Examples for change of variables transformations

Linear transformations. Here is a typical example:

(Source: http://www.math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/change/change.html)
If we let \mathbf{T} be the linear transformation $(u, v)=\mathbf{T}(x, y)=(x+2 y, x-2 y)$, then \mathbf{T} maps the diamond shaped region in the $\boldsymbol{x y}$ - plane bounded by the four lines

$$
x+2 y=2, \quad x-2 y=2, \quad x+2 y=-2, \quad x-2 y=-2
$$

to the square shaped region in the $\boldsymbol{u v}$ - plane bounded by the lines $\boldsymbol{u}= \pm \mathbf{2}$ and $\boldsymbol{v}= \pm \mathbf{2}$. More generally, linear transformations of the form $\mathbf{T}(\boldsymbol{x}, \boldsymbol{y})=(a x+c y, b x+d y)$ with $a d-b c \neq$ $\mathbf{0}$ always send parallelograms in the domain (source) to parallelograms in the codomain (target); in this context we are thinking of a rectangle as a special case of a parallelogram. If we consider the inverse (linear) transformation \mathbf{S} which is defined as usual by $\mathbf{S}(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{x}, \boldsymbol{y})$ if and only if $(\boldsymbol{u}, \boldsymbol{v})=\mathbf{T}(\boldsymbol{x}, \boldsymbol{y})$, then S will map the square bounded by the lines $\boldsymbol{u}= \pm \mathbf{2}$ and $\boldsymbol{v}= \pm \mathbf{2}$ to the diamond shaped region depicted above. As usual, we can give explicit formulas for \boldsymbol{u} and \boldsymbol{v} by solving the system of linear equations $\boldsymbol{u}=\boldsymbol{x}+2 \boldsymbol{y}$ and $\boldsymbol{v}=\boldsymbol{x}-2 \boldsymbol{y}$. The solution is given by $\boldsymbol{x}=(\boldsymbol{u}+\boldsymbol{v}) / 2$ and $\boldsymbol{y}=(\boldsymbol{u}-\boldsymbol{v}) / 4$. Note that the Jacobian of \mathbf{T} is constant and equal to $\mathbf{- 4}$.

Nonlinear transformations. In the plane, the most basic example of a nonlinear transformation is the standard polar coordinates transformation $(x, y)=\mathbf{P}(r, \theta)=(r \boldsymbol{\operatorname { c o s }} \theta, r \boldsymbol{\operatorname { s i n }} \theta)$. Recall that this transformation maps a rectangle (in the $\boldsymbol{r} \boldsymbol{\theta}$-plane) to a region in the $\boldsymbol{x y}$ - plane bounded by two concentric circles and two lines as in the illustration below. Multivariable calculus texts do a great deal of work with this transformation.

$r \theta$-plane

$x y$-plane

Here is another example of a nonlinear transformation:

(Source: $\underline{\text { http://www.math.umn.edu/~nykamp/m2374/readings/changevardintex/changevardintex18x.png) }}$
If we apply the transformation $(\boldsymbol{u}, \boldsymbol{v})=\mathbf{T}(\boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{y}-\boldsymbol{x}, \boldsymbol{x} \boldsymbol{y})$, then \mathbf{T} maps the red region \boldsymbol{D} in the $\boldsymbol{x y}$ - plane into the rectangular region of the $\boldsymbol{u v}$ - plane given by $\mathbf{0} \leq \boldsymbol{u} \leq \mathbf{1}$ and $\mathbf{1} \leq \boldsymbol{v} \leq \mathbf{2}$. Inverse transformations to \mathbf{T} are given by the following formula:

$$
(x, y)=1 / 2\left(u \pm \operatorname{SQRT}\left(u^{2}+4 v\right),-u \pm \operatorname{SQRT}\left(u^{2}+4 v\right)\right)
$$

Here is a derivation of the displayed equation: Since $\boldsymbol{u}=\boldsymbol{y}-\boldsymbol{x}$ it follows that $\boldsymbol{y}=\boldsymbol{u}+\boldsymbol{x}$, so that we have $\boldsymbol{v}=\boldsymbol{x y}=\boldsymbol{u} \boldsymbol{x}+\boldsymbol{x}^{2}$. Rewriting this as $\mathbf{0}=\boldsymbol{x}^{2}+\boldsymbol{u x}-\boldsymbol{v}$ we can use the quadratic formula to solve for \boldsymbol{x}, and from this we can also solve for \boldsymbol{y} using the first equation $\boldsymbol{u}=\boldsymbol{y}-\boldsymbol{x}$.
Note that the Jacobian of \mathbf{T} at $(\boldsymbol{x}, \boldsymbol{y})$ is equal to $-(\boldsymbol{x}+\boldsymbol{y})$, and furthermore the Jacobians of the inverse transformations are equal to $\pm \operatorname{SQRT}\left(\boldsymbol{u}^{2}+4 v\right)$.

