I. Classical Differential Geometry of Curves

This is a first course on the differential geometry of curves and surfaces. It begins with
topics mentioned briefly in ordinary and multivariable calculus courses, and two major goals are
to formulate the mathematical concept(s) of curvature for a surface and to interpret curvature for
several basic examples of surfaces that arise in multivariable calculus.

Basic references for the course

We shall begin by citing the official text for the course:

B. O'Neill. Elementary Differential Geometry. (Second Edition), Harcourt/Academic
Press, San Diego CA, 1997, ISBN 0-112-526745-2.

There is also a Revised Second Edition (published in 2006; ISBN-10: 0-12-088735-5) which is close
but not identical to the Second Edition; the latter (not the more recent version) will be the official
text for the course.

This document is intended to provide a fairly complete set of notes that will reflect the content
of the lectures; the approach is similar but not identical to that of O’NEILL. At various points we
shall also refer to the following alternate sources. The first two of these are texts at a slightly higher
level, and the third is the Schaum’s Outline Series review book on differential geometry, which is
contains a great deal of information on the classical approach, brief outlines of the underlying
theory, and many worked out examples.

M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Saddle
River NJ, 1976, ISBN 0-132-12589-7.

J. A. Thorpe, Elementary Topics in Differential Geometry, Springer-Verlag, New York,
1979, ISBN 0-387-90357-7.

M. Lipschutz, Schaum’s Outlines — Differential Geometry, Schaum’s/McGraw-Hill, 1969,
ISBN 0-07-037985-8.

At many points we assume material covered in previous mathematics courses, so we shall include
a few words on such background material. This course explicitly assumes prior experience with
the elements of linear algebra (including matrices, dot products and determinants), the portions of
multivariable calculus involving partial differentiation, and some familiarity with the a few basic
ideas from set theory such as unions and intersections. At a few points in later units we shall
also assume some familiarity with multiple integration. but we shall not be using results like
Green’s Theorem, Stokes’ Theorem or the Divergence Theorem. For the sake of completeness, files
describing the background material (with references to standard texts that have been used in the
Department’s courses) are included in the course directory and can be found in the files called
backgrounds.pdf, where n = 1,2 or 3.

The name “differential geometry” suggests a subject which uses ideas from calculus to obtain
geometrical information about curves and surfaces; since vector algebra plays a crucial role in
modern work on geometry, the subject also makes extensive use of material from linear algebra. At
many points it will be necessary to work with topics from the prerequisites in a more sophisticated
manner, and it is also necessary to be more careful in our logic to make sure that our formulas

1



and conclusions are accurate. Also, at numerous steps it might be necessary to go back and review
things from earlier courses, and in some cases it will be important to understand things in more
depth than one needs to get through ordinary calculus, multivariable calculus or matrix algebra.
Frequently one of the benefits of a mathematics course is that it sharpens one’s understanding and
mastery of earlier material, and differential geometry certainly provides many opportunities of this
sort.

The origins of differential geometry

The paragraph below gives a very brief summary of the developments which led to the emer-
gence of differential geometry as a subject in its own right by the beginning of the 19*" century.
Further information may be found in any of several books on the history of mathematics.

Straight lines and circles have been central objects in geometry ever since its beginnings.
During the 5" century B.C.E., Greek geometers began to study more general curves, most notably
the ellipse, hyperbola and parabola but also other examples (for example, the Quadratrix of Hippias,
which allows one to solve classical Greek construction problems that cannot be answered by means of
straightedge and compass, and the Spiral of Archimedes, which is given in polar coordinates by the
equation 7 = #). In the following centuries Greek mathematicians discovered a large number of other
curves and investigated the properties of such curves in considerable detail for a variety of reasons.
By the end of the Middle Ages in the 15" century, scientists and mathematicians had discovered
further examples of curves that arise in various natural contexts, and still further examples and
results were discovered during the 16" century. Problems involving curves played an important
role in the development of analytic geometry and calculus during the 17" and 18" centuries, and
these subjects in turn yielded powerful new techniques for analyzing curves and analyzing their
properties. In particular, these advances created a unified framework for understanding the work
of the Greek geometers and a setting for studying new classes of curves and problems beyond the
reach of classical Greek geometry. Interactions with physics played a major role in the mathematical
study of curves beginning in the 15" century, largely because curves provided a means for analyzing
the motion of physical objects. By the beginning of the 19*" century, the differential geometry of
curves and surfaces had begun to emerge as a subject in its own right.

This unit describes the classical nineteenth century theory of curves in the plane and 3-
dimensional space.

References for examples

Here are some web links to sites with pictures and written discussions of many curves that
mathematicians have studied during the past 2500 years, including the examples mentioned above:

http://www-gap.dcs.st-and.ac.uk/~history/Curves/Curves.html
http://www.xahlee.org/SpecialPlaneCurves_dir/specialPlaneCurves.html
http://facstaff.bloomu.edu/skokoska/curves.pdf

Clickable links to these sites — and others mentioned in these notes — are in the course directory
file dg20101links.pdf.



REFERENCES FOR RESULTS ON CURVES FROM CLASSICAL GREEK GEOMETRY. A survey of
curves in classical Greek geometry is beyond the scope of these notes, but here are references for
Archimedes’ paper on the spiral named after him and a description of the work of Apollonius of
Perga (c. 262—c. 190 B.C.E.) on conic sections in (relatively) modern language.

Archimedes of Syracuse (author) and T. L. Heath (translator), The Works of Archimedes
(Reprinted from the 1912 Edition), Dover, New York, NY, 2002, ISBN 0-486-42084—1.
(The paper On spirals appears on pages 151-188).

H. G. Zeuthen, Die Lehre von den Kegelschnitten im Altertum (The study of the conic
sections in antiquity; translation from Danish into German by R. von Fischer-Benzon),
A. F. Host & Son, Copenhagen, DK, 1886. — See the file zeuthenlink.pdf in the course
directory for an online copy from Google Book Search (conditions for use of this reference
are included in the file).

Finally, here are a few more references, some of which are cited at various points in these notes:
http://people.math.gatech.edu/~ghomi/LectureNotes/index.html
http://en.wikipedia.org/wiki/Differential geometry_of__surfaces
http://www.math.uga.edu/~shifrin/ShifrinDiffGeo.pdf
http://www.seas.upenn.edu/~cis70005/cis700s16pdf.pdf
http://www.math.uab.edu/weinstei/notes/dg.pdf
N. J. Hicks, Notes on differential geometry (Van Nostrand Mathematical Studies No. 3).

D. Van Nostrand, New York, 1965.
(Available online: http://www.wisdom.weizmann.ac.il/~yakov/scanlib/hicks.pdf)

W. Kiihnel, Differential Geometry: Curves — Surfaces — Manifolds (Student Mathematical
Library, Vol. 16, Second Edition, transl. by B. Hunt). American Mathematical Society,
Providence, RI, 2006. ISBN-10: 0-8218-3988-8.

I.0: Partial differentiation

(O"Neill, § 1.1)

This is an extremely brief review of the most basic facts that are covered in multivariable
calculus courses.

The basic setting for multivariable calculus involves Cartesian or Euclidean n-space, which
is denoted by R". At first one simply takes n = 2 or 3 depending on whether one is interested in
2-dimensional or 3-dimensional problems, but much of the discussion also works for larger values of
n. We shall view elements of these spaces as vectors, with addition and scalar multiplication done
coordinatewise.

In order to do differential calculus for functions of two or more real variables easily, it is
necessary to consider functions that are defined on open sets. One say of characterizing such a set
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is to say that U C R" is open if and only if for each p = (p1,...,pn) € U there is an € > 0 such that
if x = (21, ...,x,) € U satisfies |z; — p;| < ¢ for all 7, then x € U. Alternatively, a set is open if and
only if for each p € U there is some § > 0 such that the set of all vectors x satisfying |x — p| < J is
contained in U (to see the equivalence of these for n = 2 or 3, consider squares inscribed in circles,
squares circumscribed in circles, and similarly for cubes and spheres replacing squares and circles;
illustrations and further discussion are in the files neighborhoods.pdf and opensets.pdf).

Continuous real valued functions on open sets are defined formally using the same sorts of e — 9
conditions that appear in single variable calculus; unless it is absolutely necessary, we shall try to
treat such limits intuitively (for example, see the discussion in Section 1.2). Vector valued functions
are completely determined by the n scalar functions giving their coordinates, and a vector valued
function is continuous if and only if all its scalar valued coordinate functions are continuous. As
in single variable calculus, polynomials are always continuous, and standard constructions on con-
tinuous functions — for example, algebraic operations and forming composite functions — produce
new continuous functions from old ones.

More generally, one can also define limits for functions of several variables either by means of
the standard € — § condition; for functions of several variables, the appropriate condition for asking
whether

lim f(x) = b

X—a

is that the function f should be defined for all x sufficiently close to a with the possible exception
of x = a. In other words, there is some r > 0 such that f is defined for all x satsisfying

0 < |x—a] <r.

The definition of limit works equally well for vector and scalar valued functions, and the following
basic result is often extremely useful when considering limits of vector valued functions.

VECTOR LIMIT FORMULA. Let F be a vector valued function defined on a deleted neigh-
borhood of a with values in R", let f; denote the i** coordinate function of F, and suppose that

lim fi(z) = b

X—a

h

holds for all i. Let e; denote the i** unit vector in R"™, whose i** coordinate is equal to 1 and whose

other coordinates are equal to zero. Then we have
n
iligfz(:n) = 2 bie; m
1=

The previous statement about continuity of vector valued functions (continuous <= all of the
coordinate functions are continuous) is an immediate consequence of this formula.m

Partial derivatives

Given a real valued function f defined on an open set U, its partial derivatives are formed as
follows. For each index i between 1 and n, consider the functions obtained by holding all variables
except the i*? variable constant, and take ordinary derivatives of such functions. The corresponding
derivative is denoted by the standard notation

of
(%ci '
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The gradient of f is the vector V f whose i'" coordinate is equal to the i*" partial derivative.
One then has the following fundamentally important linear approximation result.

THEOREM. Let f be a function defined on an open subset U C R", and let x € U. Suppose
also that V f is also continuous on U. Then there is a § > 0 and a function 6 defined for |h| < §
such that

fx+h) = f(x) + Vf(x)-h + |h]-60(h)

where limy| o [6(h)] = 0,m

Derivations of this theorem are given in virtually every calculus book which devotes a chapter
to partial differentiation. It is important to note that the existence of partial derivatives by itself
is not even enough to ensure that a function is continuous (standard examples like

Ty

flzy) = PENwE

for (x,y) # (0,0) and f(0,0) = 0 are also given in nearly all calculus books).

I.1: Cross products

(O"Neill, § 2.2)

Courses in single variable or multivariable calculus usually define the cross product of two
vectors and describe some of its basic properties. Since this construction will be particularly
important to us and we shall use properties that are not always emphasized in calculus courses, we
shall begin with a more detailed treatment of this construction.

Note on orthogonal vectors

One way of attempting to describe the dimension of a vector space is to suggest that the
dimension represents the maximum number of mutually perpendicular directions. The following
elementary result provides a formal justification for this idea.

PROPOSITION. LetS ={a;, --- ,ax} be a set of nonzero vectors that are mutually perpen-
dicular. Then S is linearly independent.

Proof. Suppose that we have an equation of the form

n
E c;a; = 0
i=1

for some scalars ¢;. If 1 < j < k we then have

0 = 0-a; = (iciai)-aj = zn:(ciai'aj)
i=1

i=1
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and since the vectors in S are mutually perpendicular the latter reduces to c;|a;|?. Thus the original
equation implies that c;la;|? = 0 for all j. Since each vector aj is nonzero it follows that |a;|? > 0
for all j which in turn implies ¢; = 0 for all j. Therefore S is linearly independent.m

Properties of cross products

Definition. If a = (a1,a9,a3) and b = (by, by, b3) are vectors in R? then their cross product or
vector product is defined to be

axb = (CLng — agbg, CL3b1 — albg, CleQ — CLle) .

If we define unit vectors in the traditional way as i = (1,0,0), j = (0,1,0), and k = (0,0, 1), then
the right hand side may be written symbolically as a 3 x 3 deterinant:

ik
a; az das
by ax ag

The following are immediate consequences of the definition:

() axb = —-bxa

(2) (ca)xb = c(axDb)

(3) ax(b+c) = (axb) + (axc)

Other properties follow directly. For example, by (1) we have that a x a = —a x a, so that

2a x a = 0, which means that a x a = 0. Also, if ¢ = (¢, ¢, ¢c3) then the triple product
[c,a,b] = c-(axb)

is simply the determinant of the 3 x 3 matrix whose rows are ¢, a, b in that order, and therefore
we know that
the cross product a x b is perpendicular to both a and b.m

The basic properties of determinants yield the following additional identity involving dot and
cross products:

[c,a,b] = [a,b,c]
This follows because a determinant changes sign if two rows are switched, for the latter implies
[C, a, b] = _[a7 C, b] = [a’ ba C] ..
The following property of cross products plays an extremely important role in this course.

PROPOSITION. Ifa and b are linearly independent, then a, b and a x b form a basis for R®.

Proof. First of all, we claim that if a and b are linearly independent, then a x b # 0. To see
this we begin by writing out |a x b|? explicitly:

|a X b|2 = ((lzbg — a3b2)2 + ((13b1 — (11b3)2 + ((llbz — a2b1)2
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Direct computation shows that the latter is equal to
(a3 4 a3+ a3)(b3 + b3 +b3) — (arby + azby +azbs)® = |a*|b]* — (a-b)?
In particular, if a and b are both nonzero then
laxb| = |a]|b||sinf|
where 6 is the angle between a and b. Since the sine of this angle is zero if and only if the vectors

are linearly dependent, it follows that a x b # 0 if a and b are linearly independent.

Suppose now that we have an equation of the form
ra+yb+zaxb) = 0

for suitable scalars z, y, z. Taking dot products with a x b yields the equation z|a x b|? = 0, which
by the previous paragraph implies that z = 0. One can now use the linear independence of a and b
to conclude that « and y must also be zero. Therefore the three vectors a, b and a x b are linearly
independent, and consequently they must form a basis for R3.m

APPLICATION. Later in these notes we shall need the following result:

RECOGNITION FORMULA. Ifa,b € R? are perpendicular unit vectors and ¢ = a x b, then
the triple product [a, b, c| is equal to 1.

Derivation. By the length formula for a cross product and the perpendicularity assumption, we
know that |c| = |a| - |b| =1-1=1. But we also have

1 = |c* = c-(axb) = [c,a,b] = [a,b,c]

which is the equation that we want.m

In may situations it is useful to have formulas for more complicated expressions involving cross
products. For example, we have the following identity for computing threefold cross products.

“BAC—CAB” RULE. ax (bxc)=b(a-c)—c(a-b), or in more standard format the left
hand side is equal to (a-c)b — (a-b)c.

Derivation. Suppose first that b and c are linearly dependent. Then their cross product is zero,
and one is a scalar multiple of the other. If b = x ¢, then it is an elementary exercise to verify that
the right hand side of the desired identity is zero, and we already know the same is true of the left
hand side. If on the other hand ¢ = y b, then once again one finds that both sides of the desired
identity are zero.

Now suppose that b and c are linearly independent, so that b x ¢ # 0. Note that a vector is
perpendicular to b x ¢ if and only if it is a linear combination of b and c¢. The ( <= ) implication
follows from the perpendicularity of b and ¢ to their cross product and the distributivity of the
dot product, while the reverse implication follows because every vector is a linear combination

zb+yc+z(b xc)

and this linear combinationn is perpendicular to the cross product if and only if z = 0; i.e., if and
only if the vector is a linear combination of b and c.
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Before studying the general case, we shall first consider the special cases b x (b X ¢) and
c X (b X c). Since b x (b X c) is perpendicular to b x ¢ we may write it in the form

bx(bxc) = ub+uvc

for suitable scalars u and v. If we take dot products with b and ¢ we obtain the following equations:
0 = [b,bbxc] = (b- (b x (bxc))) = b-(ub+ve) = u(b-b)+uv(b-c)

—bxc|*> = —[(bxc),b,c] = [b,(bxc)c] = [c,b,(bxc) =
(c'(bx(bxc))> = c¢-(ub4+ve) = u(b-c)+v(c-c)
If we solve these equations for u and v we find that © = b - ¢ and v = —b - b. Therefore we have
bx(bxc) = (b-c)b—(b-b)c.

Similarly, we also have
cx(bxec) = (c-c)b—(b-c)c.

If we now write a:pb—i-qc—i—r(b X c) we have

ax(bxc) = pb><(b><c)+qc><(b><c) =

(p-c)tale-c))b — (p(b-b)+a(b-c))e.

Since b and c are perpendicular to their cross product, we must have (a-c) =p(b-c)+¢(c-c)
and (a-b) =p(b-b)+q(b-c), so that the previously obtained expression for a x (b x ¢) is equal
to(a-c)b—(a-b)cm

The formula for a x (b X c) yields numerous other identities. Here is one that will be particularly
useful in this course.

PROPOSITION. Ifa, b, c and d are arbitrary vectors in R® then we have the following identity:

(axb)-(cxd) = (a-c)(b-d) — (a-d)(b-c)

Proof. By definition, the expression on the left hand side of the display is equal to the triple
product [(axb),c,d]. As noted above, the properties of determinants imply that the latter is equal
to [d, (a x b), c], which in turn is equal to

d-(ax(bxc)) = d-((a-c)b—(a-b)c)
and if we expand the final term we obtain the expression (a-c)(b-d) — (a-d)(b-c).=

Cross products and higher dimensions

Given the relative ease in defining generalizations of the inner (or dot) product and the use-
fulness of the 3-dimensional cross product in mathematics and physics, it is natural to ask whether
there are also generalizations of the cross product. However, it is rarely possible to define good
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generalizations of the cross product that satisfy most of the latter’s good properties. Partial but
significantly more complicated generalizations can be constructed using relatively sophisticated
techniques (for example, from tensor algebra or Lie algebras), but such material goes far beyond
the scope of this course. Here are two online references containing further information:

http://www.math.niu.edu/~rusin/known-math/95/prods
http://www.math.niu.edu/~rusin/known-math/96/octonionic
We shall not use the material in these reference subsequently.

Although one does not have good theories of cross products in higher dimensions, there is
a framework for generalizing many important features of this construction to higher dimensions.
This it the theory of differential forms; a discussion of the 2- and 3-dimensional cases appears in
Section II.1 of these notes.

Appendix: The distance between two skew lines

To illustrate the uses of calculus and linear algebra to work geometric problems, we shall prove
a basic result on skew lines; i.e., lines which have not points in common but are not parallel
(hence they cannot be coplanar).

THEOREM. Let L and M be two skew lines in R®, and for x € L and y € M let d(x,y) denote
the distance between x and y. Then the function d(x,y) takes a positive minimum value, and if
X, and y,, are points where d(x,y) is minimized, then the line joining X,, and y,, is perpendicular
to both L and M.

In classical Euclidean geometry this is usually stated in the form, “The shortest distance
between two skew lines is along their common perpendicular.” Predictably, it is possible to prove
this result using the methods of classical synthetic geometry, and nearly all the textbooks on solid
geometry from the first two thirds of the 20*" century contain proofs of this result.

Proof. There are three main parts to the argument:

(1) Proving that the distance function has an absolute minimum; under the hypotheses, we
know that this minimum distance must be positive.

(2) Showing that the the minimum value is realized by points x,, and y,, such that the line
Xm Ym 1S perpendicular to both L and M.

(3) Deriving an algebraic formula for the minimum distance; one version of this formula is
given in Problem 8 on page 15 of DO CARMO.

FIRST STEP. We begin by translating the problem into a question about vectors. Suppose that
the skew lines have parametric equations of the form

Po + tu , p1 + sv

where u and v are nonzero and in fact must be linearly independent; for if u and v are linearly
dependent then the two lines described above are identical or parallel. In effect the problem is to
show that the function f(s,t) = |r(s,t)|?, where

r(s,t) = (po + tu) — (p1 + sv)
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has a minimum value and to find that value.

As noted above, we shall begin by provig that there is a minimum value. If we write out the
conditions for a point to satisfy V f(s,t) = 0 we obtain the following system of linear equations,
where A and B are some constants.

t{u,u) — s{u,v) = A

t(u,v) — s(v,v) = B

These equations have a unique solution because the determinant

is nonzero by the Schwarz inequality and the linear indepdendence of u and v. Let R > 0 be so
large that the solution (s*, t*) lies inside the circle s?4t2 = R2. Then on the set 5?42 = R? either
the minimum value occurs at the unique critical point or else it occurs on the boundary circle. Let
D be the value of the function at the critical point, so that D > 0. If D is not a minimum value
for f(s,t) then for every Q > R there is a point on the circle s? + 2 = Q? for which the value
of the function is less than D. We claim this is impossible, and it will follow that D must be the
minimum value of the function.

Consider the values of the function f on the circle of radius p; these are given by
|r(pcosh, psing) |?

and if we write everything out explicitly we obtain the following expression for this function, in
which q is the vector pg — p1:

p*|cosOu —sinfv|? + 2p(cosfu—sinfv, q) + |qf?

Let m denote the minimum value of | cos § u—sin @ v| for 6 € [0, 27] and let M denote the maximum
value. Since u and v are linearly independent, the displayed expression is always positive and
therefore m must be positive. We claim that the minimum value of f(s,t) on the circle s? +12? = p?
is greater than or equal to the following expression:

p?>m?—2pM |q| + |q|?

This follows immediately from the inequalities

p*|cosfu—sinfv|> > p>m?

2p(cosfu—sinfv,q) > —2p|cosfu—sinfv|-|ql >2pM|q|
where the first inequality in the second line comes from the Schwarz inequality.
Since

Jim p*m® —2pMla| +af* = +o0

it follows that all sufficiently large p the minimum value of f(s,t) on the circle s2+? = p? is strictly
greater than D, and therefore D must be the absolute minimum for f on the set s2 + t2 < p? for
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all sufficiently large p. But this means that D must be the absolute minimum for the function over
all possible values of s and t.

SECOND STEP. In order to determine where the minimum value is attained, one must set the
partial derivatives of f with respect to a and ¢ both equal to zero. If we do this we obtain the
following equations:

0 = 2r(s,t)-(—v)

0 = 2r(s,t)-(u)
Since u and v are linearly independent, this minimum occurs when r(s,t) a scalar multiple of ux v.

Suppose that the minimum distance between the lines is attained at parameter values (sg, tp).
If x and y are the points on the lines where this minimum value is realized, then by construction
we know that r(sg,tg) = x —y, and since the left hand side is a multiple of u x v it follows that
the line joining x and y is perpendicular to both L and M.

THIRD STEP. As above, Suppose that the minimum distance between the lines is attained at
parameter values (sg,tp). Then as before we have r(sg,tg) = ku x v for some scalar k, and it
follows immediately that the minimum distance d satisfies

‘ [u, v, (s, t0)] !
|u x v

d

where [a, b, c] refers to the usual triple product of vectors having the form (a x b)-c=a- (b x c).
The exercise in do Carmo claims that a similar formula holds with r(0,0) = py = p; replacing
r(so,tp). This is true because

I'(0,0) :I'(Sg,to) + tou — So Vo

which implies that the triple products [u,v,r(so,to)] and [u,v,r(0, 0)] are equal. This is the
formula in Do CARMO.

1.2 : Parametrized curves

(O"Neill, § 1.4)

There is a great deal of overlap between the contents of this section and certain standard topics
in calculus courses. One major difference in this course is the need to work more systematically with
some fundamental but relatively complex theoretical points in calculus that can (and in most cases
probably should) be overlooked when working most ordinary and multivariable calculus problems.
In particular this applies to the definitions of limits and continuity, and accordingly we shall begin
with some comments on this background material.

Useful facts about limits

In ordinary and multivariable calculus courses it is generally possible to get by with only a
vague understanding of the concept of limit, but in this course a somewhat better understanding
is necessary. In particular, the following consequences of the definition arise repeatedly.
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FACT 1. Let f be a function defined at all points of the interval (a — h,a + h) for some h > 0
except possibly at a, and suppose that

lim f(x) =b0>0.

r—a

Then there is a 6 > 0 such that § < h and f(z) > 0 provided x € (a — d,a + 0) and = # a.

FACT 1I. In the situation described above, if the limit exists but is negative, then there is a
9 > 0 such that 6 < h and f(x) > 0 provided x € (a — d,a + ) and x # a.

FACT 1II. Fach of the preceding statements remains true if 0 is replaced by an arbitrary real
number.

Derivation(s). We shall only do the first one; the other two proceed along similar lines. By
assumption b is a positive real number. Therefore the definition of limit implies there is some § > 0
such that |f(z) — b| < b provided provided = € (a — d,a + J) and = # a. It then follows that

flz) = b—l—(f(m)—b) > b — |flx)=b > b—-—>b =0

which is what we wanted to show.m
We shall also need the following statement about infinite limits:

FACT IV. Let f be a continuous function defined on some open interval containing 0 such that f is
strictly increasing and f(0) = 0. Then for each positive constant C' there is a positive real number h
sufficiently close to zero such that x € (0, h) = 1/f(x) > C andx € (—h,0) = 1/f(x) < —C.

Proof. Let ¢ be the positive number 1/C; by continuity we know that |f(x)| < ¢ if x € (=h, h)
for a suitably small h > 0. Therefore z € (0, h) = 0< f(z) <ecand z € (—h,0) = —e<
f(x) < 0. The desired inequalities follow by taking reciprocals in each case.m

What is a curve?

There are two different but related ways to think about curves in the plane or 3-dimensional
space. One can view a curve simply as a set of points, or one can view a curve more dynamically as
a description of the position of a moving object at a given time. In calculus courses one generally
adopts the second approach to define curves in terms of parametric equations; from this viewpoint
one retrieves the description of curves as sets of points by taking the set of all points traced out
by the moving object. For example, the line in R? defined by the equation y = mz is the set of
points traced out by the parametrized curve defined by z(t) = ¢t and y(t) = mt. Similarly, the unit
circle defined by the equation z2 +y? = 1 is the set of points traced out by the parametrized curve
x(t) = cost, y(t) = sint. The set of all points expressible as x(t) for some t € J will be called the
image of the parametrized curve (since it represents all point traced out by the curve this set is
sometimes called the trace of the curve, but we shall not use this term in order to avoid confusion
with the entirely different notion of the trace of a matrix). We shall follow the standard approach
of calculus books here unless stated otherwise.

A parametrized curve in the plane or 3-dimensional space may be viewed as a vector-valued
function 7 or x defined on some interval of the real line and taking values in V' = R? or R®. In this
course we usually want our curves to be continuous; this is equivalent to saying that each of the
coordinate functions is continuous. Given that this is a course in differential geometry it should
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not be surprising that we also want our curves to have some decent differentiability properties. If x
is the vector function defining our curve and its coordinates are given by x;, where ¢ runs between
1 and 2 or 1 and 3 depending upon the dimension of V', then the derivative of x at a point ¢ is
defined using the coordinate functions:

x'(t) = (2 (1), 25(t), 25(t))

Strictly speaking this is the definition in the 3-dimensional case, but the adaptation to the 2-
dimensional case is immediate — one can just suppress the third coordinate or view R? as the
subset of R? consisting of all points whose third coordinate is zero.

Definition. A curve x defined on an interval J and taking values in V = R? or R? is differentiable
if x'(t) exists for all t € J. The curve is said to be smooth if x’ is continuous, and it is said to be
a regqular smooth curve if it is smooth and x’(¢) is nonzero for all t € J. The curve will be said to
be smooth of class C" for some integer r > 1 if x has an " order continuous derivative, and the
curve will be said to be smooth of class C* if it is infinitely differentiable (equivalently, C" for all
finite 7).

The crucial property of regular smooth curves is that they have well defined tangent lines:

Definition. Let x be a regular smooth curve and let a be a point in the domain J of x.
The tangent line to x at the parameter value ¢t = a is the unique line passing through x(a) and
x(a) + x'(a). There is a natural associated parametrization of this line given by

T(u) =x(a) + ux'(a) .

One expects the tangent line to be the “best possible” linear approximation to a smooth curve.
The following result confirms this:

PROPOSITION. In the notation above, if u # 0 is small and a + v € J then we have
x(a+u) = x(u) + ux'(a) + uO(u)
where lim,,_,o ©(u) = 0. Furthermore, if p is any vector such that
x(a+u) = x(u) + up + vW(u)

where lim, .o W(u) = 0, then p = x/(a).
Proof. Given a vector a we shall denote its i*" coordinate by a;.

Certainly there is no problem writing x(a + ) in the form x(u) + ux’(a) + u©(u) for some
vector valued function ©; the substance of the first part of the proposition is that this function goes
to zero as u — 0. Limit identities for vector valued functions are equivalent to scalar limit identities
for every coordinate function of the vectors, so the proof of the first part of the proposition reduces
to checking that the coordinates 6; of © satisfy lim,,_, 6;(u) = 0 for all i. However, by construction

we have
o) = Zletwl om0

u

and since x is differentiable at a the limit of the right hand side of this equation is zero. Therefore
we have where lim,,_,o ©(u) = 0.
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Suppose now that the second equation in the statement of the proposition is valid. As in the
previous paragraph we have

wi(u) = xi(&+uzz ) pi(a)

but this time we know that lim, o w;(u) = 0 for all ¢. The only way these equations can hold is if
pi(a) = z}(a) for all im

Piecewise smooth curves

There are many important geometrical curves that that are not smooth but can be decomposed
into smooth pieces. One of the simplest examples is the boundary of the square parametrized in
a counterclockwise sense. Specifically, take x to be defined on the interval [0, 4] by the following
rules:

(a) x(t) = (¢0) for t € [0, 1]
(b) x(t) = (1,t—1)fort e 1,2
(¢) x(t) = (2—1t,1) fort e (2,3
(d) x(t) = (0,1—1) fort e [3,4]
The formulas for (a) and (b) agree when ¢t = 1, and likewise the formulas for (b) and (c) agree

when ¢ = 2, and finally the formulas for (¢) and (d) agree when ¢t = 3; therefore these formulas
define a continuous curve. On each of the intervals [n,n + 1] for n = 0,1, 2,3 the curve is a regular
smooth curve, but of course the tangent vectors coming from the left and the right at these values
are perpendicular to each other. Clearly there are many other examples of this sort, and they
include all broken line curves. The following definition includes both these types of curves and
regular smooth curves as special cases:

Definition. A continuous curve x defined on an interval [a,b] is said to be a regular piecewise
smooth curve if there is a partition of the interval given by points

a = po < p1 o < Ppo1 <pp =Db

such that for each i the restriction x[i] of x to the subinterval [p;_1,p;] is a regular smooth curve.

For the boundary of the square parametrized in the counterclockwise sense, the partition is
given by
0 <1 < 2 < 3 < 4.

Calculus texts give many further examples of such curves, and the references cited at the
beginning of this unit also contain a wide assortment of examples. One important thing to note
is that at each of the partition points p; one has a left hand tangent vector x’(p;—) obtained from
x[i] and a right hand tangent vector x'(p;+) obtained from x[i + 1], but these two vectors are
not necessarily the same. In particular, they do not coincide at the partition points 1,2, 3 for the
parametrized boundary curve for the square that was described above.
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Taylor’s Formula for vector valued functions

We shall need a vector analog of the usual Taylor’s Theorem for polynomial approximations
of real valued functions on an interval.

VECTOR VALUED TAYLOR’S THEOREM. Let g be a vector valued function defined on
an interval (a —r,a +r) that has continuous derivatives of all orders less than or equal to n+ 1 on
that interval. Then for |h| < r we have

n.

no ok
goth) = gl) + Y e + [
k=1 a

where g¥) as usual denotes the k' derivative of g.

Proof. Let R,(h) be the integral in the displayed equation. Then integration by parts implies
that

hﬂ
Ry_1(h) = o g(n)(a) + Rn(h)
and the Fundamental Theorem of Calculus implies that
gla+h) = gla) + Ri(h).
Therefore if we set Ry = 0 we have
gla+h) = gla) + (Ry(h) = Rx-1(h)) + Ru(h)
k=1

and if we use the formulas above to substitute for the terms Ry (h) — Ri—_1(h) and R,,(h) we obtain
the formula displayed above.m

The following consequence of Taylor’s Theorem will be particularly useful:

COROLLARY. Given g and the other notation as above, let P, (h) be the sum of
gla) + > e
k=1

Then given 1o < 7 and |h| < ro < r we have |g(a + h) — P,(h)| < C|h|"™L, for some positive
constant C.

Proof. The length of the difference vector in the previous sentence is given by
a+h n

a+h—t

/ ( nl ) g (1) dt
a .
a-+h n
. a+h—t

a !

|h| . n h|n+1
B (nt1) (4 / g < M4
(maX|t al<ro |8 ( )‘) ; U= (n+1)!

[Bn(h)| = <
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At each point where F(z,y) = 0 we have VF(x,y) # 0.
where M is a positive constant at least as large as the maximum value of |g(™* V) (¢)| for |t —a| < 7o.m
Algebraic and transcendental curves

Frequently curves are defined by means of an equation of the form F(z,y) = 0, where F is
a function of two variables with continuous partial derivatives. Normally one makes the following
additional assumption:

If this condition is met at (a,b) such that F'(a,b), then the Implicit Function Theorem in
Section IL.3 of these notes implies that, if we restrict to a small enough region U containing (a,b),
then the set of points in U satisfying F'(x,y) = 0 is equal to the graph of some function y = h(zx) if
the first partial derivative of F' at (a,b) is nonzero. Similarly, if the second partial derivative of F'
at (a,b) is nonzero, then there is a small region U containing (a, b) such that the set of points in U
satisfying F'(z,y) = 0 is equal to the graph of some function x = k(y). If we combine the conclusions
in the preceding sentences, we may conclude that the set of points satisfying F'(z,y) = 0 can be
split into pieces such that each has a smooth parametrization. The ordinary unit circle defined by
22 + y2 = 1 is an example of a curve that is near some points as the graph of a function of = and
near other points as the graph of a function of y, but cannot be expressed globally as the graph of
a function of either = or y (for example, if it were globally the graph of a function of x then every
vertical line defined by an equation of the form x = ¢ would meet the curve in at most one point,
and clearly there are many values of ¢ for which the curve meets the vertical line in two points).

To indicate the importance of describing curves as sets of points (x,y) such that F(x,y) = 0,
we need only recall that one way of characterizing lines and conics in the plane is that lines in the
planes are the curves whose coordinates (x,y) satisfy a nontrivial first degree polynomial equation
p(z,y) = 0, and conics are the curves which satisfy a nontrivial polynomial equation p(z,y) = 0
such that the polynomial p has degree 2. More generally, one can define a plane curve to be
algebraic if its coordinates satisfy a nontrivial polynomial equation p(z,y) = 0, and similarly a
curve is transcendental if there is no nonzero polynomial p whose coordinates satisfy the equation
p(z,y) = 0. A discussion of algebraic and transcendental curves appears in the following online
documents:

http://math.ucr.edu/~res/math153/transcurves.pdf
http://math.ucr.edu/~res/mathl53/transcurves2.pdf

http://math.ucr.edu/~res/mathl153/transcurves3.pdf

1.3: Arc length and reparametrization

(O’Neill, §§ 1.4, 2.2)

Given a parametrized smooth regular curve x defined on a closed interval [a, b], as in calculus
we define the arc length of x from ¢t = a to t = b to be the integral

b
L = /|x’(t)|dt.
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The motivation for this definition is usually discussed in calculus courses, and it is reviewed below in
the subsection on arc length for curves that are not necessarily smooth. More generally, if a <t <b
then the length of the curve from parameter value a to parameter value t is given by

s(t) = /: ' ()| du

By the Fundamental Theorem of Calculus, the partial arc length function s is differentiable on [a, b]
and its derivative is equal to |x/(t)|. If we have a regular smooth curve, this function is continuous
and everywhere positive (hence s(t) is a strictly increasing function of t), and the image of this
function is equal to the closed interval [0, L].

COMPUTATIONAL ISSUES. Although the arc length formula is fairly simple to state, it can be
extremely difficult to evaluate the integrals which it yields, even for familiar curves with relatively
simple parametrizations. For example, if one applies the formula to an arc on an ellipse, the one
cannot express the resulting integral in terms of the standard functions considered in first year
calculus. Here are some further references:

http://en.wikipedia.org/wiki/Elliptic_integral

http://math.ucr.edu/~res/mathl10B/nonelementary_integrals.pdf
A specific example is mentioned in Section 1.4 below (see the subheading Computational tech-
niques).

Reparametrizations of curves

Given a parametrized curve x defined on an interval [a, b], it is easy to find other parametriza-
tions by simple changes of variables. For example, the curve y(t) = x(¢ + a) resembles the original
curve in many respects: For example, both have the same tangent vectors and images, and the
only real difference is that y is defined on [0,b — a] rather than [a,b]. Less trivial changes of vari-
able can be extremely helpful in analyzing the image of a curve. For example, the parametrized
curve x(t) = (e —e™ !, e' + e ') has the same image as the the upper piece of the hyperbola
y? — 2% = 4 (i.e., the graph of y = v/4 + z2); as a graph, this curve can also be parametrized using
y(u) = (u, V4 + u?). These parametrizations are related by the change of variables u = 2sinh ¢; in
other words, we have

x(t) = y(2sinht) .

Note that u varies from —oo to 400 as ¢ goes from —oo to +o00, and u'(t) = cosht > 0 for all .

More generally, it is useful to consider reparametrizations of curves corresponding to functions
u(t) such that u/(t) is never zero. Of course the sign of v’ determines whether w is strictly increasing
or decreasing, and it is useful to allow both possibilities. Suppose that we are given a differentiable
function u defined on [a, b] such that u’ is never zero on [a,b]. Then the image ot u is some other
closed interval, say [c,d]; if u is increasing then u(a) = ¢ and u(b) = d, while if u is decreasing
then u(a) = d and u(b) = c. It follows that u has an inverse function ¢ defined on [c, d] and taking
values in [a,b]. Furthermore, the derivatives dt/du and du/dt are reciprocals of each other by the
standard formula for the derivative of an inverse function.

It is important to understand how reparametrization changes geometrical properties of a curve
such as tangent lines and arc lengths. The most basic thing to consider is the effect on tangent
vectors.
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PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let
u : [a,b] — [c,d] be a function with a continuous derivative that is nowhere zero, and let y(t) =
x(u(t)). Then

This is an immediate consequence of the Chain Rule.n

COROLLARY. For each t € [a,b] the tangent line to y at parameter value t is the same as
the tangent line to x at u(t). Furthermore, the standard parametrizations are related by a linear
change of coordinates.

Proof. By definition, the tangent line to x at u(t) is the line joining x (u(¢)) and x(u(t)) +
x'(w(t)). Similarly, the tangent line to y at ¢ is the line joining y(t) = x(u(t) ) and

y(t) +y'(t) = x(u(t)) + /()% (u(t)) -

Since the line joining the distinct points (or vectors) a and a + b is the same as the line joining a
and a+ cb if ¢ # 0, it follows that the two tangent lines are the same (take a = y(t), b = x'(u)
and ¢ = u/(t)).

In fact, we have obtained standard linear parametrizations of this line given by f(z) =a+2zb
and g(w) = a+ cwb. It follows that g(w) = f(cw).n

Arc length is another property of a curve that does not change under reparmetrization.

PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let
u : [a,b] — [e,d] be a function with a continuous derivative that is nowhere zero, and let y(t) =

x(u(t)). Then ) )
/ () du = / ¥ ()] dt

Proof. The standard change of variables formula for integrals implies that

d b
/ |x’(u)|du:/ I (ult) ) o () dt .

Some comments about this formula and the absolute value sign may be helpful. If u is increasing
then the sign is positive and we have u(a) = ¢ and u(b) = d, so |[u/(t)| = w/(t); on the other hand if
u is decreasing, then the Fundamental Theorem of Calculus suggests that the integral on the left
hand side should be equal to

a
/
so that the formula above holds because u’ < 0 implies |u/| = —u’. In any case, the properties of

vector length imply that the integrand on the right hand side of the change of variables equation
is |u/(t) - x'(u)|, which by the previous proposition is equal to |y’(t)|.m

x'(u(t))‘-u'(t)dt = —/ab x'(u(t))‘-u'(t)dt = /ab x'(u(t))"[—u'(t)] dt

If v is a regular smooth curve defined on [a, b], then the arc length function

s(t) = / v/ ()| du
18



often provides an extremely useful reparametrization because of the following result:

PROPOSITION. Let v be as above, and let x be the reparametrization defined by x(s) =
v(u(s)), where p is the inverse function to the arc length function X : [a,b] — [0,L]. Then
|x'(s)] =1 for all s.

Proof. By the Fundamental Theorem of Calculus we know that \'(¢) = |v/(t)|. Therefore by the
Chain Rule we know that

x'(s) = p'(s)v'(u(s))

and by the differentiation formula for inverse functions we know that

X(s)] = IT'GIV(T6))] = ey V()] = 1

Arc length for more general curves

The geometric motivation for the definition of arc length is described in Exercises 8-0 on pages
10-11 oF po CARMO; specifically, given a parametrized curve x defined on [a, b] one picks a finite
set of points ¢; such that

a = tog < t1 < - < ty,=0b

and views the length of the inscribed broken line joining ¢ to t1, t1 to t5 etc. as an approximation
to the length of the curve. In favorable circumstances if one refines the finite set of points by
taking more and more of them and making them closer and closer together, the lengths of these
broken line curves will have a limiting value which is the arc length. Exercise 9(b) on page 11 of
DO CARMO gives one example of a curve for which no arc length can be defined. During the time
since do Carmo’s book was published, a special class of such curves known as fractal curves has
received considerable attention. The parametric equations defining such curves all have the form
x(t) = lim,,_, o0 X, (t), where each x,, is a piecewise smooth regular curve and for each n one obtains
X, from x,_1 by making some small but systematic changes. Some online references with more
information on such curves are given below.

http://mathworld.wolfram.com/Fractal.html
http://academy.wolfram.agnescott.edu/~1riddle/ifs/ksnow/1lsnow/htm
http://en2.wikipedia.org/wiki/Koch_snowflake
http://en.wikipedia.org/wiki/Fractal_geometry

The preceding discussion illustrates that parametrized curves include a wide range of ob-
jects which do not have piecewise smooth reparametrizations. However, thus far the images of
the parametrizations “look like” the standard examples in some vague sense; namely, they are
topologically equivalent to intervals in the real line or circles in the plane. It is possible to find
even more bizarre examples of parametrized curves. In particular, one can construct parametrized
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curves whose image is the entire coordinate plane or 3-space. Here is an online reference for such
space-filling curves:

http://en.wikipedia.org/wiki/Space-filling_curve
A more formal account appears in Section 44 of the following graduate level textbook:

J. R. Munkres. Topology. (Second Edition), Prentice-Hall, Saddle River NJ, 2000.
ISBN: 0-13-181629-2.

I.4: Curvature and torsion

(O"Neill, § 2.3)

Many calculus courses include a brief discussion of curvature, but the approaches vary and it
will be better to make a fresh start.

Definition. Let x be a regular smooth curve, and assume it is parametrized by arc length
plus a constant (i.e., |x'(s)| = 1 for all s). The curvature of x at parameter value s is equal to

k(s) = [x"(s)].
The most immediate question about this definition is why it has anything to do with our
intuitive idea of curvature. The best way to answer this is to look at some examples.

Suppose that we are given a parametrized line with an equation of the form x(t) = a+tb
where |b| = 1. It then follows that x is parametrized by arc length by means of ¢, and clearly we
have x”(t) = 0. This means that the curvature of the line is zero at all points, which is what we
expect.

Consider now an example that is genuinely curved; namely, the circle of radius r about the
origin. The arc length parametrization for this curve has the form

x(s) = (rcos(s/r),rsin(s/r))

and one can check directly that its first two derivatives are given as follows:
x"(s) = < —sin(s/r), cos(s/r) )
x(s) = (_cos(s/r) ~sin(s/r) >

)
T r

It follows that the curvature of the circle at all points is given by the reciprocal of the radius.m

The following simple property of the “acceleration” function x”(s) turns out to be quite im-
portant for our purposes:

PROPOSITION. The vectors x"(s) and x'(s) are perpendicular.

Proof. We know that |x/(s)]| is always equal to 1, and thus the same is true of its square, which
is just the dot product of x’(s) with itself. The product rule for differentiating dot products of two
functions then implies that



and therefore the two vectors are indeed perpendicular.m

Geometric interpretation of curvature

We begin with a very simple observation.

PROPOSITION. Ifx(s) is a smooth curve (parametrized by arc length) whose curvature k(s)
is zero for all s, then x(s) is a straght line curve of the form x(s) = x(0) + sx’(0).

Proof. Since k(s) is the length of x”(s), if the curvature is always zero then the same is true for
x”(s). But this means that x’(s) is constant and hence equal to x’(0) for all s, and the latter in
turn implies that x(s) = x(0) + sx’(0).m

Given a smooth curve, the tangent line to the curve at a point ¢t may be viewed as a first order
linear approximation to the curve. The notion of curvature is related to a corresponding second
order approximation to the curve at parameter value ¢ by a line or circle. We begin by making this
notion precise:

Defintion. Let n be a positive integer. Given two curves a(t) and b(t) defined on an interval J
containing to such that a(tg) = b(tg), we say that a and b are strong n*™ order approvimations to
each other if there is an € > 0 such that |h| < e and to + h € J imply

|b(to +h) — a(to+h)] < C|h"!

for some constant C' > 0. The analytic condition on the order of approximation is often formulated
geometrically as the order of contact that two curves have with each other at a given point; as
the order of contact increases, so does the speed at which the curves approach each other. The
most basic visual examples here are the z-axis and the graphs of the curves ™ near the origin.
Further information relating geometric ideas of high order contact and Taylor polynomial approx-
imations is presented on pages 87-91 of the Schaum’s Outline Series book on differential geometry
(bibliographic information is given at the beginning of these notes).

LEMMA. Suppose that the curves a(t) and b(t) are defined on an interval J containing t( such
that a(ty) = b(tg), and assume also that a and b are strong n** order approximations to each other
at to. Then for each regular smooth reparametrization t(u) with to = t(ug) the curves a°t and bet
are strong n'" order approximations to each other at .

Proof. Let Jy be the domain of the function ¢(u), and let K be a closed bounded subinterval
containing ug such that the latter is an endpoint of Ky if and only if it is an endpoint of .Jy. Denote
the maximum value of |¢/(u)| on this interval by M. Then by hypothesis and the Mean Value
Theorem we have

b(t(uo+h)) — a(tlug+h))| < Clt(uo+h) —tluo)"™ < CM™ . |0}

which proves the assertion of the lemma.m

In the terminology of n'® order approximations, if we are given a regular smooth curve x
then a strong first order approximation to it is given by the tangent line with the standard linear
parametrization

L(to + h) = X(to) + hX,(t) .

Furthermore, this line is the unique strong first order linear approximation to x.
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Here is the main result on curvature and strong second order approximations.

THEOREM. Let x be a regular smooth curve defined on an interval J containing 0 such that
x' has a continuous second derivative and |x’| = 1 (hence x is parametrized by arc length plus a
constant).

(2) If the curvature of x at 0 is zero, then the tangent line is a strong second order approximation
to x.

(#i) Suppose that the curvature of x at 0 is nonzero, let N be the unit vector pointing in the
same direction as x"'(0) (the latter is nonzero by the definition and nonvanishing of the curvature
at parameter value 0). If ' is the circle through x(0) such that [1] its center is x(0) + (x(0)) ~!N,
[2] it lies in the plane containing this center and the tangent line to the curve at parameter value
zero, then I is a strong second order approximation to X.

For the sake of completeness, we shall describe the unique plane containing a given line and
an external point explicitly as follows. If a, b and ¢ are noncollinear points in R? then the plane
containing them consists of all x such that x — a is perpendicular to

(b — a) X (c — a)
which translates to the triple product equation
[(x—a),(b—a),(c—a)] = 0.
Suppose now that by and c; are points on the line containing b and c¢. Then we may write
by = ub 4+ (1-w)c, ¢ = vb + (1-v)c
for suitable real numbers v and v. The equations above immediately imply the following identities:

(by —a) = u(b —a) + (1-u)(c — a)

(cpc —a) = v(b —a) + (1-v)(c — a).

These formulas and the basic properties of determinants imply
[(x —a).(b; —a), (c; —a)] =

[(x —a).u(by —a), v(c; —a)] + [(x—a).(1—-u)(by—a), (1-v)(c;—a)] =
w[(x —a), (b—a), (c-a) + (1 -u)(l-v)[(x—-a) (c-a),(b-a) =
wd — (1—u)(1—-v)0 = 0

and hence the equation
[(X_a)a (b_a)7 (C_a)} =0

implies the corresponding equation if b and c are replaced by two arbitrary points on the line
containing b and c.m

Proof of Proposition. Consider first the case where x(0) = 0. Then the tangent line to
the curve has equation L(s) = sx’(0) and the second order Taylor expansion for x has the form
x(s) = sx'(0) + 1s2x”(0) 4+ s36(s) where 6(s) is bounded for s sufficiently close to zero. The
assumption x(0) = 0 implies that x”(0) = 0 and therefore we have x(s) — L(s) = s36(s) where
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6(s) is bounded for s sufficiently close to zero. Therefore the tangent line is a strong second order
approximation to the curve if the curvature is equal to zero.

Suppose now that x(0) # 0, and let N be the unit vector pointing in the same direction as

x"(0). Define z by the formula
1

——N
#(0)
and consider the circle in the plane of z and the tangent line to x at parameter value s = 0 such

that the center is z and the radius is 1/k(0). If we set r equal to 1/£(0) and T = x/(0), then a
parametrization of this circle in terms of arc length is given by

z = x(0) +

I'(s) = z — rcos(s/r)N + rsin(s/r)T .

Using the standard power series expansions for the sine and cosine function and the identity z =
x(0) — r N, we may rewrite this in the form

82

I'(s) = x(0) + o

N + s%a(s)N + sT + s23(s)T

where a(s) and ((s) are continuous functions and hence are bounded for s close to zero. On the
other hand, using the Taylor expansion of x(s) near s = 0 we may write x(s) in the form

2

x(0) + sx'(0) + %x”(()) + 3W(s)

where W (s) is bounded for s close to zero. But x’(0) = T and

so that T'(s) — x(s) has the form s3W(s) where W(s) is a bounded function of s. Therefore the
circle defined by I' is a strong second order approximation to the original curve at the parameter
value s = 0.

Notation. If the curvature of x is nonzero near parameter value s as in the proposition, then
the center of the strong second order circle approximation

is called the center of curvature of x at parameter value s. The circle itsef is called the osculating
circle to the curve at parameter value s (in Latin, osculare = to kiss).

Complementary result. A more detailed analysis of the situation shows that if £(0) # 0 then
the circle given above is the unique circle that is a second order approximation to the original curve
at the given point.m

Computational techniques

Although the description of curvature in terms of arc length parametrizations is important for
theoretical purposes, it is usually not particularly helpful if one wants to compute the curvature of
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a given curve at a given point. One major reason for this is that the arc length function s(¢) can
only be written down explicitly in a very restricted class of cases. In particular, if we consider the
graph of the cubic polynomial y = 23 with parametrization (¢, #3) on some interval [0, a] then the
arc length parameter is given by the formula

s(t) = /Ot\/l—i—9u4du

and results of P. Chebyshev from the nineteenth century show that there is no “nice” formula
for this function in terms of the usual functions one studies in first year calculus. Therefore it is
important to have formulas for curvature in terms of arbitrary parametrizations of a regular smooth
curve.

Remarks.

1. The statement about the antiderivative of /1 + 9z is stronger than simply saying that
no one has has been able to find a nice formula for the antiderivative. It as just as impossible to
find one as it is to find two positive whole numbers a and b such that v/2 = a/b or to find two even
positive integers whose sum is an odd integer.

2. A detailed statement of Chebyshev’s result can be found on the web link

http://mathworld.wolfram.com/Integral .html

and further references are also given there.
The following formula appears in many calculus texts:

FIRST CURVATURE FORMULA. Letx be a smooth regular curve, let s be the arc length
function, let k(t) = k(s(t)), and let T(t) be the unit tangent vector function obtained by multi-
plying x'(t) by the reciprocal of its length. Then we have

T (1))

D= )

Derivation. We have seen that T (s) is equal to x/(s), and therefore by the chain rule we have
T'(t) = s'(OT'(s(t)) = K ()x"(s).

Taking lengths of the vectors on both sides of this equation we see that
IT'®) = KO X6 = K@) k)

which is equivalent to the formula for k(¢) displayed above.m
Here is another formula for curvature that is often found in calculus textbooks.
SECOND CURVATURE FORMULA. Let x be a smooth regular curve, let s be the arc
length function, let T(t) be the unit length tangent vector function, and let k(t) = x(s(t) ). Then
we have
x'(t) x x"(t)]
% ()]

k(1)

Derivation. As in the derivation of the First Curvature Formula we have x’ = s'T. Therefore
the Leibniz product rule for differentiating the product of a scalar function and a vector function
yields

X! = §'T + S/T/ )
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Since T x T = 0 the latter implies
x'xx" = (") (TxT') .

Since |T| = 1 it follows that T - T’ = 0; i.e., the vectors T and T’ are orthogonal. This in turn
implies that |T x T'| is equal to |T|- |T'| so that

X' xx"| = |s"PITxT'| = [s"P|T]-|T'] = (s")*|T| = [x|*IT|
(at the next to last step we again use the identity |T| = 1). It follows that

x/(t) x x"(t)
M0k

T|

and the Second Curvature Formula follows by substitution of this expression into the First Curva-
ture Formula.m

Osculating planes

Thus far we have discussed lines and circles that are good approximations to a curve. Given a
curve in 3-dimensional space one can also ask whether there is some plane that comes as close as
possible to containing the given curve. Of course, for curves that lie entirely in a single plane, the
definition should yield this plane.

Given a continuous curve x(t), and a plane II, one way of making this notion precise is to
consider the function A(t) giving the distance from x(¢) to II. If the point x(¢¢) lies on II, then
A(tp) = 0 and one test of how close the curve comes to lying in the plane is to determine the extent
to which the zero function is an n*® order approximation to A(t) for various choices of n. In fact, if
k(tp) # 0 then there is a unique plane such that the zero function is a second order approximation
to A(t), and this plane is called the osculating plane to x at parameter value ¢t = ty. Formally, we
proceed as follows:

Definition. Let x(s) be a regular smooth curve parametrized by arc length (so that |[x’| = 1),
and assume that k(sg) # 0. Let a = x(0), let T = x'(s¢), and let N be the unit vector pointing in
the same direction as x"(sg). The osculating plane to the curve at parameter value sq is the unique
plane containing the three noncollinear vectors a, a+ T, and a + N.

It follows that the equation defining the osculating plane may be written in the form

(y—a), T,N] = 0.

We can now state the result on the order of contact between curves and their osculating planes.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length (hence |x'| = 1),
assume that x has a continuous third derivative, and assume also that k(sg) # 0. Let 11 be the
osculating plane of x at parameter value sg, and let A(s) denote the distance between x(s) and II.
Then the osculating plane is the unique plane through x(s¢) such that the zero function is a second
order approximation to the distance function A(s) at sg.

Proof. Let a = x(sg), let T = x/(sq), let N be the unit vector pointing in the same direction
as x”(sp), and let B be the cross product T x N. Then the oscularing plane is the unique plane
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containing a, a + T, and a + N, and the distance between a point y and the osculating plane is
the absolute value of the function D (y) = (y —a) - B. The second order Taylor approximation to
x(s) with respect to sg is then given by the formula

(s — 50)% K(s0)

5 "N + (s —50)> W(s)

x(s)=a + (s—s09)-T +

where W(s) is bounded for s sufficiently close to sg. Therefore since B is perpendicular to T and
N we have N
D (x(s))) = (s—s0)°W(s)-B

where W(s) - B is bounded for s sufficiently close to sg. Therefore the given curve has order of
contact at least two with respect to its osculating plane.

Suppose now that we are given some other plane through a; then one has a normal vector V
to the plane of the form B +p T + ¢N where p and ¢ are not both zero. The distance between x(s)
and plane through a with normal vector V will then be the absolute value of a nonzero multiple of

the function
<(x(s) - a)-v)

which is equal to

(s — s0)% k(s0)

g9(s=s0) = (s—s0) (T V) + 2 (N-V) + (s—s0)*(W(s)- V).
We then have (5 s0)
5(73 - 80;3 B (s —p30)2 T (s _‘180) + (W(s) V)

where the third term on the right is bounded. But since at least one of p and ¢ is nonzero, it follows
that the entire sum is not a bounded function of s if s is close to sg. Therefore the curve cannot
have order of contact at least two with any other plane through a.m

Torsion

Curvature may be viewed as reflecting the rate at which a curve moves off its tangent line.
The notion of torsion will reflect the rate at which a curve moves off its osculating plane. In order
to define this quantity we first need to give some definitions that play an important role in the
theory of curves.

Definitions. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x’| = 1), assume that x has a continuous third derivative, and assume also that x # 0
near the parameter value sg. The principal unit normal vector at parameter value s is N(s) =
|x"(s)]7! x”(s). We have already encountered a special case of this vector in the study of curvatures
and osculating planes, and if T(s) = x'(s) denotes the unit tangent vector then we know that
{T(s), N(s) } is a set of perpendicular vectors with unit length (an orthonormal set).

If x is a space curve (i.e., its image lies in 3-space), the binormal vector at parameter value s
is defined to be B(s) = T(s) x N(s). It then follows that { T(s), N(s), B(s)} is an orthonormal
basis for R?, and it is called the Frenet trihedron (or frame) at parameter value s.

One can frequently define a Frenet trihedron at a parameter value sg even if the curvature
vanishes at sg, but there are examples where it is not possible to do so. In particular, consider the
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curve given by x(t) = (¢, 0, exp(—1/t?)) if ¢ > 0 and x(t) = (¢, exp(—1/t2)0) if ¢ > 0. If we set
x(t) = 0, then x will be infinitely differentiable because for each k£ > 0 we have

. dF 2

tlg]%ﬁ exp(—1/t*) = 0
(this is true by repeated application of L'Hospital’s Rule) and in fact the curvature is also nonzero
if t # 0 and t? # 2/3. Therefore one can define a principal unit normal vector N(t) when ¢ # 0
but, say, [t| < % However, if ¢ > 0 this vector lies in the xz-plane while if ¢ < 0 it lies in the
xy-plane, and if one could define a continuous unit normal at ¢ = 0 it would have to lie in both of
these planes. Now the unit tangent at t = 0 is the unit vector e, and there are no unit vectors that
are perpendicular to e; that lie in both the xy- and xz-planes. Therefore there is no way to define
a continuous extension of N to all values of . On the other hand, Problem 4.15 on pages 75-76
of Schaum’s Outline Series on Differential Geometry provides a way to define principal normals in

some situations when the curvature vanishes at a given parameter value.m

The following online notes contain further information on defining a parametrized family of
moving orthonormal frames associated to a regular smooth curve:

http://ada.math.uga.edu/teaching/math4250/Html/Bishop.htm

One can retrieve the Frenet trihedron from an arbitrary regular smooth reparametrization with
a continuous second derivative.

LEMMA. In the setting above, suppose that we are given an arbitrary reparametrization with
continuous second derivative, and let s(t) denote the arc length function. Then the Frenet trihedron
at parameter value tq is given by the unit vectors pointing in the same directions as T(t), T'(t),
and their cross product. Furthermore, if one considers the reoriented curve y with parametrization
y(t) = x(—t), then the effect on the Frenet trihedron is that the first two unit vectors are sent to
their negatives and the third remains unchanged.

Proof. It follows immediately from the Chain Rule that the unit tangent T remains unchanged
under a standard reparametrization with s’ > 0. Furthermore, the derivation of the formulas for
curvature under reparametrization show that T'(t) is a positive multiple of x”(s). this proves
the assertion regarding the principal normals. Finally, if we are given two ordered sets of vectors
{a, b} and {c, d} such that c and d are positive multiples of a and b respectively, then ¢ x d is
a positive multiple of a x b, and this implies the statement regarding the binormals.

If one reverses orientations by the reparametrization ¢ — —t, then the Chain Rule implies
that T and its derivative are sent to their negatives, and this proves the statement about the first
two vectors in the trihedron. The statement about the third vector follows from these and the cross
product identity a x b = (—a) x (—b).=

We are finally ready to define torsion.
Definition. In the setting above the torsion of the curve is given by 7(s) = B’(s) - N(s).
The following alternate characterization of torsion is extremely useful in many contexts.
LEMMA. The torsion of the curve is given by the formula B'(s) = 7(s) N(s).

Proof. If we can show that the left hand side is a multiple of IN(s), then the formula will follow
by taking dot products of both sides of the equation with N(s) (note that the dot product of the
latter with itself is equal to 1). To show that the left hand side side is a multiple of IN(s), it suffices
to show that it is perpendicular to T(s) and B(s). The second of these follows because

o - e < (1)
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and the first follows because

dB d dN dN
— = —(TxN) = N x N Tx—) = T —
ds ds( xN) (kDN x )+< de> ><<ds>

which implies that the left hand side is perpendicular to T.=

We had mentioned that the torsion of a curve is related to the rate at which a curve moves
away from its osculating plane. Here is a more precise statement about the relationship:

PROPOSITION. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1), assume that x has a continuous third derivative, and assume also that r(sg) # 0.
Let 11 be the osculating plane of x at parameter value sy. Then the image of x is contained in II
for all s sufficiently close to sq if and only if the torsion vanishes for these parameter values.

Proof. Suppose first that the curve is entirely contained in the osculating plane for s close to sg.
The osculating plane at sq is defined by the equation

[(y —a), To, Ng] = 0

where a = x(sg) and Ty and Ny represent the unit tangent and principal normal vectors at
parameter value sg. If we set y = x(s) and simplify this expression, we see that the curve x
satisfies the equation

x(s)-By = a-Byp

where By = Ty x Ny. If we differentiate both sides with respect to s we obtain the equation
x'(s) - Bg = 0. Differentiating once again we see that x”(s) - By = 0. Since x'(s) = T(s) and N(s)
is a positive multiple of x”(s) for s close to sy (specifically at least close enough so that x(s) is
never zero), then By is perpendicular to both T(s) and N(s). Therefore B(s) must be equal to
+ By. By continuity we must have that B(s) = By for all s close to so (Here are the details: Look
at the function B(s) - By on some small interval containing sg; its value is +1, and its value at
sp is +1 — if its value somewhere else on the interval were —1, then by the Intermediate Value
Theorem there would be someplace on the interval where its value would be zero, and we know this
is impossible). Thus B(s) is constant, and by the preceding formulas this means that the torsion
of the curve must be equal to zero.

Conversely, suppose that the torsion is identically zero. Then by alternate description of torsion
in the lemma we know that B'(s) = 0, So that B(s) = By. We then have the string of equations

0 = T-By = x'-By = %(X'Bo)

which in turn implies that x - Bg is a constant. Therefore the curve x lies entirely in the unique
plane containing x(s¢) with normal direction Bg.m

Other planes associated to a curve

In addition to the osculating plane, there are two other associated planes through a point on
the curve x at parameter value sy that are mentioned frequently in the literature. As above we
assume that the curve is a regular smooth curve with a continuous third derivative i arc length
parametrization, and nonzero curvature at parameter value sg.
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Definitions. In the above setting the normal plane is the unique plane containing x(sg),
x(sp) + N(sp), and x(s¢) + B(sp), and the rectifying plane is the unique plane containing x(sg),
x(s0) + T(so), and x(sp) + B(sp). These three mutually perpendicular planes meet at the point
x(sp) in the same way that the usual zy-, yz-, and zz-planes meet at the origin.

Oriented curvature for plane curves

For an arbitrary regular curve in 3-space one does not necessarily have normal directions when
the curvature is zero, but for plane curves there is a unique normal direction up to sign. Specifically,
if x is a regular smooth plane curve parametrized by arc length and B is a unit normal vector to a
plane II containing the image of x, then one has an associated oriented principal normal direction
at parameter value given by the cross product formula

N (s) = Bxx/(s)

and by construction IT is the unique plane passing through x(s), x(s) + x’(s), and x(s) = /N\(s)
There are two choices of B (the two unit normals for 7 are negatives of each other) and thus there
are two choices for ﬁ(s) such that each is the negative of the other. One can then define a signed
curvature associated to the oriented principal normal N given by the formula

k(s) = (x"(s) : N(s)>

and since x”(s) is perpendicular to x’(s) and B this may be rewritten in the form

An obvious question is to ask what happens if x(sg) = 0 (which also equals k(s) in this case)
and the sign of k(s) is negative for s < sy and positive for s > sg. A basic example of this
sort is given by the graph of f(z) = 23 near x = 0, whose standard parametrization is given by
x(t) = (¢, t3). In this situation the graph lies in the lower half plane y < 0 for t < 0 and in the in
the upper half plane y > 0 for ¢ > 0, and the curve switches from being concave upward for ¢ < 0
to concave downward (generally called convezr beyond first year calculus courses). More generally,
one usually says that f has a point of inflection in such cases. The following result shows that more
general plane curves behave similarly provided the curvature has a nonvanishing derivative:

PROPOSITION. Let x be a regular plane smooth curve parametrized by arc length plus a
constant (hence |x'| = 1), assume that x has a continuous fourth derivative, let N define a family
of oriented principal normals for x, and assume that that k(sg) = 0 but k'(sg) > 0. Then x(s) is
contained in the half plane

—

N (s0) - (y —x(s0)) < 0
for s sufficiently close to sq satisfying s < so, and X(s) is contained in the half plane

—

N (sg) - (y — x(so)) > 0
for s sufficiently close to sqg satisfying s > sg.

29



A similar result holds if £’(sp) < 0, and the necessary modifications of the statement and proof
for that case are left to the reader as an exercise.

Proof. To simplify the computations we shall choose coordinate systems such that x(s¢) = 0 and
the plane is the standard coordinate plane through the origin with chosed unit normal vector egs.
It will also be convenient to denote the unit vector x’(s) by T(s). We shall need to work with a
third order approximation to the curve, which means that we are going to need some information
about x"”(sg). Therefore the first step will be to establish the following formula:

—

K'(so) = x"(so) - N (s0)

To see this, note that

—~ —~

(x"(s) - N(9)) + (x"(s) - N'(s)) = <x“'(s) . N(s)) + <N(s) - N'(9)

and the second summand in the right hand expression vanishes because |ﬁ |2 is always equal to 1
(this is the same argument which implies that the unit tangent vector function is perpendicular to
its derivative).

Turning to the proof of the main result, the preceding paragraph and earlier consideration
show that the curve x is given near sg by the formula

k(s) (s — s0)* < (s —50)°

x(s) = (s—s0)T(s0) + 5 N (sg) + a3l x"(s0) + (s —50)*6(s)

where 6(s) is bounded for s suffieicntly close to zero. To simplify notation further we shall write
As = s — sg.

If we take the dot product of the preceding equation with /I\T(SO) we obtain the formula, in

which y(s) is the dot product of 0(s) and /N\(so), so that y(s) is also bounded for s sufficiently
close to sg:

(x)- N(s0)) = 0 (a5 () (a9)°

If s is nonzero but sufficiently close to zero then the sign of the right hand side is equal to the sign
of As because

(i) the sign of the first term is equal to the sign of As,
(73) if we let M be a positive upper bound for |y(s)| and further restrict As so that

K'(s0)
6B

|As|] <

then the absolute value of the second term in the dot product formula will be less than
the absolute value of the first term.

It follows that the sign of the dot product



is the same as the sign of the inital term

K'(s0)

i (As)?

which in turn is equal to the sign of As. Since the dot product has the same sign as As for s = 0 and
s sufficiently small, it follows that x(s) lies on the half plane defined by the inequality y- N (sg) < 0
if s < sg and x(s) lies on the half plane defined by the inequality y - N (sg) > 0 if s > s¢ .=

In fact, the center of the osculating circle also switches sides when one goes from values of s
that are less than sg to values of s that are greater than sg. However, the proof takes considerably
more work.

COMPLEMENT. In the setting above, let z(s) denote the center of the osculating circle to x at
parameter value at parameter value s # sq close to sg (this exists because the curvature is nonzero
at such points). Then z(s) is contained in the half plane

N (s0) - (y —x(s0)) <0

for s sufficiently close to sq satisfying s < s, and z(s) is contained in the half plane
N (s0) - (y — x(s0)) >0

for s sufficiently close to sg satisfying s > sg.

Proof. We need to establish similar inequalities to those derived above if x(s) is replaced by
z(s); note that the latter is not defined for parameter value sy because the formula involves the
reciprocal of the curvature and the latter is zero at sg.

The center of the osculating circle at parameter value s # so was defined to be x + //\ile,
where N is the ordinary principal normal; we claim that the latter is equal to x + k~!N. By
definition we have -

x" = kN = kN
and since k = £k is nonzero we know that x2 = k2. Dividing the displayed equation by this
common quantity yields the desired formula

kTN = E7IN .

Therefore the proof reduces to showing that the sign of

(%) + 15 N6 ) - W)

is equal to the sign of As.

Using the formula for x(s) near so that was derived before, we may rewrite the preceding
expression as

h(s) = k';“) (As)* +y(s) (As)" + %/N\(s) - N (s0) -

We need to show that h(s) has the same sign as k(s) and its reciprocal, and this will happen if

(o) = ho) =g = e AP A" + 5 N - (Nis) - R(o)
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is bounded for s # sg sufficiently close to zero. To see, this, suppose that |¢(s)| < A for some
A > 0. If we then choose ¢ > 0 so that |k(s)| < 1/A for for |As| < d but As # 0, if will follow that

As > 0 = h(s) = %+<h(s)—%> S A4 (—4) > 0

and similarly with all inequalities reversed and A switched with —A if As < 0.

In order to prove that £(s) is bounded, it suffices to prove that each of the three summands
is bounded for, say, |As| < r. The absolute value of the first is bounded by k’(sg)73/6 and the
absolute value of the second is bounded by Br? where B is a positive upper bound for |y(s)|. By
the Cauchy-Schwarz inequality the absolute value of the third is bounded from above by

— —~

N (s) — N(so)
[k (s)|

and using the Mean Value Theorem we may estimate the numerator and denominator of this
expression separately as follows:

(1) T\I\(s) — ﬁ(so) < P - |As|, where P is the maximum value of ]/N\/] on [sgp — 1, So + 7).

(i7) k(s) = K'(S1)As for some Sy between sy and s, so if we choose r so small that k&’ > 0 on
[so — 7, so + 7], then |k(s)| > Q As, where ) > 0 is the minimum of £’ on that interval.

It then follows that the quotient P/Q is an upper bound for the absolute value of the third term in
the formula for £(s), and therefore the latter itself is bounded. This completes the proof that z(s)
lies on the half plane described in the statement of the result.m

I.5: Frenet-Serret Formulas

(O’Neill, §§ 2.3-2.4)

In ordinary and multivariable calculus courses, a great deal of emphasis is often placed upon
working specific examples, and as indicated in the discussion preceding Section 1.1 of these notes
there is a wide assortment of interesting curves that can be studied using the methods of the
preceding sections. However, the course notes up to this point have not included the sorts of
worked out examples that one sees in a calculus book. The book by O’NEILL does include a few
examples, but far fewer than one might expect in comparison to standard calculus texts. We have
reached a point in this course where the reasons for this difference should be explained.

We already touched upon one reason when we described computational techniques for finding
the curvature of a curve. Even in simple cases, it can be extremely difficult — if not impossible —
to write things out explicitly using pencil and paper along with the techniques and results that are
taught in multivariable calculus courses. For example, we noted that arc length reparametrizations
often involve functions that ordinary calculus cannot handle in a straightforward manner. And the
situation gets even worse when one considers certain types of curves that arise naturally in classical
physics, most notably those arising when one attempts to describe the motions of a gravitational
system involving three heavenly bodies. In these cases it is not even possible to give explicit
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formulas for the motion of the curves themselves, without even thinking about the added difficulty
of describing quantities like curvature and torsion. During the past quarter century, spectacular
advances in computer technology have provided powerful new tools for studying examples. A
few comments on the use of computer graphics in differential geometry appear in O’NEILL. The
following book is an excellent reference for further information on studying curves and surfaces
using the software package Mathematica:

A. Gray. Modern Differential Geometry of Curves and Surfaces. (Studies in Advanced
Mathematics.) CRC Press, Boca Raton, FL etc., 1993. ISBN: 0-8493-7872-9.

The emphasis in this course will be on qualitative aspects of the differential geometry of curves
and surfaces in contrast to the quantitative emphasis that one sees in ordinary and multivariable
calculus. In particular, we are interested in the following basic sort of question:

Reconstructing curves from partial data. 7o what extent can one use geometric invariants
of a curve such as curvature and torsion to retrieve the original curve?

Both curvature and torsion are defined so that they do not change if one replaces a curve by
its image under some rigid motion of R? or R, so clearly the best we can hope for is to retrieve
a curve up to some transformation by a rigid motion. The main results of this section show that
curvature and torsion suffice to recover the original curve in a wide range of “reasonable” cases.

The crucial input needed to prove such results comes from the Frenet-Serret Formulas, which
describe the derivatives of the three fundamental unit vectors in the Frenet trihedron associated to
a regular smooth curve.

FRENET-SERRET FORMULAS. Let x be a regular smooth curve parametrized by arc
length (hence |x'| = 1), assume that x has a continuous third derivative, and assume also that
k(s0) # 0. Let T(s), N(s) and B(s) be the tangent, principal normal and binormal vectors in the
Frenet trihedron for x at parameter value sg. Then the following equations describe the derivatives
of the vectors in the Frenet trihedron:

T = kN
N’ = — kT - 7B
B’ = TN

Proof. We have already noted that the first and third equations are direct consequences of the
definition of curvature and torsion. To derive the second equation, we take the identity N = B x T
and differentiate it with respect to s:

N'(s) = B'(s) xT(s) + B(s) xT'(s) =

7(s) (N(s) x T(s)) + & (B(s) x N(s))

Since T, N and B are mutually perpendicular unit vectors such that B = T x N, as usual the
“BAC-CAB” rule for threefold cross products implies that N x T = —B and B x N = —T. If
we make these substitions into the displayed equations we obtain the second of the Frenet-Serret
Formulas.m

The signifiance of the Frenet-Serret formulas is that they allow one to describe a curve in terms
of its curvature and torsion in an essentially complete manner.

LOCAL UNIQUENESS FOR CURVES. Suppose that we are given two regular smooth curves
x and y defined on the same open interval containing sg,, where both curves are parametrized by

33



arc length, both have continuous third derivatives and everywhere nonzero curvatures, and their
curvature and torsion functions of both curves are equal. Assume further that the Frenet trihedra
for both curves at sy are equal. Then y = x on some open interval containing sg.

Proof. Let e;, es and e3 be the standard unit vectors. We shall only consider the simplified
situation where x(sg) = y(0) = 0 and the Frenet trihedra for x and y at parameter value sq are
given by e, es and ez (one can always use a rigid motion to move the original curves into such
positions, and the motion will not change the curvature or torsion of either curve — this is not
really difficult to prove but it is a bit tedious and distracting).

Let { Tx(s), Nx(s), Bx(s)} and { Ty (s), Ny(s), By(s)} be the Frenet trihedra for x and y
respectively, and let

g(s) = |Tx(s) = Ty(s)]* + [Nx(s) = Ny(s)]* + [Bx(s) —By(s)]” .

By the Frenet-Serret Formulas we then have that ¢’ is equal to

2(((Tx_Ty)'(T;c_T,y)) +<(Nx_Ny)'(N;<_N/y)> + <(Bx—By)'(B;_B;)>> =
2((/{(TX—Ty)-(Nx—Ny)> + <T(Bx—By)-(Nx—Ny)) _

(5 (Nx = Ny) - (T = Ty) ) — (T<Nx—Ny>-<Bx—By>)>.

It is an elementary but clearly messy exercise in algebra to simplify the right hand side of the
preceding equation, and the expression in question turns out to be zero. Therefore the function g
must be a constant, and since our assumptions imply g(sg) = 0, it follows that g(s) = 0 for all s.
The latter in turn implies that each summand

T~ Tyl* , [Nx =Ny, [Bx — By’

must be zero and hence that the Frenet trihedra for x and y must be the same. The first Frenet-
Serret Formula then implies x’ = y’, and since the two curves both go through the origin at
parameter value sq it follows that x and y must be identical.m

There is in fact a converse to the preceding result.

FUNDAMENTAL EXISTENCE THEOREM OF LOCAL CURVE THEORY. Given
sufficiently differentiable functions k and T on some interval (—c, ¢) such that k > 0, there is an
h € (0,¢) and a sufficiently differentiable curve x defined on (0, h) such that x(0) = 0, the tangent
vectors to x at all point have unit length, the Frenet trihedron of x at 0 is given by the standard

unit vectors (T0). N©).B©) = (1 e e5)

and the curvature and torsion functions are given by the restrictions of xk and T respectively.m

This is a consequence of the fundamental existence theorem for systems of linear differential
equations. If the curve exists, then the Frenet-Serret formulas yield a system of nine first order
linear differential equations for the vector valued functions T, N, and B in the Frenet trihedron

T = kN
N’ = — kT - 7B
B’ = ™N
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and if one is given k and 7 the goal is to see whether this system of first order linear differential
equations can be solved for T, N, and B, at least on some smaller interval (—h, h). If one has such
a solution then the curve x can be retrieved using the elementary formula

x(s) = /0 T(u) du

where [s| < h (with the usual convention that [; = - fso if s < 0). A proof of the existence
of a solution to the system of differential equations is given on pages 309-311 in the Appendix
to Chapter 4 of DO CARMO. These results are also discussed in the files frenetnote.pdf and
expmatrix.pdf in the course directory.m

The preceding two results combine to yield the Fundamental Theorem of Local Curve
Theory:

Given k and T as in the statement of the Existence Theorem, an initial vector Xo and an orthonormal
set of vectors (a, b, ¢) such that a x b = ¢, then there is a positive real number hy and a unique
(sufficiently differentiable) curve x such that the tangent vectors to x at all point have unit length,
the Frenet trihedron of x at 0 is given by the standard unit vectors

(T(o), N(0), B(O)) = (a b, c)

and the curvature and torsion functions are respectively given by the restrictions of k and T to

(—hi, hy)m

In particular, this result implies that space curves are completely determined by their curvature
and torsion functions together with the Frenet trihedron at some initial value. The following special
case is a companion to our earlier characterization of lines as curves whose curvature is identically
Zero:

CHARACTERIZATION OF CIRCULAR ARCS. Letx be a curve satisfying the conditions
in the statement of the Frenet-Serret Formulas. Then the restriction of x to some small interval
(so — 9, so + ) is a circular arc if and only if the curvature is a positive constant and the torsion
is identically zero.

This follows immediately because we can always find a circular arc with given initial value
Xp, initial Frenet trihedron (To, No, BO) and constant curvature x > 0 (and also of course with
vanishing torsion); in fact, the equations for an osculating circle provide an explicit construction.m

A strengthened Fundamental Theorem for plane curves

Since plane curves may be viewed as space curves whose third coordinates are zero (and whose
torsion functions are zero), the Fundamental Theorem of Local Curve Theory also applies to plane
curves, and in fact the Fundamental Theorem amounts to saying that there is a unique curve with
a given (nonzero) curvature function k, initial value x( and initial unit tangent vector Ty; in this
case the principal normal Ny is completely determined by the. perpendicularity condition and the
Frenet-Serret Formulas.

In fact, there is actually a stronger version of the Fundamental Theorem in the planar case.
In order to state and prove the Fundamental Theorem for space curves we needed to assume the
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curvature was positive so that the principal normal N could be defined. We have already noted that
one can define N for plane curves even if the curvature is equal to zero. Geometrically, a standard
way of doing this is to rotate the unit tangent T in the counterclockwise direction through an angle
of /2; in terms of equations this means that N = J(T), where J is the linear transformation

J(‘Tv y) = (ya _‘T) :

As noted in the previous section, if x is a regular smooth curve in R? parametrized by arc length
plus a constant, this means that if we define an associated signed curvature by the formula

k(s) = x'(s)-N(s) = x(s)-[J(T)](s)

then |k(s)| = k(s).

For the sake of completeness, we shall formally state and prove the modified version of the
Frenet-Serret Formulas that holds in the 2-dimensional setting with IN defined as above.

PLANAR FRENET-SERRET FORMULAS. Let x be a regular smooth curve parametrized
by arc length (hence |x'| = 1), assume that x has a continuous third derivative. Let T(s) and N(s)
and be the tangent and principal normal vectors for x at parameter value sy. Then the following
equations describe the derivatives of T and N:

T/
N = — kT

EN

Proof. By definition the first equation is a direct consequence of the definition of signed curvature.
To derive the second equation, we take the identity N(s) = J(T(s) ) and differentiate it with respect
to s, obtaining

k(s) J2(T(s)) = —k(s)T(s)
where the last equation follows because J? = —I.m

One can use the notion of signed curvature to state and prove the following version of the
fundamental theorem for plane curves:

FUNDAMENTAL THEOREM OF LOCAL PLANE CURVE THEORY. Given a suffi-
ciently differentiable function k on some interval (—c, ¢), an initial vector xo and an orthonormal
set of vectors (a, b) such that b = J(a), then there is an h € (0,c¢) and a sufficiently differentiable
curve x defined on (—h,h) such that x(0) = x¢, the tangent vectors to x at all point have unit
length, the tangent-normal pair of x at at 0 is given by the standard unit vectors

<T(0), N(O)) = (a,b)

and the curvature function is given by the restriction of k to (—h, h).m

The proof of this result is a fairly straightforward modification of the argument for space curves
and will not be worked out explicitly for that reason.
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Local canonical forms

One application of the Frenet-Serret formulas is a description of a strong third order approxi-
mation to a curve in terms of curvature and torsion.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1) such that x has a continuous fourth derivative and x(0) # 0, and let { T, N, B}
be the Frenet trihedron at parameter value s = 0. Then a strong third order approximation to x

L b
ey 2 K2 s’k SOk 3kt

Proof. We already know that x’(0) = T and x”(0) = x N. It suffices to compute x"’(0), and the
latter is given by

(/{N)/ = kN + kN’ = N — 2T — k7B
where the last is derived using the Frenet-Serret Formulas.m

Here are two significant applications of the canonical form for the strong third order approxi-
mation. By the basic assumptions for the Frenet-Serret Formulas we have x > 0.

APPLICATION 1. In the setting above, if 7(0) > 0 then the point x(s) lies on the side of the
osculating plane defined by the inequality (y — x(0)) - B < 0, when s > 0 and s is sufficiently close
to 0, and x(s) lies on the side of the osculating plane defined by the inequality (y —x(0)) -B >0
when s < 0 and s is sufficiently close to 0. Similarly, if 7(0) > 0 then the point x(s) lies on the
side of the osculating plane defined by the inequality (y —x(0)) - B > 0 when s < 0, and x(s) lies
on the side of the osculating plane defined by the inequality (y — x(0)) - B < 0 when s > 0.m

Derivation. We shall only do the case where 7 > 0 and s > 0. The arguments in the other
cases are basically the same, the main difference being that certain signs and inequality directions
must be changed.

Let g(s) = (x(s) —x(0) ) - B; then the orthonormality of the Frenet trihedron { T, N, B } and
the canonical form yield the equation

SSI{T

9(s) = ——3 + 00s)

where |0(s)| < |s|* - M for some positive constant M. It follows that if |s| is small and s > 0 then

we have

3

STKT

3!
and the right hand side (hence also g(s)) is negative provided

+ M-st

g(s) = —

RT
3"

APPLICATION 2. In the setting above, if K" # 0 and s # 0 is sufficiently close to zero then
x(s) lies on the side of the rectifying plane defined by the inequality

(y—x(0) N < 0=
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Derivation. Let g(s) = (x(s) —x(0)) - N; then the canonical form implies an equation
s2K s3K'
g(s) = —<7 T g > + 0(s)

where |0(s)| < |s|*- M for some positive constant M. We might as well assume that M > 1. It
follows that if |s| is small and nonzero then we have

P [Pl
oo = (5 - D) —ar g

and the right hand side is positive provided

ls|] < min(%, %) .

It follows that g(s) is nonzero (and in fact negative) under the same conditions.m

Regular smooth curves in hyperspace

During the nineteenth century mathematicians and physicists encountered numerous questions
that had natural interpretations in terms of spaces of dimension greater than three (incidentally,
in physics this began long before the viewing of the universe as a 4-dimensional space-time in
relativity theory). In particular, coordinate geometry gave a powerful means of dealing with such
objects by analogy. For example, Euclidean n-space for and arbitrary finite n is given by the
vector space R", lines, planes, and various sorts of hyperplanes can be defined and studied by
algebraic methods (although geometric intuition often plays a key role in formulating, proving, and
interpreting results!), and distances and angles can be defined using a simple generalization of the
standard dot product. Furthermore, objects like a 4-dimensional hypercube or a 3-dimensional
hypersphere can be described using familiar sorts of equations. For example, a typical hypercube
is given by all points x = (x1, z2, z3,x4) such that 0 < z; < 1 for all 4, and a typical hypersphere
is given by all points x such that

x* = 2} + 23 + 23 + 2] = 1.
A full investigation of differential geometry in Euclidean spaces of dimension > 4 is beyond the
scope of this course, but some comments about the differential geometry of curves in 4-space seem
worth mentioning.

One can define regular smooth curves, arc length and curvature for parametrized 4-dimensional
curves exactly as for curves in 3-dimensional space. In fact, there are generalizations of the Frenet-
Serret formula and the Fundamental Theorem of Local Curve Theory. One complicating factor
is that the 3-dimensional cross product does not generalize to higher dimensions in a particularly
neat fashion, but one can develop algebraic techniques to overcome this obstacle. In any case,
in four dimensions if a sufficiently differentiable regular smooth curve x is parametrized by arc
length plus a constant and has nonzero curvature and a nonzero secondary curvature (which is
similar to the torsion of a curve in 3-space), then for each parameter value s there is an ordered
orthonormal set of vectors F;(s), where 1 < ¢ < 4, such that F; is the unit tangent vector and the
sequence of vector valued functions (the Frenet frame for the curve) satisfies the following system
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of differential equations, where k1 is curvature, ko is positive valued, and the functions k1, k2, K3,
all have sufficiently many derivatives:

F,l = K1 FQ

Fl2 = — w1 F; + ko F3

F,3 = —KR9 F2 + K3 F4
FZL = —K3 F3

The Fundamental Theorem of Local Curve Theory in 4-dimensional space states that locally
there is a unique curve with prescribed higher curvature functions k1 > 0, ko > 0 and &3, prescribed
initial value x(sg), and whose Frenet orthonormal frame satisfies F;(sg) = v; for some orthonor-
mal basis { vy, vo, v3, v4 }. An online description and derivation of such formulas in arbitrary
dimensions is available at the sites

http://www.math.technion.ac.il/~rbrooks/dgeol.7.ps
http://en.wikipedia.org/wiki/Differential geometry_of__curves

and a discussion of such formulas in complete generality (i.e., appropriate for a graduate level
course) appears on page 74 of HICKS.
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