
EXERCISES FOR MATHEMATICS 138A

WINTER 2010

The references denote sections of the text for the course:

B. O’Neill, Elementary Differential Geometry (Second Edition). Academic Press, San
Diego, CA, 1997. ISBN: 0–125–26745–2.

I . Classical Differential Geometry of Curves

I.1 : Cross products

(O’Neill, § 2.2)

Additional exercises

1. Verify that the cross product of vectors in R
3 satisfies the Jacobi identity :

a× (b× c) + b× (c × a) + c× (a× b) = 0 .

2. Let u, v, and w be orthonormal vectors in R
3 such that w = u × v (cross product).

Compute v ×w and w × u.

Note. The preceding result has the following consequence: Suppose that T is a linear

transformation on R
3 which takes the standard unit vectors e1, e2, and e3 to the orthonormal

vectors u, v, and w respectively. Then we have T (x× y) = T (x) × T (y) for all vectors x,y in R
3.

— The basic idea is merely that if a linear transformation preserves cross products on a basis, then
by the Distributive Law of Multiplication it must preserve all cross products.

I.2 : Parametrized curves

(O’Neill, § 1.4)

O’Neill, § 1.4 (2nd Ed. pp. 21–22): 2, 8

Additional exercises

1. Find a parametrized curve α(t) which traces out the unit circle about the origin in the
coordinate plane and has initial point α(0) = (0, 1).

2. Let α(t) be a parametrized cure which does not pass through the origin. If α(t0) is
the point in the image that is closest to the origin and α′(t0) 6= 0, show that α(t0) and α′(t0) are
perpendicular.

3. If Γ is the figure 8 curve with parametrization γ(t) = (3 cos t, 2 sin 2t), where 0 ≤ t ≤ 2π,
find a nontrivial polynomial P (x, y) such that the image of γ is contained in the set of points where
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P (x, y) = 0. [Hint: Recall that sin 2t = 2 sin t cos t and sin2 t + cos2 t = 1; the latter implies that
cos2 t = sin2 t cos2 t + cos4 t.]

4. Two objects are moving in the coordinate plane with parametric equations x(t) =
(t2 − 2, 1

2
t2 − 1) and y(t) = (t, 5 − t2). Determine when, where, and the angle at which the objects

meet.

5.∗ Prove that a regular smooth curve lies on a straight line if and only if there is a point
that lies on all its tangent lines.

I.3 : Arc length and reparametrization

(O’Neill, §§ 1.4, 2.2)

O’Neill, § 2.2 (2nd Ed. pp. 55–56): 3–5, 10, 11

Additional exercises

1. Prove that a necessary and sufficient condition for the plane N · x = 0 to be parallel to
the line x = x0 + t · u is for N and u to be perpendicular.

2.∗ Suppose that F (x, y) is a function of two variables with continuous partial derivatives
such that F (a, b) = 0 but ∂

∂y F (a, b) 6= 0, and also suppose that g(x) is a function such that the set

F (a, b) = 0 has the parametrization y = g(x) over the interval [a− h, a + h]. Prove that the length
of this curve is given by the integral

∫ a+h

a−h

|∇F (x, g(x) )|

|F2(x, g(x) )|
dx

where F2 denotes the partial derivative with respect to the second variable. [Hint: Use the implicit
differentiation formula for g in terms of the partial derivatives of F .]

3.∗ (a) Given a > 0, consider the set of all continuously differentiable real valued functions
f on [0, 1] such that f(0) = 0 and f(1) = a > 0. Define L(f) by the formula L(f) =

∫ a

0
|f ′(t)| dt .

Show that the minimum value of L(f) is a, and if equality holds then f ′ is everywhere nonnegative.
[Hints: Since f ′ ≤ |f ′| a similar inequality holds for their definite integrals. This inequality of
integrals is strict if and only if f ′(t) < |f ′(t)| for some t, which happens if and only if f ′(t) < 0 for
that choice of t.]

(b) Let γ(t) be a regular smooth curve in R
2 or R

3 such that γ(0) = 0 and γ(1) is the first unit
vector e1 with first coordinate equal to 1 and the other coordinate(s) equal to zero. Prove that the
length of γ is at least 1, and equality holds if and only if γ is a reparametrization of the straight
line segment joining γ(0) to γ(1). [Hint: Write γ = (x, y, z) in coordinates, let β = (x, 0, 0) and
explain why the length of β is less than or equal to the length of γ, with equality if and only if
y = z = 0. Apply the first part of the problem to show that x(t) defines a reparametrization of the
line segment joining the endpoints.

Note. The file greatcircles.pdf in the course directory proves the corresponding result for
curves of shortest length on the sphere; namely, these shortest curves are given by great circle arcs.
As noted in the cited document, the argument uses material from later units in this course, and at
several points it is “somewhat advanced.” An more elementary proof for the distance minimizing
property of great circles can be derived fairly quickly from the first theorem in the online document
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http://math.ucr.edu/∼res/math133/polyangles.pdf

and the standard formula which states that the length of a minor circular arc is equal to the product
of the radius of its circle times the measure of its central angle expressed in radians.

4. (a) If an object is attached to the edge of a circular wheel and the wheel is rolled along
a straight line on a flat surface at a uniform speed, then the curve traced out by the object is a
cycloid (there is an illustration in the file cyc-curves.pdf). If the circle has radius a > 0 and its
center starts at the point with coordinates (0, a), then the object starts at (0, 0) and its parametric
equations are given by the classical formula x(t) = a · (t − sin t, 1 − cos t).

Find the length of the cycloid over the parameter values 0 ≤ t ≤ 2π.

(b) In the classical geocentric theory of planetary motion which appears in the Almagest

of Claudius Ptolemy (c. 85–165), there is an assumption that planets travel in curves given by
epicycles. The simplest examples of these involve circular motion where the center of the circle is
moving in a circular path around a second circle (this is similar to the motion of the moon around
the earth, which is given by an ellipse while the earth itself is moving around the sun by a larger
ellipse; an illustration appears in cyc-curves.pdf; in the full theory one also allowed the second
circle to move around a third cycle, and so on). A typical example is given by the following formula,
in which the first circle has radius 1

4
, the second one is the unit circle about the origin, and the

body rotates four times around the small circle as the large circle makes one revolution around its
center:

x(t) = (cos t, sin t) + 1

4
(cos 4t, sin 4t)

Find the length of this curve over the parameter values 0 ≤ t ≤ 2π.

Notes. For both parts of these exercises the standard formulas for | sin 1

2
θ | and | cos 1

2
θ |

may be useful.

I.4 : Curvature and torsion

(O’Neill, § 2.3)

Additional exercises

1. Suppose a curve is given in polar coordinates by r = r(θ) where θ ∈ [a, b].

(i) Show that the arc length is
∫ b

a

√

r2 + (r′)2 dθ.

(ii) Show that the curvature is

k(θ) =
2(r′)2 − rr′′ + r2

[r2 + (r′)2]3/2
.

2. Let α and β be regular parametrized curves such that β is the arc length reparametrization
of α. Let t be the parameter for α and s for β. Prove the following:

(a) dt/ds = 1/|α′|, d2t/ds2 = −(α′ · α′′/|α′|4

(b) The curvature is given by

k(t) =
α′ × α′′

|α′|3
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(c) The torsion is given by

τ(t) = −
α′ × α′′ · α′′′

|α′ × α′′|2

(d) If α has coordinate functions x and y, then the signed curvature of α at t is equal to

k(t) =
x′y′′ − x′′y′

[(x′)2 + (y′)2]3/2

3.∗ Show that the curvature of a regular parametrized curve α at t0 is equal to the curvature
of the plane curve γ which is the perpendicular projection of α onto the osculating plane of α at
t0.

4. Consider the problem of designing a set of railroad tracks that contains a pair of parallel
tracks along with a third going from the first to the second smoothly. Mathematically, the parallel
tracks themselves may be viewed as corresponding to the parallel lines y = 0 and y = 1 in the
coordinate plane, and the track going from one to the other may be viewed as a regular smooth
curve that is the graph of a twice differentiable function f such that f(x) is zero if t ≤ 0, f(x) = 1
if t ≥ 1, and on [0, 1] the function f is given by a polynomial p(x). The existence of a second
derivative ensures that the slope of the tangent line would be a continuous function of x, and in
addition we want to assume that the curvature is also a continuous function of x. Find a polynomial
p(x) of degree 5 such that all the required conditions are fulfilled. [Hint: If we are given a graph
curve with parametric equatitons (t, y(t)), then the curvature at parameter value t is given by the
formula

k(t) =
|y′′|

(1 + (y′)2)3/2

and one step in the argument is to use this fact to compute p′′(0) and p′′(1). In fact, the conditions
of the problem uniquely specify the values of p and its first and second derivatives at both 0 and
1. Why does this mean the only values to find are the coefficients of x3, x4 and x5?]

Optional. Graph the function f using calculator or computer graphics.

5. For each of the following curves, compute the curvature as a function of the x-coordinate,
find where the curvature takes a maximum value, and explain why the curvature approaches 0 as
the x-coordinate appproaches the indicated limits.

(a) The hyperbola y = 1/x, where x > 0 and the limiting values for x are 0 and +∞.

(b) The catenary y = cosh x = 1

2
(ex + e−x), where the limiting values for x are ±∞.

I.5 : Frenet-Serret Formulas

(O’Neill, §§ 2.3–2.4)

O’Neill, § 2.3 (2nd Ed. pp. 64–66): 1, 5

Additional exercises

1. Let x be a regular smooth curve with a continuous third derivative, and let (T, N, B )
be its Frenet trihedron. Prove that there is a vector W (the Darboux vector) such that T ′ = W×T,
N ′ = W ×N, and B ′ = W ×B. What is the length of W?
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2.∗ If x is defined for t > 0 by the formula

x(t) =

(

t,
1 + t

t
,

1 − t2

t

)

show that x is planar.

II . Topics from Multivariable Calculus and Geometry

II.1 : Differential forms

(O’Neill, §§ 1.5–1.6)

O’Neill, § 1.5 (2nd Ed. pp. 25–26): 5, 6 (first part only), 9 (last sentence only)
O’Neill, § 1.6 (2nd Ed. pp. 31–32): 1, 3–5

Additional exercise

1. Suppose that ω ia a 2-form on R
3 such that ω ∧ dx = 0. Explain why there is a 1-form θ

such that ω = θ ∧ dx.

II.2 : Smooth mappings

(O’Neill, §§ 1.7, 3.2)

Additional exercises

Definition. A subset K of R
n is said to be convex if whenever x and y lie in K then the whole

line segment defined by the parametrized curve x + t (y − x) for t ∈ [0, 1] is contained in K.

1. (a) Prove that an open convex set is a connected domain [Hint: Imitate the proof for
the set of all point whose distance from some point p is less than some positive number r.].

(b) Describe an example of a connected domain in the plane which is not convex (you do not
need to prove that the domain satisfies these conditions).

2. Show by example that an intersection of two connected domains in R
2 is not necessarily a

connected domain. [Hint: Let U be the annular region defined by the inequalities 1 < x2 + y2 < 9
and let V be the horizontal strip defined by the inequality |y| < 1

2
. Verify that U is arcwise

connected using the polar coordinate mapping, which yields a continuous 1–1 mapping from the
convex set (1, 3) × [0, 2π) onto U . If U ∩ V were connected then by a result in the Appendix to
Chapter 5 in do Carmo, it would also be arcwise connected. Suppose now that x is a curve joining
the points (± 2. 0). By the Intermediate Value Theorem there must be some parameter value t0

such that the first coordinate of x(t0) is equal to zero. Why does this mean that x cannot lie
entirely inside U ∩ V ?]

3. Given an matrix A with real entries , let |A| denote the Euclidean length given by the
square root of the standard sum

∑

i,j |ai,j |
2. If P and Q are two matrices with real entries such

that the product P Q can be defined, prove that |P Q| ≤ |P | · |Q|.
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4. Let U be a convex connected domain in R
n, and let f : U → R

m be a smooth C1

function.

(a) Prove that

f(y) − f(x) =

∫ 1

0

([

Df (x + t (y − x))
]

(y − x)
)

dt

for all x, y ∈ U . [Hint: Explain why the integrand is the derivative of the function

f (x + t (y − x))

using the Chain Rule.]

(b) Suppose that the derivative matrix function Df satisfies |Df | ≤ M on U . Prove that

|f(y) − f(x)| ≤ M · |y − x|

for all x, y ∈ U .

Note. An inequality of this sort is called a Lipschitz condition.

II.3 : Inverse and Implicit Function Theorems

(O’Neill, § 1.7)

Additional exercises

1. Suppose that f : R → R is a Cr function such that its derivative f ′ is everywhere
positive and the limits of f(t) as t → ±∞ are ±∞ respectively. Prove that f has a C r inverse
function.

2. Prove that F (x, y) = (ex + y, x − y) defines a 1–1 onto C∞ map from R
2 to itself with

a C∞ inverse.

3. Prove that F (x, y) = (xey + y, xey − y) defines a 1–1 onto C∞ map from R
2 to itself

with a C∞ inverse.

4. (a) Using the change of variables formula, explain briefly why the area of a set in R
2 is

the same as the area of its image under a rigid motion of the form T (x) = Ax + b, where A is a
rotation matrix

(

cos θ − sin θ
sin θ cos θ

)

(b) More generally, if we are given an arbitrary affine transformation as above, where the only
condition on A is invertibility, how is the area of a set F related to the area of its image T [F ]?

5. A smooth Cr mapping f from a connected domain U ⊂ R
2 into R

2 is said to be regularly

conformal at p = (u0, v0) ∈ U if the Jacobian of f is positive and for all regular smooth curve pairs
x and y satisfying x(s0) = y(s0) = p the angle between x′(s0) and y′(s0) is equal to the angle
between [f ox]′(s0) and [f oy]′(s0).
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(a) Prove that the partial derivatives of the coordinate functions satisfy the Cauchy-Riemann

equations:
∂f1

∂x1

=
∂f2

∂x2

,
∂f2

∂x1

= −
∂f1

∂x2

[Hint: If A = Df(p), one needs to show that cos 6 (Ax, Ay) = cos 6 (x, y) for all nonzero vectore
x and y. Let a1 and a2 denote the columns of A, and let J denote counterclockwise rotation through
π/2. Why is a2 = c J(a1) for some constant c, and why does the determinant condition imply c is
positive? Explain why A(e1 + e2) = a1 + a2 must be perpendicular to A(e1 − e2) = a1 − a2, and
use this to conclude that c = 1.]

(b) There is a modified version of this relation that holds among the partial derivatives if the
Jacobian is negative. State it and explain why it is true. [Hint: Consider what happens if one
composes f with the reflection map S(x, y) = (x, −y).]

Note. Functions satisfying the Cauchy-Riemann equations are also known as complex analytic

functions, and they are the central objects studied in complex variables courses.

6. For what values of (ρ, θ, φ) does the spherical coordinate mapping

(x, y, z) = (ρ cos θ sinφ, ρ sin θ sinφ, ρ cos φ)

satisfy the Jacobian condition in the Inverse Function Theorem? Explain why the complement of
this set is a line through the origin.

II.4 : Congruence of geometric figures

(O’Neill, §§ 3.1, 3.4–3.5)

1. Let F be an isometry of R
n, and let x and y be distinct points of R

n such that F (x) = x

and F (y) = y. Suppose that z is a point on the line joining x to y that can be expressed as
z = tx + (1 − t)y for some scalar t. Prove that F (z) = z also holds. [Hints: Use the fact that
F (w) = A(w) + b for some linear transformation A along with the identity b = tb + (1 − t)b.]

2. Prove that congruent curves have equal lengths.

3. A similarity transformation of R
n is a 1–1 onto mapping of the form T (x) = cAx + b,

where c > 0, A is given by an orthogonal n×n matrix, and b is some vector in R
n. If T is a proper

similarity in the sense that c 6= 1 (so that T is not an isometry), then prove that there is a unique
vector v such that T (v) = v. [Hint: This is equivalent to showing that there is a unique solution
to the equation (cA − I)x = b, and a uinque solution of this equation exists if and only if the
matrix cA − I is invertible. Why is the latter equivalent to showing that c−1 is not an eigenvalue
of A, and why do the orthogonality condition on A and c 6= 1 imply this fact?]

4.∗ (a) An invertible n × n matrix A is said to be conformal if it preserves angles; i.e., if x

and y are nonzero vectors in Rn then

cos 6 (x,y) = cos 6 (Ax, Ay)

where the cosine may defined by the usual inner product formula.
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(b) Suppose that A = CB where B is orthogonal and c > 0. Show that A is conformal.

(c) Suppose that A is conformal. Prove that the columns of A are perpendicular. [Hint: They
define the vectors Aei where the ei are the standard unit vectors in Rn.]

(d) Suppose that Li is the (positive length of Aei. Compute Li/L1. [Hint: look at the angle
between e1 + ei and e1 and the angle between the images of these vectors under A.]

(e) Why do the preceding two parts of the problem imply that if A is conformal then A = cB
where B is orthogonal and c > 0?

(f) Let f be the map from R
2 to itself defined by f(u, v) = (u2−v2, 2uv). Prove that Df(u, v)

is conformal for all (u, v) 6= (0, 0). Do the same for g(u, v) = (u3 − 3uv2, 3u2v − v3). For both of
these exercises, it is helpful to use the Cauchy-Riemann equations from a previous exercise.

(g) Prove that a similarity transformation is conformal.
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