Viviani's curve

This curve is given by intersecting the unit sphere of radius $2 a$ with equation

$$
x^{2}+y^{2}+z^{2}=4 a^{2}
$$

with the cylinder centered at $(\boldsymbol{a}, \mathbf{0}, \mathbf{0})$ of radius \boldsymbol{a} given by

$$
(x-a)^{2}+y^{2}=a^{2}
$$

For the example in the notes we have $\boldsymbol{a}=\mathbf{1}$. This curve was first studied by Vincenzo Viviani (1622-1703).

(Source: http://mathworld.wolfram.com/VivianisCurve.html)
These two surfaces meet transversely everywhere except at the point $(\mathbf{2 a , 0}, \mathbf{0})$. The curve looks like a figure eight centered at $(\mathbf{2 a}, \mathbf{0}, \mathbf{0})$. An illustration appears on the next page; the parametric equations for the curve when $\boldsymbol{a}=\mathbf{1}$ are given in the notes.

(Source: http://en.wikipedia.org/wiki/Sphere\�\�\�cylinder intersection)

