EXERCISES FOR MATHEMATICS 138A

WINTER 2010

The references denote sections of the text for the course:

B. O'Neill, Elementary Differential Geometry (Second Edition). Academic Press, San
Diego, CA, 1997. ISBN: 0-125-26745-2.

I. Classical Differential Geometry of Curves

I.1: Cross products

(O'Neill, § 2.2)
Additional exercises

1. Verify that the cross product of vectors in R® satisfies the Jacobi identity:

ax(bxc) + bx(cxa) + cx(axb) = 0.

2. Let u, v, and w be orthonormal vectors in R? such that w = u x v (cross product).
Compute v X w and w X u.

Note. The preceding result has the following consequence: Suppose that T is a linear
transformation on R® which takes the standard unit vectors e1, €, and e3 to the orthonormal
vectors u, v, and w respectively. Then we have T'(x x y) = T'(x) x T(y) for all vectors x,y in R®.
— The basic idea is merely that if a linear transformation preserves cross products on a basis, then
by the Distributive Law of Multiplication it must preserve all cross products.

1.2 : Parametrized curves

(O'Neill, § 1.4)
O'Neill, § 1.4 (2°4 Ed. pp. 21-22): 2, 8
Additional exercises

1. Find a parametrized curve a(t) which traces out the unit circle about the origin in the
coordinate plane and has initial point «(0) = (0,1).

2.  Let a(t) be a parametrized cure which does not pass through the origin. If a(tg) is
the point in the image that is closest to the origin and o'(ty) # 0, show that «(tg) and o/(ty) are
perpendicular.

3. If T is the figure 8 curve with parametrization v(t) = (3 cost,2sin 2t), where 0 < ¢t < 27,
find a nontrivial polynomial P(x,y) such that the image of 7 is contained in the set of points where
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P(z,y) = 0. [Hint: Recall that sin2t = 2sintcost and sin?t + cos?>t = 1; the latter implies that
cos? t = sin®t cos® t 4 cos* t.]

4. Two objects are moving in the coordinate plane with parametric equations x(t) =
(t* —2,3t> — 1) and y(t) = (t,5 — t?). Determine when, where, and the angle at which the objects
meet.

5.% Prove that a regular smooth curve lies on a straight line if and only if there is a point
that lies on all its tangent lines.

1.3: Arc length and reparametrization

(O"Neill, §§ 1.4, 2.2)
O’Neill, § 2.2 (2" Ed. pp. 55-56): 3-5, 10, 11
Additional exercises

1. Prove that a necessary and sufficient condition for the plane N - x = 0 to be parallel to
the line x = x¢ + ¢ - u is for N and u to be perpendicular.

2.% Suppose that F(z,y) is a function of two variables with continuous partial derivatives
such that F'(a,b) = 0 but a%F(a, b) # 0, and also suppose that g(z) is a function such that the set
F(a,b) = 0 has the parametrization y = g(x) over the interval [a — h,a + h]. Prove that the length
of this curve is given by the integral

/““l VE@, @)l
on Pl g(2))]

where F denotes the partial derivative with respect to the second variable. [Hint: Use the implicit
differentiation formula for ¢ in terms of the partial derivatives of F']

3.*  (a) Given a > 0, consider the set of all continuously differentiable real valued functions
fon [0, 1] such that f(0) =0 and f(1) = a > 0. Define L(f) by the formula L(f) = foa |f/(t)] dt .
Show that the minimum value of L(f) is a, and if equality holds then f’ is everywhere nonnegative.
[Hints: Since f’ < |f’| a similar inequality holds for their definite integrals. This inequality of
integrals is strict if and only if f/(¢) < |f’(¢)| for some ¢, which happens if and only if f'(¢) < 0 for
that choice of t.]

(b) Let (t) be a regular smooth curve in R? or R? such that 7(0) = 0 and (1) is the first unit
vector e; with first coordinate equal to 1 and the other coordinate(s) equal to zero. Prove that the
length of v is at least 1, and equality holds if and only if 7 is a reparametrization of the straight
line segment joining v(0) to v(1). [Hint: Write v = (z,y, 2) in coordinates, let § = (x,0,0) and
explain why the length of § is less than or equal to the length of +, with equality if and only if
y =z = 0. Apply the first part of the problem to show that z(¢) defines a reparametrization of the
line segment joining the endpoints.

Note. The file greatcircles.pdf in the course directory proves the corresponding result for
curves of shortest length on the sphere; namely, these shortest curves are given by great circle arcs.
As noted in the cited document, the argument uses material from later units in this course, and at
several points it is “somewhat advanced.” An more elementary proof for the distance minimizing
property of great circles can be derived fairly quickly from the first theorem in the online document
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http://math.ucr.edu/~res/math133/polyangles.pdf

and the standard formula which states that the length of a minor circular arc is equal to the product
of the radius of its circle times the measure of its central angle expressed in radians.

4. (a) If an object is attached to the edge of a circular wheel and the wheel is rolled along
a straight line on a flat surface at a uniform speed, then the curve traced out by the object is a
cycloid (there is an illustration in the file cyc-curves.pdf). If the circle has radius a > 0 and its
center starts at the point with coordinates (0, a), then the object starts at (0,0) and its parametric
equations are given by the classical formula x(t) = a - (t —sint, 1 — cost).

Find the length of the cycloid over the parameter values 0 < ¢ < 27.

(b) In the classical geocentric theory of planetary motion which appears in the Almagest
of Claudius Ptolemy (c. 85-165), there is an assumption that planets travel in curves given by
epicycles. The simplest examples of these involve circular motion where the center of the circle is
moving in a circular path around a second circle (this is similar to the motion of the moon around
the earth, which is given by an ellipse while the earth itself is moving around the sun by a larger
ellipse; an illustration appears in cyc-curves.pdf; in the full theory one also allowed the second
circle to move around a third cycle, and so on). A typical example is given by the following formula,
in which the first circle has radius i, the second one is the unit circle about the origin, and the
body rotates four times around the small circle as the large circle makes one revolution around its
center:

x(t) = (cost,sint) + % (cos4t,sin4t)

Find the length of this curve over the parameter values 0 < t < 27.

Notes. For both parts of these exercises the standard formulas for |sin 6| and |cos 36 |
may be useful.

I.4: Curvature and torsion

(O’Neill, § 2.3)
Additional exercises

1. Suppose a curve is given in polar coordinates by r = r(#) where 6 € [a,b].

(i) Show that the arc length is ff VT2 + ()2 db.

(77) Show that the curvature is

2?2 —rr” + 12
k(e) - ([7,2)+ (7,/)2]:;2

2. Let o and 8 be regular parametrized curves such that 3 is the arc length reparametrization
of a.. Let t be the parameter for « and s for 5. Prove the following:

(a) dt/ds = 1/|’|, d*t/ds* = —(a’ - " /|’ |*

(b) The curvature is given by



(c) The torsion is given by

o x o o

7(t) =

- o’ x o2
(d) If & has coordinate functions x and y, then the signed curvature of « at ¢ is equal to

:E,y” _ l‘”y/
(@) + WP

k(t) =

3.* Show that the curvature of a regular parametrized curve « at tq is equal to the curvature
of the plane curve ~ which is the perpendicular projection of a onto the osculating plane of a at
to.

4. Consider the problem of designing a set of railroad tracks that contains a pair of parallel
tracks along with a third going from the first to the second smoothly. Mathematically, the parallel
tracks themselves may be viewed as corresponding to the parallel lines y = 0 and y = 1 in the
coordinate plane, and the track going from one to the other may be viewed as a regular smooth
curve that is the graph of a twice differentiable function f such that f(z) is zero if t <0, f(x) =1
if ¢ > 1, and on [0, 1] the function f is given by a polynomial p(z). The existence of a second
derivative ensures that the slope of the tangent line would be a continuous function of z, and in
addition we want to assume that the curvature is also a continuous function of z. Find a polynomial
p(z) of degree 5 such that all the required conditions are fulfilled. [Hint: If we are given a graph
curve with parametric equations (¢, y(t)), then the curvature at parameter value ¢ is given by the
formula .

k() — ly"|
(1+ (y)2)**

and one step in the argument is to use this fact to compute p”(0) and p”(1). In fact, the conditions
of the problem uniquely specify the values of p and its first and second derivatives at both 0 and
1. Why does this mean the only values to find are the coefficients of 3, 2* and 7]

Optional. Graph the function f using calculator or computer graphics.

5. For each of the following curves, compute the curvature as a function of the z-coordinate,
find where the curvature takes a maximum value, and explain why the curvature approaches 0 as
the z-coordinate approaches the indicated limits.

(a) The hyperbola y = 1/, where z > 0 and the limiting values for x are 0 and +oc.

1

5(e” 4+ e~*), where the limiting values for x are +oo.

(b) The catenary y = coshz =

I.5: Frenet-Serret Formulas

(O’Neill, §§ 2.3-2.4)
O’Neill, § 2.3 (2" Ed. pp. 64-66): 1, 5
Additional exercises

1. Let x be a regular smooth curve with a continuous third derivative, and let (T, N, B)
be its Frenet trihedron. Prove that there is a vector W (the Darboux vector) such that T' = W x T,
N’ =W x N, and B’ = W x B. What is the length of W?
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2.% If x is defined for ¢ > 0 by the formula

1+t 1—1¢2
x(t) = (t, LRl )
t t

show that x is planar.

II. Topics from Multivariable Calculus and Geometry

I1.1: Differential forms

(O’Neill, §§ 1.5-1.6)

O'Neill, § 1.5 (2"4 Ed. pp. 25-26): 5, 6 (first part only), 9 (last sentence only)
O"Neill, § 1.6 (2°¢ Ed. pp. 31-32): 1, 3-5

Additional exercise

1.  Suppose that w ia a 2-form on R? such that w A dz = 0. Explain why there is a 1-form 6
such that w = 6 A dzx.

I1.2: Smooth mappings

(O’Neill, §§ 1.7, 3.2)
Additional exercises

Definition. A subset K of R™ is said to be conver if whenever x and y lie in K then the whole
line segment defined by the parametrized curve x + ¢ (y — x) for ¢ € [0, 1] is contained in K.

1.  (a) Prove that an open convex set is a connected domain [Hint: Imitate the proof for
the set of all point whose distance from some point p is less than some positive number r.].

(b) Describe an example of a connected domain in the plane which is not convex (you do not
need to prove that the domain satisfies these conditions).

2. Show by example that an intersection of two connected domains in R? is not necessarily a
connected domain. [Hint: Let U be the annular region defined by the inequalities 1 < 22+ y? < 9
and let V' be the horizontal strip defined by the inequality |y| < % Verify that U is arcwise
connected using the polar coordinate mapping, which yields a continuous 1-1 mapping from the
convex set (1,3) x [0,27) onto U. If U NV were connected then by a result in the Appendix to
Chapter 5 in do Carmo, it would also be arcwise connected. Suppose now that x is a curve joining
the points (£2.0). By the Intermediate Value Theorem there must be some parameter value tg
such that the first coordinate of x(¢¢) is equal to zero. Why does this mean that x cannot lie

entirely inside U N V7]

3. Given an matrix A with real entries, let |A| denote the Euclidean length given by the
square root of the standard sum zl j la; j|*. If P and Q are two matrices with real entries such
that the product P @ can be defined, prove that |P Q| < |P|-|Q|.
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4. Let U be a convex connected domain in R", and let f : U — R™ be a smooth C!
function.

(a) Prove that

1
0) =00 = [ (IDF Gttty —x)](v — ) de
0
for all x, y € U. [Hint: Explain why the integrand is the derivative of the function

fx+tly —x)

using the Chain Rule.]
(b) Suppose that the derivative matrix function D f satisfies |Df| < M on U. Prove that

f(y) = fx)| < M-|y—x|

forall x,y € U.

Note. An inequality of this sort is called a Lipschitz condition.

I1.3: Inverse and Implicit Function Theorems

(O’Neill, § 1.7)
Additional exercises

1. Suppose that f : R — R is a C" function such that its derivative f’ is everywhere
positive and the limits of f(¢) as t — £ oo are £ oo respectively. Prove that f has a C" inverse
function.

2. Prove that F(z,y) = (e* +y, x — y) defines a 1-1 onto C* map from R? to itself with
a C* inverse.

3. Prove that F(z,y) = (ze¥ +y, ze¥ — y) defines a 1-1 onto C*° map from R? to itself
with a C* inverse.

4. (a) Using the change of variables formula, explain briefly why the area of a set in R? is
the same as the area of its image under a rigid motion of the form 7T(x) = Ax + b, where A is a

rotation matrix
cosf —sinf
sinf  cos@

(b) More generally, if we are given an arbitrary affine transformation as above, where the only
condition on A is invertibility, how is the area of a set F related to the area of its image T'[F]?

5. A smooth C” mapping f from a connected domain U C R? into R? is said to be regularly
conformal at p = (ug, vo) € U if the Jacobian of f is positive and for all regular smooth curve pairs
x and y satisfying x(sg) = y(so) = p the angle between x’(sg) and y’(sg) is equal to the angle
between [f°x]'(s¢) and [f°y] (s0).



(a) Prove that the partial derivatives of the coordinate functions satisfy the Cauchy-Riemann

equations:
oh _ 9f 9f2 _ Ok
0xq 8952’ 0rq Oz

[Hint: If A= Df(p), one needs to show that cos Z(Ax, Ay) = cos Z(x, y) for all nonzero vectore
x and y. Let a; and as denote the columns of A, and let J denote counterclockwise rotation through
/2. Why is as = c¢J(ay) for some constant ¢, and why does the determinant condition imply ¢ is
positive? Explain why A(e; + e2) = a; + ag must be perpendicular to A(e; — ez) = a; — ay, and
use this to conclude that ¢ = 1.]

(b) There is a modified version of this relation that holds among the partial derivatives if the
Jacobian is negative. State it and explain why it is true. [Hint: Consider what happens if one
composes f with the reflection map S(z,y) = (z, —y).|

Note. Functions satisfying the Cauchy-Riemann equations are also known as complex analytic
functions, and they are the central objects studied in complex variables courses.

6. For what values of (p, 0, ¢) does the spherical coordinate mapping

(r,y,2) = (pcosBsing, psinfsin g, pcos @)

satisfy the Jacobian condition in the Inverse Function Theorem? Explain why the complement of
this set is a line through the origin.

I1.4: Congruence of geometric figures

(O’Neill, §§ 3.1, 3.4-3.5)

1. Let F be an isometry of R", and let x and y be distinct points of R™ such that F(x) = x
and F(y) = y. Suppose that z is a point on the line joining x to y that can be expressed as
z = tx + (1 — t)y for some scalar t. Prove that F(z) = z also holds. [Hints: Use the fact that
F(w) = A(w) + b for some linear transformation A along with the identity b =tb + (1 — ¢)b.]

2. Prove that congruent curves have equal lengths.

3. A similarity transformation of R" is a 1-1 onto mapping of the form T'(x) = cAx + b,
where ¢ > 0, A is given by an orthogonal n x n matrix, and b is some vector in R™. If T' is a proper
similarity in the sense that ¢ # 1 (so that 7" is not an isometry), then prove that there is a unique
vector v such that T'(v) = v. [Hint: This is equivalent to showing that there is a unique solution
to the equation (cA — I)x = b, and a uinque solution of this equation exists if and only if the
matrix cA — I is invertible. Why is the latter equivalent to showing that ¢~! is not an eigenvalue
of A, and why do the orthogonality condition on A and ¢ # 1 imply this fact?]

4.*  (a) An invertible n x n matrix A is said to be conformal if it preserves angles; i.e., if x
and y are nonzero vectors in R" then

cos Z(x,y) = cos L(Ax,Ay)
where the cosine may defined by the usual inner product formula.
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(b) Suppose that A = C'B where B is orthogonal and ¢ > 0. Show that A is conformal.

(c) Suppose that A is conformal. Prove that the columns of A are perpendicular. [Hint: They
define the vectors Ae; where the e; are the standard unit vectors in R"™.]

(d) Suppose that L; is the (positive length of Ae;. Compute L;/L;y. [Hint: look at the angle
between e; + e; and e; and the angle between the images of these vectors under A.]

(e) Why do the preceding two parts of the problem imply that if A is conformal then A = ¢B
where B is orthogonal and ¢ > 07

(f) Let f be the map from R? to itself defined by f(u,v) = (u? —v?, 2uv). Prove that D f(u,v)
is conformal for all (u,v) # (0,0). Do the same for g(u,v) = (u® — 3uv?,3u?v — v*). For both of
these exercises, it is helpful to use the Cauchy-Riemann equations from a previous exercise.

(g9) Prove that a similarity transformation is conformal.



I11. Surfaces in 3-Dimensional Space

II1.1: Mathematical descriptions of surfaces

(O’Neill, §§ 4.1, 4.8)
O’Neill, § 4.1 (274 Ed. pp. 132-133): 1, 4be, 5, 9

Additional ezxercises
1. Write down equations defining the surfaces given by the following geometric conditions:
(a) The set of points that are equidistant from the point (0,0,4) and the zy-plane.

(b) The set of points that are equidistant from the point (0,2,0) and the plane defined by the
equation y = —2.

(c) The set of points that are equidistant from the points (0,0,0) and (1,0, 0).

(d) The set of points for which the sum of the distances to (£1,0,0) is equal to 5.

2.  Let a,b and c be linearly independent vectors in R®. Prove that there is a unique sphere
containing these three points and 0; i.e., show that the system of equations

x—af = |x-b = [x—c? = |x

has a unique solution x.

3. Find the inverse map to the stereograpic projection onto R? described in Example 5.2 of
O’Neill, and show how to cover the sphere by two parametrized pieces.

4.  If X(u,v) = (u? —v* u—v,u® + 3v) = (x,vy, 2), find a nontrivial polynomial P(z,y, 2)
such that the image of X is contained in the set of points where P(z,y,z) = 0.

5.  If X(u,v) = (u,u? +v,v?), find a nontrivial polynomial P(z,y, z) such that the image of
X is contained in the set of points where P(x,y,z) = 0.

II1.2 : Parametrizations of surfaces

(O’Neill, § 4.2)
Additional exercises

0. Describe parametric equations for the surface obtained by rotating the curve y = e™*
around the z-axis.

1. Let f(z,y,2) = (x+y+2z—1)2

() What are the critical points and values?

(74) For which ¢ is the level set for ¢ a regular surface?
(ii7) Same questions for zyz2.

2. Let ¥ be a geometric regular smooth surface, let U be a connected domain in R® con-
taining ¥, and let g : U — R? be a smooth 1-1 onto map such that the Jacobian of g is nowhere
zero (hence it has a global inverse), its image is a connected domain, and more generally the image
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of any connected subdomain of U is also a connected domain. Prove that g(X) is also a geometric
regular smooth surface.

3.  Suppose we are given a positive valued function f(#) with continuous first two derivatives,
and suppose that we consider the set S defined by the cylindrical coordinate equation r = f(6), so
that it has a parametrization of the form X(r,0) = (f(#)cos6, f(#)sin6,z). Show that this is a
regular parametrization and find a normal vector to the tangent plane for X(r,0).

4. Suppose now that we ae given a positive valued function f(6,¢) with continuous partial
derivatives, and consider the set defined by the spherical coordinate equation p = f(6,¢), so that
a parametrization is given by

X(0,0) = (f(0,0)cosOsing, f(6,¢)sinfsing, f(0,¢)cos¢) .

Suppose that f is defined for (0
plane to the surface when (6, ¢)
by £ (1,0,0) if and only if Vf(

¢) close to (0, im). Find the normal direction for the tangent
), and prove that the normal direction at (0, $7) is given
0.

(0,3
) =

l\.‘)l»—A ||

IT1.3: Tangent planes

(O’Neill, § 4.3)
O’Neill, § 4.3 (2*4 Ed. pp. pp. 150-153): 6bc, 10
Additional exercises
0. Find equations defining the tangent planes to the given surfaces at the indicated points:
a) The parametrized surface X(u,v) = (u,v, y/uv) at (1,1,1)

(
(b) The parametrized surface X(u,v) = (2ucoswv,3usinv,u?) at (0,6,4). [You need to find
(u,v) in this example.]

(¢) The parametrized surface X(u,v) = (2ucoshv, 3usinhv, 1u?) at (—4,0,2). [Same note as
in the previous exercise.]

1. Show that the tangent plane is the same at all points along a ruling of a cylinder.

Definition. A surface S is said to be globally conver at a point p if all points of S lie on
one of the half planes determined by this tangent plane at p (i.e., if the equation of the tangent
plane is a - x = b, then the points of the surface are completely contained in the set determined by
the inequality a - x < b or the reverse inequality a - x > b). A surface is said to be strictly globally
convex if in addition for each point p the intersection of S with the tangent plane consists only of
the point p.

The surface S is said to be locally convex or strictly locally convex at p if there is an open disk
D containing p such that S N D is globally convex or strictly globally convex.

2.* Let X be a parametrized surface defined on a connected domain U, and let (a,b) € U.
Define a level function L(u,v) by L(u,v) = [X(u,v), Xy(a,b), X,(a,b)] (the vector triple product).

(a) Explain why the surface is locally convex at p = X(a,b) if and only if L has a relative
maximum or minimum at (a,b) and why the surface is strictly locally convex there if and only if L
has a strict relative maximum or minimum.
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(b) Why does the gradient of L vanish at (a,b)?
(c) If H(a,b) is the determinant

[Xu,ula,b), Xu(a,b), Xy(a,b)] [Xuw(a,b), Xu(a,b), Xy(a,b)]
[Xo,u(a,b), Xy(a,b), Xy(a,b)] [Xo,0(a,b), Xyu(a,b), X,(a,b)]

explain why a surface is NOT locally convex at p if H(a,b) < 0. [Hint: Why does L have a
saddle point at (a,b)?]

(d) In the notation of the preceding part of the problem, show that the surface is strictly
locally convex at p if H(a,b) > 0. [Hint: Why does L have a strict local maximum or minimum?]

(e) If X is a graph parametrization of the form X(u,v) = (u,v, f(u,v)), prove that H(a,b) is
a 2 X 2 determinant of a matrix whose entries are the corresponding second partial derivatives of

f at (a,b).
(f) Apply the preceding to show that if p > 2 then the graph of the function

eo= (1= ol = )"

is strictly locally convex at all (z,y) such that |z|P + |y|? < 1. In particular, the case p = 2 merely
states that the usual sphere is strictly locally convex at each point (in fact, all these surfaces are
globally strictly convex, but we shall not attempt to prove this). [Hint: If r > 1, explain why the
derivative of |z|" is equal to r|z|"~!. There are three cases, depending upon whether x is positive,
negative or zero.]

NOTE. By interchanging the roles of the three coordinates in the preceding result one can in fact
show that the sets defined by the equations |z|P + |y|P + |z|P = 1 are all regular smooth surfaces
and are strictly locally convex at all points.

Further study. Graph the intersection of this surface with the zz-plane for p = 3 and 4 using
calculator or computer graphics. Try this also for larger values of p and describe the limit of these
surfaces as p — oo.

3.*  Let S be the cylindrical surface with parametric equation(s) X(u,v) = (ucosu, usinu, v)
for u € (w/2, 97/2) and v € (—1,1). This is a cylinder generated by the Archimedean spiral curve
in the plane given in polar coordinates by r = 6. Show that S is locally convex at each point but
not globally convex at some point in S (for example, at (27,0,0)). [Hints: Use the results of the
preceding exercise to show that the surface is locally convex, and draw a sketch to show that there
are points of this curve which lie on both sides of the tangent line to the curve at (27,0,0). Can
you use this to find two points on the curve which lie on opposite sides of the tangent line?]

NOTE. One can modify the example in this exercise to get a surface that is strictly locally convex
but not globally convex at (27,0,0)) by taking sinv rather than v to be the third coordinate.

4. For each of the following quadric surfaces, use the conclusion of Exercise 2 to determine
the sets of points p where the surface is locally convex and where it is strictly locally convex.

(a) The hyperboloid of two sheets defined by the equation z? — 22 — y? = 1, where the two
pieces are parametrized by X (u,v) = (sinh v cosu,sinhv sinu, + coshv).

(b) The hyperboloid of one sheet defined by the equation x2 + y? — 22 = 1, parametrized by
X (u,v) = (coshv cosu,coshv sinu, sinhv).
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(c) The elliptic paraboloid defined by the equation z = 2 + y2.

d) The hyperbolic paraboloid defined by the equation z = y? — z2.
) yPp p ¥y q y

4. Determine the tangent planes to the surface 22 + 3% — 22 = 1 at all points (z,y,0) and
show they are all parallel to the z-axis.

5. Let f be a smooth function. Show that the tangent planes to the surface z = = f(y/x),
where x # 0, all pass through the origin.

6. Show that if all the normals to a connected surface S pass through some point, then the
surface is part of a sphere. [Here is a version of the problem not involving connectedness: Under
the given conditions, prove that at each point p of the surface S, then some neighborhood of p in
S is contained in a sphere. — It is helpful to translate the surface so that the common point is the
origin.]

7.  Show that the tangent planes of the common points for the spheres defined by |x|? = 1

and |x —a|? = 1 are perpendicular if and only if |a]? = 2. How does this generalize if the radius of
one sphere is r and the radius of the other sphere is s7

8.  Let d be an odd integer, let p,q,r be nonzero real numbers, and let f(z,y,z) = pzd +
d d
qy” +rz”.
(a) Show that f(av) = a’f(v) for all ¢ > 0 and v in R?, and also show that Vf(z,y, z) = 0 if

and only if x = y = z = 0. Why does this imply that for all ¢ > 0 the set S(c) of all (z,y, z) such
that f(z,y,2) = cis a geometric surface?

(b) Suppose that w € S(1), so that if a > 0 we have aw € S(a?). Let P(1) and P(a) denote
the tangent planes to S(1) and S(a?) at w and aw respectively. Prove that either P(1) and P(a)
are parallel or else the 1-dimensional vector subspace spanned by w lies in both tangent planes,
and that the second option arises only if w and V f(w) are perpendicular. [Hints: Compare the
normal directions for P(1) and P(a), and explain why they are the same. Why does this mean
that the two tangent planes are either parallel or equal? Also, recall that if a line and a plane have
a point in common, then the line is contained in the plane if and only if a direction vector for the
line and a normal direction vector for the plane are perpendicular.]

II1.4: The First Fundamental Form

(O’Neill, § 4.6)
Additional exercises

1. Show that the first fundamental form on the surface of revolution

X(u,v) = (f(u)cosv, f(u)sinv, g(v))
is given by (f/)2dudu+ ( 2+ (¢')?) dv dv.

2.  If the first fundamental form on a parametrized patch has the form du du + f(u,v) dv dv,
prove that the v-parameter curves cut off equal segments on all u-parameter curves (the former are
the curves where the v coordinate is held constant, and the latter are the curves for which the u
coordinate is held constant).

3. Compute the first fundamental forms of the following parametrized surfaces at points
where they are regular.
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i) The ellipsoid (asinu cosv,bsinusinv, ccos u).
ii) The elliptic paraboloid (au cos v, busin v, u?).

(

(

(i7i) The hyperbolic paraboloid (au cosh v, businh v, u?).

(iv) The two sheeted hyperboloid (a sinhucos v, bsinh usin v, ccosh u).
(

v) The upper half of the cone (zcosv, zsinv, z); in other words, the set of all points on this
cone for which z > 0.

4. Show that a surface of revolution about the z-axis can be parametrized so that £ = E(v),
F=0G=1

III.5: Swurface area

(O’Neill, § 6.7)
Additional exercises

1. Find the area of the corkscrew surface with parametrization X(r,60) = (r cos, r sinf, )
for1<r<2and 0<60<2r.

2. Find the area of the parametrized Mo6bius strip
X(u,v) = (cosu,sinu,0) + v- (cosu cos(u/2), sinu cos(u/2), sin(u/2) )

where u € (0,27) and v € (—h,h) with 0 < h < % You may view the area as being given by an
integral over [0,27] x [—h, h].

II1.6 : Curves as surface intersections

(O’Neill, 777)
Additional exercises

1. The twisted cubic with parametric equations (t,t2,t) is the intersection of the cylindrical
surfaces defined by the equations z—23 = 0 and y—2? = 0. What is the angle between the gradients
of these functions at the point (z, 22, 23)?

2. Show that the parametrized curve x(#) = (1 + cosf,sin#,2 sin(0/2) ) is regular and lies
on the sphere of radius 2 about the origin and the cylinder (z — 1)? + 32 = 1. Also show that the
normal vectors to the two surfaces are linearly independent at the points of intersection if y # 0.

3. Let f and g be two functions with continuous derivatives defined on the open unit disk
u? + v? < 1, and suppose there is a point (a,b) in this open disk where f(a,b) = ¢ = g(a,b), so
that the graphs of the surfaces intersect at (a, b, c). Prove that the intersection is transverse if and
only if Vf(a,b) x Vg(a,b) # 0.

4.* Suppose that 7(s) is a regular smooth curve with nonzero curvature everywhere, and
suppose that the parametrization is in terms of arc length plus a constant. Let T(s), N(s), and B(s)
denote the Frenet trihedron for 7. Explain why X(s,u) = v(s) +uN(s) and Y (s,v) = v(s) +vB(s)
define ruled surfaces such that near some arbitrary point ~y(sg) the intersection of their images
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is equal to the image 7. [As usual, “near some point” means that there is a small open set W
containing the point such that the statement is true for points in W]

IV. Oriented Surfaces

IV.1: Normal directions and Gauss maps

(O’Neill, § 4.7)
Additional exercises

1. What are the images of the Gauss maps for the following surfaces? Take the unit normals
defined by positive multiples of the corresponding functions’ gradients.

(i) The hyperbolic cylinder defined by the equation zy = 1.
(ii) The paraboloid of revolution defined by the equation z = 22 + y2.
2.  Prove that the image of the Gauss map for the ellipsoid

2
2 Y z

xr° + ; + b_2 = 1

(where a,b > 0) is the entire sphere. [Hint: A normal vector field over the surface is given by

(2x,2y/a?,2z/b?). Using this, reduce the problem to showing that if u? + v? + w? = 1, then one

can find x,y, 2, k such that k > 0, (x,v, 2) lie on the ellipsoid, and (u,v,w) = k- (2z,2y/a?,22/b?).

Show these equations have a solution; try expressing z,y, z in terms of u, v, w and solving for k.|

3. Let (X,N) be an oriented surface in R®. Prove that if the image of the Gauss map for
(3,N) is all of the unit sphere S?, then every plane in R3 is parallel to a tangent plane for ¥ at
one or more of its points. Is the converse true? Prove it or give a counterexample.

4. Suppose we are given a regular smooth curve ~y(t) with coordinate functions x(¢) and y(t)
in the open first quadrant of the coordinate plane (in other words, both coordiantes are positive).
Let S be the surface of revolution obtained by rotating this curve about the y-axis, so that it has

a parametrization fo the form
(z(t) cos b, y(t),z(t)sinf) .

(a) Suppose we know that (A, B,0) is a unit normal vector to the curve for some parameter
value to. Prove that the entire circle (acos,b,asin ) lies in the image of the Gauss map.

(b) Suppose now that ~(t) is the standard parametrization of the circle (x —2)? + (y — 2)? = 1,
so that x = 2+ cost and y = 2 + sint. Show that every unit vector in the zy-plane is the normal
vector to this curve for some parameter value ¢y, and using this and the first part of the problem
show that the Gauss map for the torus (doughnut shaped surface), which we take as given by
rotating the curve about the y-axis, is onto the unit 2-sphere.
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IV.2: The Second Fundamental Form

(O’Neill, § 5.1)
O"Neill, § 5.1 (274 Ed. pp. 200-201): 3bd
Additional exercise

1. Suppose that 3 is an oriented surface whose Second Fundamental Form is identically
zero. Show that (locally) X is contained in some plane.

IV.3: Quadratic forms and adjoint transformations

(O’Neill, 777)
Additional exercises
1. Let A be a symmetric 2 X 2 matrix.

(7) Show that A has two positive eigenvalues if and only if a1 7 and det A are both positive.
(74) Show that A has one positive and one negative eigenvalue if and only if det A is negative.
(737) Show that A has one zero eigenvalue and one positive eigenvalue if and only if det A =0

and the trace of A is positive.

(tv) How do the criteria in (i) and (éi¢) change if positive is replaced by negative in the
condition on eigenvalues?

2. Let A be a symmetric 3 X 3 matrix, and let B be the 2 x 2 matrix obtained by deleting
the third row and column of A. As indicated in the notes, it follows that A has an orthonormal
basis of eigenvectors. Suppose that all of the eigenvectors are positive.

(i) Explain why the determinant of A is positive.

(7i) Explain why B also has positive eigenvalues and hence a positive determinant. [Hint:
Look at the quadratic form in two variables defined by the symmetric matrix B. Why is it positive
except at (0,0), where the value ix 0?7 What does this mean for the eigenvalues of B7?|

Note. A basic result in linear algebra called the Principal Minors Criterion gives a converse
to the preceding results; in the 3 x 3 case, it states that if A is a symmetric matrix such that
det A > 0, det B > 0 and ay,; = b1,;; > 0, then all the eigenvalues for A are positive. A proof of
this fact is essentially given in the following online document:

http://math.ucr.edu/ res/linalgnotes.pdf

The first step is to prove a version of Rayleigh’s Principle for 3 x 3 matrices: The minimum and
maximum values of the quadratic form determined by A for vectors of unit length are given by
the maximum and minimum eigenvalues. Thus the eigenvalues of the matrix are all positive if
and only if the value of the quadratic form is positive for all nonzero choices of variables; when
this happens we say that the symmetric matrix A is positive definite. One can then combine this
equivalence with the arguments on pages 84 and 89-90 in the displayed reference to obtain the
conclusion described above and its generalization to symmetric n X n matrices for all values of n.
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IV.4: Normal, Gaussian and mean curvature

(O'Neill, §§ 5.2-5.3)
O’Neill, § 5.3 (2" Ed. pp. 213-216): 3, 7,
Additional exercises

1. Complete the computations of the Gaussian and mean curvatures for the hyperboloids
of one and two sheets, the ellipsoid, the hyperbolic and elliptic paraboloids, and the M&bius strip.
(NOTE: Since the Mobius strip is not orientable it is only meaningful to discuss the absolute value
of the mean curvature, which can be computed locally using any given local orientation),

2.  (a) Suppose that p is a point on the (oriented) surface ¥ at a maximum distance from
the origin. Prove that the Gaussian curvature at p is positive.

(b) Suppose that p is a point on ¥ such that the function on ¥ whose z-coordinate assumes
a maximum value. Prove that the Gaussian curvature at p is nonnegative, and give an example
to show that it is not necessarily positive. [Hint: If M is the maximum value, then all points of
the surface lie on one closed side of the plane x = M. Why must this be the tangent plane to the
surface at p7]

3.  Suppose that p is a common point on two surfaces X1 and Y5 such that the normals
of the two surfaces at p are linearly independent. Let C be the curve through p given by the
intersection of 31 and ¥,. Prove that the curvature x at p for this curve satisfies

k?sina = K] + K3 — 2k kg cOSQ

where k1 and ko are the normal curvatures of the surfaces in the direction of C' at p and « is the
angle between the normals to the surfaces at p.

4. The Third Fundamental Form of an oriented surface is defined by

II(x,y) = (DN(p)l(x), DN(p)|(y), ) -

Prove that IIT — 2 HII + K I = 0 where H and K are the mean and Gaussian curvatures. [Hint:
If A is a diagonalizable matrix explain why A? — trace(A) A + (det A) I = 0 and use the fact that
if T is a self adjoint linear transformation then (T'(x), T(y)) = (T%(x), y ).]

5. Assume that a surface ¥ has the property that the principal curvatures k4 satisfy
|k+| < 1. Does it also follow that curvature of a curve on ¥ also satisfies |r| < 17

6. Show that if a surface is tangent to a plane along a curve, then the points of this curve
are either parabolic or planar.

7.  Show that if the mean curvature H is identically zero on ¥ and the latter has no planar
points, then the Gauss map from X to S? has the following property:

<DNp(w1)7 DNp(w2)> = —k(p)(wi,wa)

for all tangent vectors w; € T),(X). Show that the above condition implies that the angle of two
intersecting curves on S? and the angle of their spherical images are equal up to sign.

8. Consider the following parametrized surface, known as Enneper’s surface:
3 3
U v
X(u,v) = <u— 3 + w?, v — 3 +vu?,u? = v2>
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a) Show that the coefficients of the First Fundamental Form are E = G = (1 + u? + v?)? and
F

(
(b) Show that the coefficients of the Second Fundamental Form are e = —g = 2 and f = 0.
(¢) Show that the principal curvatures are £2/F = £2/G.

9. Suppose that X is a regular surface in R® and F : R?* — R is the similarity map sending
each x € R® to ex where c is a fixed positive real number. Let ¥/ = F(X). How are the mean and
Gaussian curvatures of ¥ and X/ related?

10. Suppose that X is a surface with Gaussian curvature K > 0 everywhere. Let I' be a
regular smooth curve in ¥. Prove that the unsigned curvature of I" is everywhere positive (remember
that the unsigned curvature is always nonnegative).

IV.5: Special classes of surfaces

(O’Neill, §§ 5.4-5.5)
O’Neill, § 5.4 (2" Ed. pp. 222-227): 7, 16ab, 17

Additional exercises

1. The graph of the function z = log, cosy — log, cos z, where |z|, |y| < 3m, is a piece of

a surface called Scherk’s minimal surface (see Exercise 5 from Section 5.5 of O’Neill). Prove that
this is a minimal surface and its Gaussian curvature is given by —e?? /(% sin 2 4 1)2.

17



