{x^{2}+y^{2}}
$$

If we clear this of fractions and ignore the middle equation we obtain the equation $x^{2}+y^{2}=x-y$, which is equivalent to $x^{2}-x+y^{2}+y=0$. If we complete the squares of the quadratic expressions in x and y this equation becomes

$$
x^{2}-x+\frac{1}{4}+y^{2}+y+\frac{1}{4}=\frac{1}{2}
$$

which can be rewritten in the form

$$
\left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{1}{2} .
$$

3. Let $T(u, v)$ be the transformation of the coordinate plane given by

$$
(x, y)=T(u, v)=\left(u^{2}-v^{2}, 2 u v\right) .
$$

(i) If L is the horizontal line defined by the equation $v=C$ for some constant C, then the image of L under T is a parabola. Find an equation in x and y which defines this parabola.

SOLUTION.

We have the following system of three equations in x, y, u, v :

$$
x=u^{2}-v^{2}, \quad y=2 u v, \quad v=C
$$

We need to reduce this to a single equation in x and y by eliminating u and v. The third equation quickly eliminates v, yielding the following system of two equations in x, y, u :

$$
x=u^{2}-C^{2}, \quad y=2 u C
$$

Now solve the second equation for u in terms of y and substitute this expression into the first equation:

$$
u \frac{y}{2 C} \Longrightarrow x=\frac{y^{2}}{4 C^{2}}-C^{2}
$$

This is the equation for the parabola which is the image of the horizontal line $v=C$.
(ii) Suppose now that L is the line defined by the equation $u+v=1$. Find a nontrivial equation in x and y which is satisfied by the image of L under T. [Note: A nontrivial equation is one that is not satisfied by every point in the coordinate plane - for example, $0 x+0 y=0$.]

SOLUTION.

In this case we obtain the following system:

$$
x=u^{2}-v^{2}, \quad y=2 u v, \quad u+v=1
$$

The first step is to solve the third equation for v in terms of u and to substitute this into the first and second equations.

$$
v=1-u \Longrightarrow x=u^{2}-(1-u)^{2}=2 u-1, \quad y=2 u(1-u)=2 u-2 u^{2}
$$

Now eliminate u by solving for u in the first equation and substituting the result into the second:

$$
\begin{gathered}
x=2 u-1 \Longrightarrow u=\frac{x-1}{2} \Longrightarrow \\
y=(x-1)-\frac{(x-1)^{2}}{2}=-\frac{1}{2} x^{2}+2 x-\frac{3}{2}
\end{gathered}
$$

(iii) Finally, suppose that L is the line defined by the equation $v=u / \sqrt{3}$. Then the image of L under T is contained in some line. Find an equation in x and y which defines this line. Are all points on the line describable as images of points in L ? Give reasons for your answer.

SOLUTION.

In this case we obtain the following system:

$$
x=u^{2}-v^{2}, \quad y=2 u v, \quad v=u / \sqrt{3}
$$

Eliminate v from the first two equations by substituting the expression for v in the third one:

$$
x=u^{2}-\frac{u^{2}}{3} \frac{2 u^{2}}{3}, \quad y=\frac{2 u^{2}}{\sqrt{3}}
$$

We can eliminate u^{2} from these equations, obtaining the equation $y=x \sqrt{3}$, which is the equation of a line.
The image does is not the entire line because $u^{2} \geq 0$ implies $x, y \geq 0$.
Note. It is easy to understand this example in terms of polar coordinates, for the transformation sends the point with polar coordinates (r, θ) into the point with polar coordinates $\left(r^{2}, 2 \theta\right)$. In polar coordinates the equation of the original line becomes $\theta=\pi / 6$, and the equation of its image becomes $\theta=\pi / 3$.

