
I . Classical Differential Geometry of Curves

This is a first course on the differential geometry of curves and surfaces. It begins with
topics mentioned briefly in ordinary and multivariable calculus courses, and two major goals are
to formulate the mathematical concept(s) of curvature for a surface and to interpret curvature for
several basic examples of surfaces that arise in multivariable calculus.

Basic references for the course

We shall begin by citing the official text for the course:

B. O’Neill. Elementary Differential Geometry. (Second Edition), Harcourt/Academic
Press, San Diego CA, 1997, ISBN 0–112–526745–2.

There is also a Revised Second Edition (published in 2006; ISBN-10: 0–12–088735–5) which is close
but not identical to the Second Edition; the latter (not the more recent version) will be the official
text for the course.

This document is intended to provide a fairly complete set of notes that will reflect the content
of the lectures; the approach is similar but not identical to that of O’Neill. At various points we
shall also refer to the following alternate sources. The first two of these are texts at a slightly higher
level, and the third is the Schaum’s Outline Series review book on differential geometry, which is
contains a great deal of information on the classical approach, brief outlines of the underlying
theory, and many worked out examples.

M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Saddle
River NJ, 1976, ISBN 0–132–12589–7.

J. A. Thorpe, Elementary Topics in Differential Geometry , Springer-Verlag, New York,
1979, ISBN 0–387–90357–7.

M. Lipschutz, Schaum’s Outlines – Differential Geometry , Schaum’s/McGraw-Hill, 1969,
ISBN 0–07–037985–8.

At many points we assume material covered in previous mathematics courses, so we shall include
a few words on such background material. This course explicitly assumes prior experience with
the elements of linear algebra (including matrices, dot products and determinants), the portions of
multivariable calculus involving partial differentiation, and some familiarity with the a few basic
ideas from set theory such as unions and intersections. At a few points in later units we shall
also assume some familiarity with multiple integration. but we shall not be using results like
Green’s Theorem, Stokes’ Theorem or the Divergence Theorem. For the sake of completeness, files
describing the background material (with references to standard texts that have been used in the
Department’s courses) are included in the course directory and can be found in the files called
background∗.pdf, where n = 1, 2 or 3.

The name “differential geometry” suggests a subject which uses ideas from calculus to obtain
geometrical information about curves and surfaces; since vector algebra plays a crucial role in
modern work on geometry, the subject also makes extensive use of material from linear algebra. At
many points it will be necessary to work with topics from the prerequisites in a more sophisticated
manner, and it is also necessary to be more careful in our logic to make sure that our formulas
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and conclusions are accurate. Also, at numerous steps it might be necessary to go back and review
things from earlier courses, and in some cases it will be important to understand things in more
depth than one needs to get through ordinary calculus, multivariable calculus or matrix algebra.
Frequently one of the benefits of a mathematics course is that it sharpens one’s understanding and
mastery of earlier material, and differential geometry certainly provides many opportunities of this
sort.

The origins of differential geometry

The paragraph below gives a very brief summary of the developments which led to the emer-
gence of differential geometry as a subject in its own right by the beginning of the 19th century.
Further information may be found in any of several books on the history of mathematics.

Straight lines and circles have been central objects in geometry ever since its beginnings.
During the 5th century B.C.E., Greek geometers began to study more general curves, most notably
the ellipse, hyperbola and parabola but also other examples (for example, the Quadratrix of Hippias,
which allows one to solve classical Greek construction problems that cannot be answered by means of
straightedge and compass, and the Spiral of Archimedes, which is given in polar coordinates by the
equation r = θ). In the following centuries Greek mathematicians discovered a large number of other
curves and investigated the properties of such curves in considerable detail for a variety of reasons.
By the end of the Middle Ages in the 15th century, scientists and mathematicians had discovered
further examples of curves that arise in various natural contexts, and still further examples and
results were discovered during the 16th century. Problems involving curves played an important
role in the development of analytic geometry and calculus during the 17th and 18th centuries, and
these subjects in turn yielded powerful new techniques for analyzing curves and analyzing their
properties. In particular, these advances created a unified framework for understanding the work
of the Greek geometers and a setting for studying new classes of curves and problems beyond the
reach of classical Greek geometry. Interactions with physics played a major role in the mathematical
study of curves beginning in the 15th century, largely because curves provided a means for analyzing
the motion of physical objects. By the beginning of the 19th century, the differential geometry of
curves and surfaces had begun to emerge as a subject in its own right.

This unit describes the classical nineteenth century theory of curves in the plane and 3-
dimensional space.

References for examples

Here are some web links to sites with pictures and written discussions of many curves that
mathematicians have studied during the past 2500 years, including the examples mentioned above:

http://www-gap.dcs.st-and.ac.uk/∼history/Curves/Curves.html

http://www.xahlee.org/SpecialPlaneCurves dir/specialPlaneCurves.html

http://facstaff.bloomu.edu/skokoska/curves.pdf

Clickable links to these sites — and others mentioned in these notes — are in the course directory
file dg2010links.pdf.
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REFERENCES FOR RESULTS ON CURVES FROM CLASSICAL GREEK GEOMETRY. A survey of
curves in classical Greek geometry is beyond the scope of these notes, but here are references for
Archimedes’ paper on the spiral named after him and a description of the work of Apollonius of
Perga (c. 262–c. 190 B.C.E.) on conic sections in (relatively) modern language.

Archimedes of Syracuse (author) and T. L. Heath (translator), The Works of Archimedes
(Reprinted from the 1912 Edition), Dover, New York, NY, 2002, ISBN 0–486–42084–1.
(The paper On spirals appears on pages 151–188).

H. G. Zeuthen, Die Lehre von den Kegelschnitten im Altertum (The study of the conic
sections in antiquity; translation from Danish into German by R. von Fischer-Benzon),
A. F. Höst & Son, Copenhagen, DK, 1886. — See the file zeuthenlink.pdf in the course
directory for an online copy from Google Book Search (conditions for use of this reference
are included in the file).

Finally, here are a few more references, some of which are cited at various points in these notes:

http://people.math.gatech.edu/∼ghomi/LectureNotes/index.html
http://en.wikipedia.org/wiki/Differential geometry of surfaces

http://www.math.uga.edu/∼shifrin/ShifrinDiffGeo.pdf
http://www.seas.upenn.edu/∼cis70005/cis700sl6pdf.pdf

http://www.math.uab.edu/weinstei/notes/dg.pdf

N. J. Hicks, Notes on differential geometry (Van Nostrand Mathematical Studies No. 3).
D. Van Nostrand, New York , 1965.
(Available online: http://www.wisdom.weizmann.ac.il/∼yakov/scanlib/hicks.pdf)
W. Kühnel, Differential Geometry: Curves – Surfaces – Manifolds (Student Mathematical
Library, Vol. 16, Second Edition, transl. by B. Hunt). American Mathematical Society,
Providence, RI , 2006. ISBN-10: 0-8218-3988-8.

I.0 : Partial differentiation

(O’Neill, § 1.1)

This is an extremely brief review of the most basic facts that are covered in multivariable
calculus courses.

The basic setting for multivariable calculus involves Cartesian or Euclidean n-space, which
is denoted by R

n. At first one simply takes n = 2 or 3 depending on whether one is interested in
2-dimensional or 3-dimensional problems, but much of the discussion also works for larger values of
n. We shall view elements of these spaces as vectors, with addition and scalar multiplication done
coordinatewise.

In order to do differential calculus for functions of two or more real variables easily, it is
necessary to consider functions that are defined on open sets. One say of characterizing such a set
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is to say that U ⊂ R
n is open if and only if for each p = (p1, ..., pn) ∈ U there is an ε > 0 such that

if x = (x1, ..., xn) ∈ U satisfies |xi− pi| < ε for all i, then x ∈ U . Alternatively, a set is open if and
only if for each p ∈ U there is some δ > 0 such that the set of all vectors x satisfying |x−p| < δ is
contained in U (to see the equivalence of these for n = 2 or 3, consider squares inscribed in circles,
squares circumscribed in circles, and similarly for cubes and spheres replacing squares and circles;
illustrations and further discussion are in the files neighborhoods.pdf and opensets.pdf).

Continuous real valued functions on open sets are defined formally using the same sorts of ε−δ
conditions that appear in single variable calculus; unless it is absolutely necessary, we shall try to
treat such limits intuitively (for example, see the discussion in Section I.2). Vector valued functions
are completely determined by the n scalar functions giving their coordinates, and a vector valued
function is continuous if and only if all its scalar valued coordinate functions are continuous. As
in single variable calculus, polynomials are always continuous, and standard constructions on con-
tinuous functions — for example, algebraic operations and forming composite functions – produce
new continuous functions from old ones.

More generally, one can also define limits for functions of several variables either by means of
the standard ε− δ condition; for functions of several variables, the appropriate condition for asking
whether

lim
x→a

f(x) = b

is that the function f should be defined for all x sufficiently close to a with the possible exception
of x = a. In other words, there is some r > 0 such that f is defined for all x satsisfying

0 < |x− a| < r .

The definition of limit works equally well for vector and scalar valued functions, and the following
basic result is often extremely useful when considering limits of vector valued functions.

VECTOR LIMIT FORMULA. Let F be a vector valued function defined on a deleted neigh-
borhood of a with values in R

n, let fi denote the ith coordinate function of F, and suppose that

lim
x→a

fi(x) = bi

holds for all i. Let ei denote the ith unit vector in R
n, whose ith coordinate is equal to 1 and whose

other coordinates are equal to zero. Then we have

lim
x→a

fi(x) =

n∑

i=1

bi ei .

The previous statement about continuity of vector valued functions (continuous ⇐⇒ all of the
coordinate functions are continuous) is an immediate consequence of this formula.

Partial derivatives

Given a real valued function f defined on an open set U , its partial derivatives are formed as
follows. For each index i between 1 and n, consider the functions obtained by holding all variables
except the ith variable constant, and take ordinary derivatives of such functions. The corresponding
derivative is denoted by the standard notation

∂f

∂xi

.
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The gradient of f is the vector ∇f whose ith coordinate is equal to the ith partial derivative.

One then has the following fundamentally important linear approximation result.

THEOREM. Let f be a function defined on an open subset U ⊂ R
n, and let x ∈ U . Suppose

also that ∇f is also continuous on U . Then there is a δ > 0 and a function θ defined for |h| < δ
such that

f(x + h) = f(x) + ∇f(x) · h + |h| · θ(h)

where lim|h|→0 |θ(h)| = 0.

Derivations of this theorem are given in virtually every calculus book which devotes a chapter
to partial differentiation. It is important to note that the existence of partial derivatives by itself
is not even enough to ensure that a function is continuous (standard examples like

f(x, y) =
x y

x2 + y2

for (x, y) 6= (0, 0) and f(0, 0) = 0 are also given in nearly all calculus books).

I.1 : Cross products

(O’Neill, § 2.2)

Courses in single variable or multivariable calculus usually define the cross product of two
vectors and describe some of its basic properties. Since this construction will be particularly
important to us and we shall use properties that are not always emphasized in calculus courses, we
shall begin with a more detailed treatment of this construction.

Note on orthogonal vectors

One way of attempting to describe the dimension of a vector space is to suggest that the
dimension represents the maximum number of mutually perpendicular directions. The following
elementary result provides a formal justification for this idea.

PROPOSITION. Let S = {a1, · · · ,ak} be a set of nonzero vectors that are mutually perpen-
dicular. Then S is linearly independent.

Proof. Suppose that we have an equation of the form

n∑

i=1

ciai = 0

for some scalars ci. If 1 ≤ j ≤ k we then have

0 = 0 · aj =

(
n∑

i=1

ciai

)
· aj =

n∑

i=1

(ciai · aj)
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and since the vectors in S are mutually perpendicular the latter reduces to cj |aj |2. Thus the original
equation implies that cj |aj |2 = 0 for all j. Since each vector aj is nonzero it follows that |aj |2 > 0
for all j which in turn implies cj = 0 for all j. Therefore S is linearly independent.

Properties of cross products

Definition. If a = (a1, a2, a3) and b = (b1, b2, b3) are vectors in R
3 then their cross product or

vector product is defined to be

a× b =
(
a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1

)
.

If we define unit vectors in the traditional way as i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1), then
the right hand side may be written symbolically as a 3× 3 deterinant:

∣∣∣∣∣∣

i j k
a1 a2 a3

b1 a2 a3

∣∣∣∣∣∣

The following are immediate consequences of the definition:

(1) a× b = −b× a

(2) (ca)× b = c (a× b)

(3) a× (b + c) = (a× b) + (a× c)

Other properties follow directly. For example, by (1) we have that a × a = −a × a, so that
2a× a = 0, which means that a× a = 0. Also, if c = (c1, c2, c3) then the triple product

[c,a,b] = c · (a× b)

is simply the determinant of the 3 × 3 matrix whose rows are c, a, b in that order, and therefore
we know that

the cross product a× b is perpendicular to both a and b.

The basic properties of determinants yield the following additional identity involving dot and
cross products:

[c,a,b] = [a,b, c]

This follows because a determinant changes sign if two rows are switched, for the latter implies

[c,a,b] = −[a, c,b] = [a,b, c] .

The following property of cross products plays an extremely important role in this course.

PROPOSITION. If a and b are linearly independent, then a, b and a× b form a basis for R
3.

Proof. First of all, we claim that if a and b are linearly independent, then a × b 6= 0. To see
this we begin by writing out |a× b|2 explicitly:

|a× b|2 = (a2b3 − a3b2)
2 + (a3b1 − a1b3)

2 + (a1b2 − a2b1)
2
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Direct computation shows that the latter is equal to

(a2
1 + a2

2 + a2
3)(b

2
1 + b22 + b23) − (a1b1 + a2b2 + a3b3)

2 = |a|2 |b|2 − (a · b)2

In particular, if a and b are both nonzero then

|a× b| = |a| |b| | sin θ|

where θ is the angle between a and b. Since the sine of this angle is zero if and only if the vectors
are linearly dependent, it follows that a× b 6= 0 if a and b are linearly independent.

Suppose now that we have an equation of the form

xa + y b + z(a× b) = 0

for suitable scalars x, y, z. Taking dot products with a×b yields the equation z|a×b|2 = 0, which
by the previous paragraph implies that z = 0. One can now use the linear independence of a and b
to conclude that x and y must also be zero. Therefore the three vectors a, b and a×b are linearly
independent, and consequently they must form a basis for R

3.

APPLICATION. Later in these notes we shall need the following result:

RECOGNITION FORMULA. If a,b ∈ R
3 are perpendicular unit vectors and c = a×b, then

the triple product [a,b, c] is equal to 1.

Derivation. By the length formula for a cross product and the perpendicularity assumption, we
know that |c| = |a| · |b| = 1 · 1 = 1. But we also have

1 = |c|2 = c · (a× b) = [c,a,b] = [a,b, c]

which is the equation that we want.

In may situations it is useful to have formulas for more complicated expressions involving cross
products. For example, we have the following identity for computing threefold cross products.

“BAC—CAB” RULE. a ×
(
b × c

)
= b(a · c) − c(a · b), or in more standard format the left

hand side is equal to (a · c)b− (a · b) c.

Derivation. Suppose first that b and c are linearly dependent. Then their cross product is zero,
and one is a scalar multiple of the other. If b = x c, then it is an elementary exercise to verify that
the right hand side of the desired identity is zero, and we already know the same is true of the left
hand side. If on the other hand c = y b, then once again one finds that both sides of the desired
identity are zero.

Now suppose that b and c are linearly independent, so that b× c 6= 0. Note that a vector is
perpendicular to b× c if and only if it is a linear combination of b and c. The ( ⇐= ) implication
follows from the perpendicularity of b and c to their cross product and the distributivity of the
dot product, while the reverse implication follows because every vector is a linear combination

xb + y c + z (b× c)

and this linear combinationn is perpendicular to the cross product if and only if z = 0; i.e., if and
only if the vector is a linear combination of b and c.
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Before studying the general case, we shall first consider the special cases b × (b × c) and
c×

(
b× c

)
. Since b×

(
b× c

)
is perpendicular to b× c we may write it in the form

b×
(
b× c

)
= ub + v c

for suitable scalars u and v. If we take dot products with b and c we obtain the following equations:

0 = [b,b,b× c] =
(
b ·
(
b× (b× c)

))
= b ·

(
ub + v c

)
= u (b · b) + v (b · c)

−|b× c|2 = −[(b× c),b, c] = [b, (b× c), c] = [c,b, (b × c)] =
(
c ·
(
b× (b× c)

) )
= c ·

(
ub + v c

)
= u (b · c) + v (c · c)

If we solve these equations for u and v we find that u = b · c and v = −b · b. Therefore we have

b×
(
b× c

)
= (b · c)b− (b · b) c .

Similarly, we also have
c×

(
b× c

)
= (c · c)b− (b · c) c .

If we now write a = pb + q c + r
(
b× c

)
we have

a×
(
b× c

)
= pb×

(
b× c

)
+ q c×

(
b× c

)
=

(
p (b · c) + q (c · c)

)
b −

(
p (b · b) + q (b · c)

)
c .

Since b and c are perpendicular to their cross product, we must have (a · c) = p (b · c) + q (c · c)
and (a · b) = p (b ·b) + q (b · c), so that the previously obtained expression for a× (b× c) is equal
to (a · c)b− (a · b) c.

The formula for a×
(
b×c

)
yields numerous other identities. Here is one that will be particularly

useful in this course.

PROPOSITION. If a, b, c and d are arbitrary vectors in R
3 then we have the following identity:

(
a× b

)
·
(
c× d

)
= (a · c)(b · d) − (a · d)(b · c)

Proof. By definition, the expression on the left hand side of the display is equal to the triple
product [(a×b), c,d]. As noted above, the properties of determinants imply that the latter is equal
to [d, (a× b), c], which in turn is equal to

d ·
(
a×

(
b× c

))
= d ·

(
(a · c)b− (a · b)c

)

and if we expand the final term we obtain the expression (a · c)(b · d)− (a · d)(b · c).

Cross products and higher dimensions

Given the relative ease in defining generalizations of the inner (or dot) product and the use-
fulness of the 3-dimensional cross product in mathematics and physics, it is natural to ask whether
there are also generalizations of the cross product. However, it is rarely possible to define good
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generalizations of the cross product that satisfy most of the latter’s good properties. Partial but
significantly more complicated generalizations can be constructed using relatively sophisticated
techniques (for example, from tensor algebra or Lie algebras), but such material goes far beyond
the scope of this course. Here are two online references containing further information:

http://www.math.niu.edu/∼rusin/known-math/95/prods
http://www.math.niu.edu/∼rusin/known-math/96/octonionic

We shall not use the material in these reference subsequently.

Although one does not have good theories of cross products in higher dimensions, there is
a framework for generalizing many important features of this construction to higher dimensions.
This it the theory of differential forms; a discussion of the 2- and 3-dimensional cases appears in
Section II.1 of these notes.

Appendix: The distance between two skew lines

To illustrate the uses of calculus and linear algebra to work geometric problems, we shall prove
a basic result on skew lines; i.e., lines which have not points in common but are not parallel
(hence they cannot be coplanar).

THEOREM. Let L and M be two skew lines in R
3, and for x ∈ L and y ∈M let d(x,y) denote

the distance between x and y. Then the function d(x,y) takes a positive minimum value, and if
xm and ym are points where d(x,y) is minimized, then the line joining xm and ym is perpendicular
to both L and M .

In classical Euclidean geometry this is usually stated in the form, “The shortest distance
between two skew lines is along their common perpendicular.” Predictably, it is possible to prove
this result using the methods of classical synthetic geometry, and nearly all the textbooks on solid
geometry from the first two thirds of the 20th century contain proofs of this result.

Proof. There are three main parts to the argument:

(1) Proving that the distance function has an absolute minimum; under the hypotheses, we
know that this minimum distance must be positive.

(2) Showing that the the minimum value is realized by points xm and ym such that the line
xm ym is perpendicular to both L and M .

(3) Deriving an algebraic formula for the minimum distance; one version of this formula is
given in Problem 8 on page 15 of do Carmo.

FIRST STEP. We begin by translating the problem into a question about vectors. Suppose that
the skew lines have parametric equations of the form

p0 + tu , p1 + sv

where u and v are nonzero and in fact must be linearly independent; for if u and v are linearly
dependent then the two lines described above are identical or parallel. In effect the problem is to
show that the function f(s, t) = | r(s, t) |2, where

r(s, t) =
(
p0 + tu

)
−
(
p1 + sv

)
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has a minimum value and to find that value.

As noted above, we shall begin by provig that there is a minimum value. If we write out the
conditions for a point to satisfy ∇f(s, t) = 0 we obtain the following system of linear equations,
where A and B are some constants.

t 〈u, u〉 − s 〈u, v〉 = A

t 〈u, v〉 − s 〈v, v〉 = B

These equations have a unique solution because the determinant

∣∣∣∣
〈u, u〉 〈u, v〉
〈u, v〉 〈v, v〉

∣∣∣∣

is nonzero by the Schwarz inequality and the linear indepdendence of u and v. Let R > 0 be so
large that the solution (s∗, t∗) lies inside the circle s2+t2 = R2. Then on the set s2+t2 = R2 either
the minimum value occurs at the unique critical point or else it occurs on the boundary circle. Let
D be the value of the function at the critical point, so that D ≥ 0. If D is not a minimum value
for f(s, t) then for every Q > R there is a point on the circle s2 + t2 = Q2 for which the value
of the function is less than D. We claim this is impossible, and it will follow that D must be the
minimum value of the function.

Consider the values of the function f on the circle of radius ρ; these are given by

| r ( ρ cos θ, ρ sin θ ) |2

and if we write everything out explicitly we obtain the following expression for this function, in
which q is the vector p0 − p1:

ρ2 | cos θu− sin θ v|2 + 2 ρ 〈cos θu− sin θ v, q〉 + |q|2

Let m denote the minimum value of | cos θ u−sin θ v| for θ ∈ [0, 2π] and let M denote the maximum
value. Since u and v are linearly independent, the displayed expression is always positive and
therefore m must be positive. We claim that the minimum value of f(s, t) on the circle s2 + t2 = ρ2

is greater than or equal to the following expression:

ρ2m2 − 2 ρM |q|+ |q|2

This follows immediately from the inequalities

ρ2 | cos θ u− sin θ v|2 ≥ ρ2m2

2 ρ 〈cos θu− sin θ v, q〉 ≥ − 2ρ | cos θ u− sin θ v| · |q| ≥ 2 ρM |q|

where the first inequality in the second line comes from the Schwarz inequality.

Since
lim

ρ→∞
ρ2m2 − 2 ρM |q|+ |q|2 = +∞

it follows that all sufficiently large ρ the minimum value of f(s, t) on the circle s2+t2 = ρ2 is strictly
greater than D, and therefore D must be the absolute minimum for f on the set s2 + t2 ≤ ρ2 for
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all sufficiently large ρ. But this means that D must be the absolute minimum for the function over
all possible values of s and t.

SECOND STEP. In order to determine where the minimum value is attained, one must set the
partial derivatives of f with respect to a and t both equal to zero. If we do this we obtain the
following equations:

0 = 2 r(s, t) · (−v)

0 = 2 r(s, t) · ( u)

Since u and v are linearly independent, this minimum occurs when r(s, t) a scalar multiple of u×v.

Suppose that the minimum distance between the lines is attained at parameter values (s0, t0).
If x and y are the points on the lines where this minimum value is realized, then by construction
we know that r(s0, t0) = x − y, and since the left hand side is a multiple of u × v it follows that
the line joining x and y is perpendicular to both L and M .

THIRD STEP. As above, Suppose that the minimum distance between the lines is attained at
parameter values (s0, t0). Then as before we have r(s0, t0) = k u × v for some scalar k, and it
follows immediately that the minimum distance d satisfies

d =

∣∣ [u,v, r(s0, t0)
] ∣∣

|u× v|

where [a,b, c] refers to the usual triple product of vectors having the form (a×b) · c = a · (b× c).
The exercise in do Carmo claims that a similar formula holds with r(0, 0) = p0 = p1 replacing
r(s0, t0). This is true because

r(0, 0) = r(s0, t0) + t0 u − s0 v0

which implies that the triple products [u,v, r(s0, t0)
]

and [u,v, r(0, 0)
]

are equal. This is the
formula in do Carmo.

I.2 : Parametrized curves

(O’Neill, § 1.4)

There is a great deal of overlap between the contents of this section and certain standard topics
in calculus courses. One major difference in this course is the need to work more systematically with
some fundamental but relatively complex theoretical points in calculus that can (and in most cases
probably should) be overlooked when working most ordinary and multivariable calculus problems.
In particular this applies to the definitions of limits and continuity, and accordingly we shall begin
with some comments on this background material.

Useful facts about limits

In ordinary and multivariable calculus courses it is generally possible to get by with only a
vague understanding of the concept of limit, but in this course a somewhat better understanding
is necessary. In particular, the following consequences of the definition arise repeatedly.
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FACT I. Let f be a function defined at all points of the interval (a − h, a + h) for some h > 0
except possibly at a, and suppose that

lim
x→a

f(x) = b > 0 .

Then there is a δ > 0 such that δ < h and f(x) > 0 provided x ∈ (a− δ, a+ δ) and x 6= a.

FACT II. In the situation described above, if the limit exists but is negative, then there is a
δ > 0 such that δ < h and f(x) > 0 provided x ∈ (a− δ, a+ δ) and x 6= a.

FACT III. Each of the preceding statements remains true if 0 is replaced by an arbitrary real
number.

Derivation(s). We shall only do the first one; the other two proceed along similar lines. By
assumption b is a positive real number. Therefore the definition of limit implies there is some δ > 0
such that |f(x)− b| < b provided provided x ∈ (a− δ, a+ δ) and x 6= a. It then follows that

f(x) = b +
(
f(x) − b

)
≥ b − |f(x)− b| > b − b = 0

which is what we wanted to show.

We shall also need the following statement about infinite limits:

FACT IV. Let f be a continuous function defined on some open interval containing 0 such that f is
strictly increasing and f(0) = 0. Then for each positive constant C there is a positive real number h
sufficiently close to zero such that x ∈ (0, h) =⇒ 1/f(x) > C and x ∈ (−h, 0) =⇒ 1/f(x) < −C.

Proof. Let ε be the positive number 1/C; by continuity we know that |f(x)| < ε if x ∈ (−h, h)
for a suitably small h > 0. Therefore x ∈ (0, h) =⇒ 0 < f(x) < ε and x ∈ (−h, 0) =⇒ −ε <
f(x) < 0. The desired inequalities follow by taking reciprocals in each case.

What is a curve?

There are two different but related ways to think about curves in the plane or 3-dimensional
space. One can view a curve simply as a set of points, or one can view a curve more dynamically as
a description of the position of a moving object at a given time. In calculus courses one generally
adopts the second approach to define curves in terms of parametric equations; from this viewpoint
one retrieves the description of curves as sets of points by taking the set of all points traced out by
the moving object, where the independent “time” variable lies in some interval J . For example, the
line in R

2 defined by the equation y = mx is the set of points traced out by the parametrized curve
defined by x(t) = t and y(t) = mt. Similarly, the unit circle defined by the equation x2 + y2 = 1
is the set of points traced out by the parametrized curve x(t) = cos t, y(t) = sin t. The set of all
points expressible as x(t) for some t ∈ J will be called the image of the parametrized curve (since it
represents all point traced out by the curve this set is sometimes called the trace of the curve, but
we shall not use this term in order to avoid confusion with the entirely different notion of the trace
of a matrix). We shall follow the standard approach of calculus books here unless stated otherwise.

A parametrized curve in the plane or 3-dimensional space may be viewed as a vector-valued
function γ or x defined on some interval of the real line and taking values in V = R

2 or R
3. In this

course we usually want our curves to be continuous; this is equivalent to saying that each of the
coordinate functions is continuous. Given that this is a course in differential geometry it should

12



not be surprising that we also want our curves to have some decent differentiability properties. If x
is the vector function defining our curve and its coordinates are given by xi, where i runs between
1 and 2 or 1 and 3 depending upon the dimension of V , then the derivative of x at a point t is
defined using the coordinate functions:

x′(t) =
(
x′1(t), x

′
2(t), x

′
3(t)

)

Strictly speaking this is the definition in the 3-dimensional case, but the adaptation to the 2-
dimensional case is immediate — one can just suppress the third coordinate or view R

2 as the
subset of R

3 consisting of all points whose third coordinate is zero.

Definition. A curve x defined on an interval J and taking values in V = R
2 or R

3 is differentiable
if x′(t) exists for all t ∈ J . The curve is said to be smooth if x′ is continuous, and it is said to be
a regular smooth curve if it is smooth and x′(t) is nonzero for all t ∈ J . The curve will be said to
be smooth of class Cr for some integer r ≥ 1 if x has an rth order continuous derivative, and the
curve will be said to be smooth of class C∞ if it is infinitely differentiable (equivalently, Cr for all
finite r).

The crucial property of regular smooth curves is that they have well defined tangent lines:

Definition. Let x be a regular smooth curve and let a be a point in the domain J of x.
The tangent line to x at the parameter value t = a is the unique line passing through x(a) and
x(a) + x′(a). There is a natural associated parametrization of this line given by

T (u) = x(a) + ux′(a) .

One expects the tangent line to be the “best possible” linear approximation to a smooth curve.
The following result confirms this:

PROPOSITION. In the notation above, if u 6= 0 is small and a+ u ∈ J then we have

x(a+ u) = x(u) + ux′(a) + uΘ(u)

where limu→0 Θ(u) = 0. Furthermore, if p is any vector such that

x(a+ u) = x(u) + up + uW(u)

where limu→0 W(u) = 0, then p = x′(a).

Proof. Given a vector a we shall denote its ith coordinate by ai.

Certainly there is no problem writing x(a + u) in the form x(u) + ux′(a) + uΘ(u) for some
vector valued function Θ; the substance of the first part of the proposition is that this function goes
to zero as u→ 0. Limit identities for vector valued functions are equivalent to scalar limit identities
for every coordinate function of the vectors, so the proof of the first part of the proposition reduces
to checking that the coordinates θi of Θ satisfy limu→0 θi(u) = 0 for all i. However, by construction
we have

θi(u) =
xi(a+ u)− xi(a)

u
− x′i(a)

and since x is differentiable at a the limit of the right hand side of this equation is zero. Therefore
we have where limu→0 Θ(u) = 0.

13



Suppose now that the second equation in the statement of the proposition is valid. As in the
previous paragraph we have

wi(u) =
xi(a+ u)− xi(a)

u
− pi(a)

but this time we know that limu→0 wi(u) = 0 for all i. The only way these equations can hold is if
pi(a) = x′i(a) for all i.

Piecewise smooth curves

There are many important geometrical curves that that are not smooth but can be decomposed
into smooth pieces. One of the simplest examples is the boundary of the square parametrized in
a counterclockwise sense. Specifically, take x to be defined on the interval [0, 4] by the following
rules:

(a) x(t) = (t, 0) for t ∈ [0, 1]

(b) x(t) = (1, t− 1) for t ∈ [1, 2]

(c) x(t) = (2− t, 1) for t ∈ [2, 3]

(d) x(t) = (0, 1− t) for t ∈ [3, 4]

The formulas for (a) and (b) agree when t = 1, and likewise the formulas for (b) and (c) agree
when t = 2, and finally the formulas for (c) and (d) agree when t = 3; therefore these formulas
define a continuous curve. On each of the intervals [n, n+ 1] for n = 0, 1, 2, 3 the curve is a regular
smooth curve, but of course the tangent vectors coming from the left and the right at these values
are perpendicular to each other. Clearly there are many other examples of this sort, and they
include all broken line curves. The following definition includes both these types of curves and
regular smooth curves as special cases:

Definition. A continuous curve x defined on an interval [a, b] is said to be a regular piecewise
smooth curve if there is a partition of the interval given by points

a = p0 < p1 · · · < pn−1 < pn = b

such that for each i the restriction x[i] of x to the subinterval [pi−1, pi] is a regular smooth curve.

For the boundary of the square parametrized in the counterclockwise sense, the partition is
given by

0 < 1 < 2 < 3 < 4 .

Calculus texts give many further examples of such curves, and the references cited at the
beginning of this unit also contain a wide assortment of examples. One important thing to note
is that at each of the partition points pi one has a left hand tangent vector x′(pi−) obtained from
x[i] and a right hand tangent vector x′(pi+) obtained from x[i + 1], but these two vectors are
not necessarily the same. In particular, they do not coincide at the partition points 1, 2, 3 for the
parametrized boundary curve for the square that was described above.
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Taylor’s Formula for vector valued functions

We shall need a vector analog of the usual Taylor’s Theorem for polynomial approximations
of real valued functions on an interval.

VECTOR VALUED TAYLOR’S THEOREM. Let g be a vector valued function defined on
an interval (a− r, a+ r) that has continuous derivatives of all orders less than or equal to n+ 1 on
that interval. Then for |h| < r we have

g(a+ h) = g(a) +

n∑

k=1

hk

k!
g(k)(a) +

∫ a+h

a

(a+ h− t)n

n!
g(n+1)(t) dt

where g(k) as usual denotes the kth derivative of g.

Proof. Let Rn(h) be the integral in the displayed equation. Then integration by parts implies
that

Rn−1(h) =
hn

n!
g(n)(a) + Rn(h)

and the Fundamental Theorem of Calculus implies that

g(a + h) = g(a) + R1(h) .

Therefore if we set R0 = 0 we have

g(a + h) = g(a) +

n∑

k=1

(
Rk(h)−Rk−1(h)

)
+ Rn(h)

and if we use the formulas above to substitute for the terms Rk(h)−Rk−1(h) and Rn(h) we obtain
the formula displayed above.

The following consequence of Taylor’s Theorem will be particularly useful:

COROLLARY. Given g and the other notation as above, let Pn(h) be the sum of

g(a) +

n∑

k=1

hk

k!
g(k)(a) .

Then given r0 < r and |h| < r0 < r we have |g(a + h) − Pn(h)| ≤ C |h|n+1, for some positive
constant C.

Proof. The length of the difference vector in the previous sentence is given by

|Rn(h)| =

∣∣∣∣∣

∫ a+h

a

(a+ h− t)n

n!
g(n+1)(t) dt

∣∣∣∣∣ ≤

sign(h) ·
∫ a+h

a

∣∣∣∣
(a+ h− t)n

n!
g(n+1)(t)

∣∣∣∣ dt ≤

(
max|t−a|≤r0

|g(n+1)(t)|
)
·
∫ |h|

0

un

n!
du ≤ M

|h|n+1

(n+ 1)!
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At each point where F (x, y) = 0 we have ∇F (x, y) 6= 0.

where M is a positive constant at least as large as the maximum value of |g(n+1)(t)| for |t−a| < r0.

Algebraic and transcendental curves

Frequently curves are defined by means of an equation of the form F (x, y) = 0, where F is
a function of two variables with continuous partial derivatives. Normally one makes the following
additional assumption:

If this condition is met at (a, b) such that F (a, b), then the Implicit Function Theorem in
Section II.3 of these notes implies that, if we restrict to a small enough region U containing (a, b),
then the set of points in U satisfying F (x, y) = 0 is equal to the graph of some function y = h(x) if
the first partial derivative of F at (a, b) is nonzero. Similarly, if the second partial derivative of F
at (a, b) is nonzero, then there is a small region U containing (a, b) such that the set of points in U
satisfying F (x, y) = 0 is equal to the graph of some function x = k(y). If we combine the conclusions
in the preceding sentences, we may conclude that the set of points satisfying F (x, y) = 0 can be
split into pieces such that each has a smooth parametrization. The ordinary unit circle defined by
x2 + y2 = 1 is an example of a curve that is near some points as the graph of a function of x and
near other points as the graph of a function of y, but cannot be expressed globally as the graph of
a function of either x or y (for example, if it were globally the graph of a function of x then every
vertical line defined by an equation of the form x = c would meet the curve in at most one point,
and clearly there are many values of c for which the curve meets the vertical line in two points).

To indicate the importance of describing curves as sets of points (x, y) such that F (x, y) = 0,
we need only recall that one way of characterizing lines and conics in the plane is that lines in the
planes are the curves whose coordinates (x, y) satisfy a nontrivial first degree polynomial equation
p(x, y) = 0, and conics are the curves which satisfy a nontrivial polynomial equation p(x, y) = 0
such that the polynomial p has degree 2. More generally, one can define a plane curve to be
algebraic if its coordinates satisfy a nontrivial polynomial equation p(x, y) = 0, and similarly a
curve is transcendental if there is no nonzero polynomial p whose coordinates satisfy the equation
p(x, y) = 0. A discussion of algebraic and transcendental curves appears in the following online
documents:

http://math.ucr.edu/∼res/math153/transcurves.pdf
http://math.ucr.edu/∼res/math153/transcurves2.pdf
http://math.ucr.edu/∼res/math153/transcurves3.pdf

I.3 : Arc length and reparametrization

(O’Neill, §§ 1.4, 2.2)

Given a parametrized smooth regular curve x defined on a closed interval [a, b], as in calculus
we define the arc length of x from t = a to t = b to be the integral

L =

∫ b

a

|x′(t)| dt .
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The motivation for this definition is usually discussed in calculus courses, and it is reviewed below in
the subsection on arc length for curves that are not necessarily smooth. More generally, if a ≤ t ≤ b
then the length of the curve from parameter value a to parameter value t is given by

s(t) =

∫ t

a

|x′(u)| du .

By the Fundamental Theorem of Calculus, the partial arc length function s is differentiable on [a, b]
and its derivative is equal to |x′(t)|. If we have a regular smooth curve, this function is continuous
and everywhere positive (hence s(t) is a strictly increasing function of t), and the image of this
function is equal to the closed interval [0, L].

COMPUTATIONAL ISSUES. Although the arc length formula is fairly simple to state, it can be
extremely difficult to evaluate the integrals which it yields, even for familiar curves with relatively
simple parametrizations. For example, if one applies the formula to an arc on an ellipse, the one
cannot express the resulting integral in terms of the standard functions considered in first year
calculus. Here are some further references:

http://en.wikipedia.org/wiki/Elliptic integral

http://math.ucr.edu/∼res/math10B/nonelementary integrals.pdf

A specific example is mentioned in Section I.4 below (see the subheading Computational tech-
niques).

Reparametrizations of curves

Given a parametrized curve x defined on an interval [a, b], it is easy to find other parametriza-
tions by simple changes of variables. For example, the curve y(t) = x(t+ a) resembles the original
curve in many respects: For example, both have the same tangent vectors and images, and the
only real difference is that y is defined on [0, b − a] rather than [a, b]. Less trivial changes of vari-
able can be extremely helpful in analyzing the image of a curve. For example, the parametrized
curve x(t) = (et − e−t, et + e−t) has the same image as the the upper piece of the hyperbola
y2− x2 = 4 (i.e., the graph of y =

√
4 + x2); as a graph, this curve can also be parametrized using

y(u) = (u,
√

4 + u2). These parametrizations are related by the change of variables u = 2 sinh t; in
other words, we have

x(t) = y
(
2 sinh t

)
.

Note that u varies from −∞ to +∞ as t goes from −∞ to +∞, and u′(t) = cosh t > 0 for all t.

More generally, it is useful to consider reparametrizations of curves corresponding to functions
u(t) such that u′(t) is never zero. Of course the sign of u′ determines whether u is strictly increasing
or decreasing, and it is useful to allow both possibilities. Suppose that we are given a differentiable
function u defined on [a, b] such that u′ is never zero on [a, b]. Then the image ot u is some other
closed interval, say [c, d]; if u is increasing then u(a) = c and u(b) = d, while if u is decreasing
then u(a) = d and u(b) = c. It follows that u has an inverse function t defined on [c, d] and taking
values in [a, b]. Furthermore, the derivatives dt/du and du/dt are reciprocals of each other by the
standard formula for the derivative of an inverse function.

It is important to understand how reparametrization changes geometrical properties of a curve
such as tangent lines and arc lengths. The most basic thing to consider is the effect on tangent
vectors.
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PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c, d], let
u : [a, b] → [c, d] be a function with a continuous derivative that is nowhere zero, and let y(t) =
x
(
u(t)

)
. Then

y′(t) = u′(t) · x′
(
u(t)

)
.

This is an immediate consequence of the Chain Rule.

COROLLARY. For each t ∈ [a, b] the tangent line to y at parameter value t is the same as
the tangent line to x at u(t). Furthermore, the standard parametrizations are related by a linear
change of coordinates.

Proof. By definition, the tangent line to x at u(t) is the line joining x
(
u(t)

)
and x

(
u(t)

)
+

x′
(
u(t)

)
. Similarly, the tangent line to y at t is the line joining y(t) = x

(
u(t)

)
and

y(t) + y′(t) = x
(
u(t)

)
+ u′(t)x′

(
u(t)

)
.

Since the line joining the distinct points (or vectors) a and a + b is the same as the line joining a
and a + cb if c 6= 0, it follows that the two tangent lines are the same (take a = y(t), b = x′(u)
and c = u′(t)).

In fact, we have obtained standard linear parametrizations of this line given by f(z) = a + z b
and g(w) = a + cw b. It follows that g(w) = f(cw).

Arc length is another property of a curve that does not change under reparmetrization.

PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c, d], let
u : [a, b] → [c, d] be a function with a continuous derivative that is nowhere zero, and let y(t) =
x
(
u(t)

)
. Then ∫ d

c

|x′(u)| du =

∫ b

a

|y′(t)| dt

Proof. The standard change of variables formula for integrals implies that

∫ d

c

|x′(u)| du =

∫ b

a

|x′
(
u(t)

)
|u′(t)| dt .

Some comments about this formula and the absolute value sign may be helpful. If u is increasing
then the sign is positive and we have u(a) = c and u(b) = d, so |u′(t)| = u′(t); on the other hand if
u is decreasing, then the Fundamental Theorem of Calculus suggests that the integral on the left
hand side should be equal to

∫ a

b

∣∣∣x′
(
u(t)

)∣∣∣ · u′(t) dt = −
∫ b

a

∣∣∣x′
(
u(t)

)∣∣∣ · u′(t) dt =

∫ b

a

∣∣∣x′
(
u(t)

)∣∣∣ · [−u′(t)] dt

so that the formula above holds because u′ < 0 implies |u′| = −u′. In any case, the properties of
vector length imply that the integrand on the right hand side of the change of variables equation
is |u′(t) · x′(u)|, which by the previous proposition is equal to |y′(t)|.

If v is a regular smooth curve defined on [a, b], then the arc length function

s(t) =

∫ t

a

|v′(u)| du
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often provides an extremely useful reparametrization because of the following result:

PROPOSITION. Let v be as above, and let x be the reparametrization defined by x(s) =
v
(
µ(s)

)
, where µ is the inverse function to the arc length function λ : [a, b] → [0, L]. Then

|x′(s)| = 1 for all s.

Proof. By the Fundamental Theorem of Calculus we know that λ′(t) = |v′(t)|. Therefore by the
Chain Rule we know that

x′(s) = µ′(s)v′
(
µ(s)

)

and by the differentiation formula for inverse functions we know that

µ′(s) =
1

λ′(µ(s) )
= T ′(s) =

1

|v′(T (s) )|

and if we substitute this into the expression given by the chain rule we see that

|x′(s)| = |T ′(s)| |v′
(
T (s)

)
| =

1

|v′
(
T (s)

)
| · |v

′
(
T (s)

)
| = 1 .

Arc length for more general curves

The geometric motivation for the definition of arc length is described in Exercises 8–0 on pages
10–11 of do Carmo; specifically, given a parametrized curve x defined on [a, b] one picks a finite
set of points ti such that

a = t0 < t1 < · · · < tm = b

and views the length of the inscribed broken line joining t0 to t1, t1 to t2 etc. as an approximation
to the length of the curve. In favorable circumstances if one refines the finite set of points by
taking more and more of them and making them closer and closer together, the lengths of these
broken line curves will have a limiting value which is the arc length. Exercise 9(b) on page 11 of
do Carmo gives one example of a curve for which no arc length can be defined. During the time
since do Carmo’s book was published, a special class of such curves known as fractal curves has
received considerable attention. The parametric equations defining such curves all have the form
x(t) = limn→∞ xn(t), where each xn is a piecewise smooth regular curve and for each n one obtains
xn from xn−1 by making some small but systematic changes. Some online references with more
information on such curves are given below.

http://mathworld.wolfram.com/Fractal.html

http://academy.wolfram.agnescott.edu/∼lriddle/ifs/ksnow/lsnow/htm
http://en2.wikipedia.org/wiki/Koch snowflake

http://en.wikipedia.org/wiki/Fractal geometry

The preceding discussion illustrates that parametrized curves include a wide range of ob-
jects which do not have piecewise smooth reparametrizations. However, thus far the images of
the parametrizations “look like” the standard examples in some vague sense; namely, they are
topologically equivalent to intervals in the real line or circles in the plane. It is possible to find
even more bizarre examples of parametrized curves. In particular, one can construct parametrized
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curves whose image is the entire coordinate plane or 3-space. Here is an online reference for such
space-filling curves:

http://en.wikipedia.org/wiki/Space-filling curve

A more formal account appears in Section 44 of the following graduate level textbook:

J. R. Munkres. Topology. (Second Edition), Prentice-Hall, Saddle River NJ, 2000.
ISBN: 0–13–181629–2.

I.4 : Curvature and torsion

(O’Neill, § 2.3)

Many calculus courses include a brief discussion of curvature, but the approaches vary and it
will be better to make a fresh start.

Definition. Let x be a regular smooth curve, and assume it is parametrized by arc length
plus a constant (i.e., |x′(s)| = 1 for all s). The curvature of x at parameter value s is equal to
κ(s) = |x′′(s)|.

The most immediate question about this definition is why it has anything to do with our
intuitive idea of curvature. The best way to answer this is to look at some examples.

Suppose that we are given a parametrized line with an equation of the form x(t) = a + tb
where |b| = 1. It then follows that x is parametrized by arc length by means of t, and clearly we
have x′′(t) = 0. This means that the curvature of the line is zero at all points, which is what we
expect.

Consider now an example that is genuinely curved; namely, the circle of radius r about the
origin. The arc length parametrization for this curve has the form

x(s) =
(
r cos(s/r), r sin(s/r)

)

and one can check directly that its first two derivatives are given as follows:

x′(s) =
(
− sin(s/r), cos(s/r)

)

x′′(s) =

(
−cos(s/r)

r
, − sin(s/r)

r

)

It follows that the curvature of the circle at all points is given by the reciprocal of the radius.

The following simple property of the “acceleration” function x′′(s) turns out to be quite im-
portant for our purposes:

PROPOSITION. The vectors x′′(s) and x′(s) are perpendicular.

Proof. We know that |x′(s)| is always equal to 1, and thus the same is true of its square, which
is just the dot product of x′(s) with itself. The product rule for differentiating dot products of two
functions then implies that

0 =
d

ds

(
x′(s) · x′(s)

)
= 2

(
x′(s) · x′′(s)

)
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and therefore the two vectors are indeed perpendicular.

Geometric interpretation of curvature

We begin with a very simple observation.

PROPOSITION. If x(s) is a smooth curve (parametrized by arc length) whose curvature κ(s)
is zero for all s, then x(s) is a straght line curve of the form x(s) = x(0) + sx′(0).

Proof. Since κ(s) is the length of x′′(s), if the curvature is always zero then the same is true for
x′′(s). But this means that x′(s) is constant and hence equal to x′(0) for all s, and the latter in
turn implies that x(s) = x(0) + sx′(0).

Given a smooth curve, the tangent line to the curve at a point t may be viewed as a first order
linear approximation to the curve. The notion of curvature is related to a corresponding second
order approximation to the curve at parameter value t by a line or circle. We begin by making this
notion precise:

Defintion. Let n be a positive integer. Given two curves a(t) and b(t) defined on an interval J
containing t0 such that a(t0) = b(t0), we say that a and b are strong nth order approximations to
each other if there is an ε > 0 such that |h| < ε and t0 + h ∈ J imply

|b(t0 + h) − a(t0 + h)| ≤ C |h|n+1

for some constant C > 0. The analytic condition on the order of approximation is often formulated
geometrically as the order of contact that two curves have with each other at a given point; as
the order of contact increases, so does the speed at which the curves approach each other. The
most basic visual examples here are the x-axis and the graphs of the curves xn near the origin.
Further information relating geometric ideas of high order contact and Taylor polynomial approx-
imations is presented on pages 87–91 of the Schaum’s Outline Series book on differential geometry
(bibliographic information is given at the beginning of these notes).

LEMMA. Suppose that the curves a(t) and b(t) are defined on an interval J containing t0 such
that a(t0) = b(t0), and assume also that a and b are strong nth order approximations to each other
at t0. Then for each regular smooth reparametrization t(u) with t0 = t(u0) the curves a o t and b ot
are strong nth order approximations to each other at u0.

Proof. Let J0 be the domain of the function t(u), and let K0 be a closed bounded subinterval
containing u0 such that the latter is an endpoint of K0 if and only if it is an endpoint of J0. Denote
the maximum value of |t′(u)| on this interval by M . Then by hypothesis and the Mean Value
Theorem we have

|b
(
t(u0 + h)

)
− a

(
t(u0 + h))| ≤ C |t(u0 + h)− t(u0)|n+1 ≤ CMn+1 · |h|n+1

which proves the assertion of the lemma.

In the terminology of nth order approximations, if we are given a regular smooth curve x
then a strong first order approximation to it is given by the tangent line with the standard linear
parametrization

L(t0 + h) = x(t0) + hx′(t) .

Furthermore, this line is the unique strong first order linear approximation to x.
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Here is the main result on curvature and strong second order approximations.

THEOREM. Let x be a regular smooth curve defined on an interval J containing 0 such that
x′ has a continuous second derivative and |x′| = 1 (hence x is parametrized by arc length plus a
constant).

(i) If the curvature of x at 0 is zero, then the tangent line is a strong second order approximation
to x.

(ii) Suppose that the curvature of x at 0 is nonzero, let N be the unit vector pointing in the
same direction as x′′(0) (the latter is nonzero by the definition and nonvanishing of the curvature
at parameter value 0). If Γ is the circle through x(0) such that [1] its center is x(0) + (κ(0))−1N,
[2] it lies in the plane containing this center and the tangent line to the curve at parameter value
zero, then Γ is a strong second order approximation to x.

For the sake of completeness, we shall describe the unique plane containing a given line and
an external point explicitly as follows. If a, b and c are noncollinear points in R

3 then the plane
containing them consists of all x such that x− a is perpendicular to

(
b− a

)
×
(
c− a

)

which translates to the triple product equation

[(x− a), (b− a), (c− a)] = 0 .

Suppose now that b1 and c1 are points on the line containing b and c. Then we may write

b1 = ub + (1− u) c , c1 = v b + (1− v) c

for suitable real numbers u and v. The equations above immediately imply the following identities:

(b1 − a) = u (b − a) + (1− u) (c − a)

(c1 − a) = v (b − a) + (1− v) (c − a) .

These formulas and the basic properties of determinants imply

[(x− a). (b1 − a), (c1 − a)] =

[(x− a). u(b1 − a), v(c1 − a)] +
[
(x− a). (1− u)

(
b1 − a

)
, (1− v)

(
c1 − a

)]
=

uv [(x− a), (b− a), (c− a)] + (1− u) (1− v) [(x − a), (c− a), (b− a)] =

uv 0 − (1− u) (1 − v) 0 = 0

and hence the equation
[(x− a), (b− a), (c− a)] = 0

implies the corresponding equation if b and c are replaced by two arbitrary points on the line
containing b and c.

Proof of Proposition. Consider first the case where κ(0) = 0. Then the tangent line to
the curve has equation L(s) = sx′(0) and the second order Taylor expansion for x has the form
x(s) = sx′(0) + 1

2s
2 x′′(0) + s3 θ(s) where θ(s) is bounded for s sufficiently close to zero. The
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assumption κ(0) = 0 implies that x′′(0) = 0 and therefore we have x(s) − L(s) = s3 θ(s) where
θ(s) is bounded for s sufficiently close to zero. Therefore the tangent line is a strong second order
approximation to the curve if the curvature is equal to zero.

Suppose now that κ(0) 6= 0, and let N be the unit vector pointing in the same direction as
x′′(0). Define z by the formula

z = x(0) +
1

κ(0)
N

and consider the circle in the plane of z and the tangent line to x at parameter value s = 0 such
that the center is z and the radius is 1/κ(0). If we set r equal to 1/κ(0) and T = x′(0), then a
parametrization of this circle in terms of arc length is given by

Γ(s) = z − r cos(s/r)N + r sin(s/r)T .

Using the standard power series expansions for the sine and cosine function and the identity z =
x(0) − rN, we may rewrite this in the form

Γ(s) = x(0) +
s2

2r
N + s3α(s)N + sT + s3β(s)T

where α(s) and β(s) are continuous functions and hence are bounded for s close to zero. On the
other hand, using the Taylor expansion of x(s) near s = 0 we may write x(s) in the form

x(0) + sx′(0) +
s2

2
x′′(0) + s3 W(s)

where W(s) is bounded for s close to zero. But x′(0) = T and

x′′(0) = κ(0)N =
1

r
N

so that Γ(s)− x(s) has the form s3W1(s) where W1(s) is a bounded function of s. Therefore the
circle defined by Γ is a strong second order approximation to the original curve at the parameter
value s = 0.

Notation. If the curvature of x is nonzero near parameter value s as in the proposition, then
the center of the strong second order circle approximation

z(s) = x(s) +
1

(κ(s))2
x′′(s)

is called the center of curvature of x at parameter value s. The circle itsef is called the osculating
circle to the curve at parameter value s (in Latin, osculare = to kiss).

Complementary result. A more detailed analysis of the situation shows that if κ(0) 6= 0 then
the circle given above is the unique circle that is a second order approximation to the original curve
at the given point.

Computational techniques
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Although the description of curvature in terms of arc length parametrizations is important for
theoretical purposes, it is usually not particularly helpful if one wants to compute the curvature of
a given curve at a given point. One major reason for this is that the arc length function s(t) can
only be written down explicitly in a very restricted class of cases. In particular, if we consider the
graph of the cubic polynomial y = x3 with parametrization (t, t3) on some interval [0, a] then the
arc length parameter is given by the formula

s(t) =

∫ t

0

√
1 + 9u4 du

and results of P. Chebyshev from the nineteenth century show that there is no “nice” formula
for this function in terms of the usual functions one studies in first year calculus. Therefore it is
important to have formulas for curvature in terms of arbitrary parametrizations of a regular smooth
curve.

Remarks.

1. The statement about the antiderivative of
√

1 + 9x4 is stronger than simply saying that
no one has has been able to find a nice formula for the antiderivative. It as just as impossible to
find one as it is to find two positive whole numbers a and b such that

√
2 = a/b or to find two even

positive integers whose sum is an odd integer.

2. A detailed statement of Chebyshev’s result can be found on the web link

http://mathworld.wolfram.com/Integral.html

and further references are also given there.

The following formula appears in many calculus texts:

FIRST CURVATURE FORMULA. Let x be a smooth regular curve, let s be the arc length
function, let k(t) = κ( s(t) ), and let T(t) be the unit tangent vector function obtained by multi-
plying x′(t) by the reciprocal of its length. Then we have

k(t) =
|T ′(t)|
|x′(t)| .

Derivation. We have seen that T (s) is equal to x′(s), and therefore by the chain rule we have

T ′(t) = s′(t)T ′( s(t) ) = |x′(t)|x′′(s) .

Taking lengths of the vectors on both sides of this equation we see that

|T ′(t)| = |x′(t)| · |x′′(s)| = |x′(t)| k(t)

which is equivalent to the formula for k(t) displayed above.

Here is another formula for curvature that is often found in calculus textbooks.

SECOND CURVATURE FORMULA. Let x be a smooth regular curve, let s be the arc
length function, let T(t) be the unit length tangent vector function, and let k(t) = κ( s(t) ). Then
we have

k(t) =
|x′(t) × x′′(t)|
|x′(t)|3 .
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Derivation. As in the derivation of the First Curvature Formula we have x′ = s′T. Therefore
the Leibniz product rule for differentiating the product of a scalar function and a vector function
yields

x′′ = s′′T + s′T ′ .

Since T×T = 0 the latter implies

x′ × x′′ = (s′)2
(
T×T ′

)
.

Since |T| = 1 it follows that T · T ′ = 0; i.e., the vectors T and T ′ are orthogonal. This in turn
implies that |T×T ′| is equal to |T| · |T ′| so that

|x′ × x′′| = |s′|2 |T×T ′| = |s′|2 |T| · |T ′| = (s′)2 |T ′| = |x′|2 |T ′|

(at the next to last step we again use the identity |T| = 1). It follows that

|T ′| =
|x′(t) × x′′(t)|
|x′(t)|2

and the Second Curvature Formula follows by substitution of this expression into the First Curva-
ture Formula.

Osculating planes

Thus far we have discussed lines and circles that are good approximations to a curve. Given a
curve in 3-dimensional space one can also ask whether there is some plane that comes as close as
possible to containing the given curve. Of course, for curves that lie entirely in a single plane, the
definition should yield this plane.

Given a continuous curve x(t), and a plane Π, one way of making this notion precise is to
consider the function ∆(t) giving the distance from x(t) to Π. If the point x(t0) lies on Π, then
∆(t0) = 0 and one test of how close the curve comes to lying in the plane is to determine the extent
to which the zero function is an nth order approximation to ∆(t) for various choices of n. In fact, if
κ(t0) 6= 0 then there is a unique plane such that the zero function is a second order approximation
to ∆(t), and this plane is called the osculating plane to x at parameter value t = t0. Formally, we
proceed as follows:

Definition. Let x(s) be a regular smooth curve parametrized by arc length (so that |x ′| = 1),
and assume that κ(s0) 6= 0. Let a = x(0), let T = x′(s0), and let N be the unit vector pointing in
the same direction as x′′(s0). The osculating plane to the curve at parameter value s0 is the unique
plane containing the three noncollinear vectors a, a + T, and a + N.

It follows that the equation defining the osculating plane may be written in the form

[(y − a), T, N] = 0 .

We can now state the result on the order of contact between curves and their osculating planes.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length (hence |x′| = 1),
assume that x has a continuous third derivative, and assume also that κ(s0) 6= 0. Let Π be the
osculating plane of x at parameter value s0, and let ∆(s) denote the distance between x(s) and Π.
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Then the osculating plane is the unique plane through x(s0) such that the zero function is a second
order approximation to the distance function ∆(s) at s0.

Proof. Let a = x(s0), let T = x′(s0), let N be the unit vector pointing in the same direction
as x′′(s0), and let B be the cross product T ×N. Then the oscularing plane is the unique plane
containing a, a + T, and a + N, and the distance between a point y and the osculating plane is
the absolute value of the function D̃ (y) = (y− a) ·B. The second order Taylor approximation to
x(s) with respect to s0 is then given by the formula

x(s) = a + (s− s0) ·T +
(s− s0)2 κ(s0)

2
·N + (s− s0)3 W(s)

where W(s) is bounded for s sufficiently close to s0. Therefore since B is perpendicular to T and
N we have

D̃
(
x(s))

)
= (s− s0)3 W(s) ·B

where W(s) · B is bounded for s sufficiently close to s0. Therefore the given curve has order of
contact at least two with respect to its osculating plane.

Suppose now that we are given some other plane through a; then one has a normal vector V
to the plane of the form B+pT+ qN where p and q are not both zero. The distance between x(s)
and plane through a with normal vector V will then be the absolute value of a nonzero multiple of
the function (

(x(s) − a) ·V
)

which is equal to

g(s− s0) = (s− s0)
(
T ·V

)
+

(s− s0)2 κ(s0)
2

(
N ·V

)
+ (s− s0)3

(
W(s) ·V

)
.

We then have
g(s− s0)
(s− s0)3

=
p

(s− s0)2
+

q

(s− s0)
+
(
W(s) ·V

)

where the third term on the right is bounded. But since at least one of p and q is nonzero, it follows
that the entire sum is not a bounded function of s if s is close to s0. Therefore the curve cannot
have order of contact at least two with any other plane through a.

Torsion

Curvature may be viewed as reflecting the rate at which a curve moves off its tangent line.
The notion of torsion will reflect the rate at which a curve moves off its osculating plane. In order
to define this quantity we first need to give some definitions that play an important role in the
theory of curves.

Definitions. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x′| = 1), assume that x has a continuous third derivative, and assume also that κ 6= 0
near the parameter value s0. The principal unit normal vector at parameter value s is N(s) =
|x′′(s)|−1 x′′(s). We have already encountered a special case of this vector in the study of curvatures
and osculating planes, and if T(s) = x′(s) denotes the unit tangent vector then we know that
{T(s), N(s) } is a set of perpendicular vectors with unit length (an orthonormal set).
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If x is a space curve (i.e., its image lies in 3-space), the binormal vector at parameter value s
is defined to be B(s) = T(s) ×N(s). It then follows that {T(s), N(s), B(s)} is an orthonormal
basis for R

3, and it is called the Frenet trihedron (or frame) at parameter value s.

One can frequently define a Frenet trihedron at a parameter value s0 even if the curvature
vanishes at s0, but there are examples where it is not possible to do so. In particular, consider the
curve given by x(t) =

(
t, 0, exp(−1/t2)

)
if t > 0 and x(t) =

(
t, exp(−1/t2) 0

)
if t > 0. If we set

x(t) = 0, then x will be infinitely differentiable because for each k ≥ 0 we have

lim
t→0

dk

dtk
exp(−1/t2) = 0

(this is true by repeated application of L’Hospital’s Rule) and in fact the curvature is also nonzero
if t 6= 0 and t2 6= 2/3. Therefore one can define a principal unit normal vector N(t) when t 6= 0
but, say, |t| < 1

2
. However, if t > 0 this vector lies in the xz-plane while if t < 0 it lies in the

xy-plane, and if one could define a continuous unit normal at t = 0 it would have to lie in both of
these planes. Now the unit tangent at t = 0 is the unit vector e1, and there are no unit vectors that
are perpendicular to e1 that lie in both the xy- and xz-planes. Therefore there is no way to define
a continuous extension of N to all values of t. On the other hand, Problem 4.15 on pages 75–76
of Schaum’s Outline Series on Differential Geometry provides a way to define principal normals in
some situations when the curvature vanishes at a given parameter value.

The following online notes contain further information on defining a parametrized family of
moving orthonormal frames associated to a regular smooth curve:

http://ada.math.uga.edu/teaching/math4250/Html/Bishop.htm

One can retrieve the Frenet trihedron from an arbitrary regular smooth reparametrization with
a continuous second derivative.

LEMMA. In the setting above, suppose that we are given an arbitrary reparametrization with
continuous second derivative, and let s(t) denote the arc length function. Then the Frenet trihedron
at parameter value t0 is given by the unit vectors pointing in the same directions as T(t), T ′(t),
and their cross product. Furthermore, if one considers the reoriented curve y with parametrization
y(t) = x(−t), then the effect on the Frenet trihedron is that the first two unit vectors are sent to
their negatives and the third remains unchanged.

Proof. It follows immediately from the Chain Rule that the unit tangent T remains unchanged
under a standard reparametrization with s′ > 0. Furthermore, the derivation of the formulas for
curvature under reparametrization show that T ′(t) is a positive multiple of x′′(s). this proves
the assertion regarding the principal normals. Finally, if we are given two ordered sets of vectors
{a, b } and { c, d } such that c and d are positive multiples of a and b respectively, then c× d is
a positive multiple of a× b, and this implies the statement regarding the binormals.

If one reverses orientations by the reparametrization t 7−→ −t, then the Chain Rule implies
that T and its derivative are sent to their negatives, and this proves the statement about the first
two vectors in the trihedron. The statement about the third vector follows from these and the cross
product identity a× b = (−a)× (−b).

We are finally ready to define torsion.

Definition. In the setting above the torsion of the curve is given by τ(s) = −B ′(s) ·N(s).

The following alternate characterization of torsion is extremely useful in many contexts.
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LEMMA. The torsion of the curve is given by the formula B ′(s) = −τ(s)N(s).

Proof. If we can show that the left hand side is a multiple of N(s), then the formula will follow
by taking dot products of both sides of the equation with N(s) (note that the dot product of the
latter with itself is equal to 1). To show that the left hand side side is a multiple of N(s), it suffices
to show that it is perpendicular to T(s) and B(s). The second of these follows because

0 =
d

ds

(
1
)

=
d

ds

(
B ·B

)
= 2B ·

(
dB

ds

)

and the first follows because

dB

ds
=

d

ds
(T×N) = (κN×N) +

(
T× dN

ds

)
= T×

(
dN

ds

)

which implies that the left hand side is perpendicular to T.

We had mentioned that the torsion of a curve is related to the rate at which a curve moves
away from its osculating plane. Here is a more precise statement about the relationship:

PROPOSITION. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x′| = 1), assume that x has a continuous third derivative, and assume also that κ(s0) 6= 0.
Let Π be the osculating plane of x at parameter value s0. Then the image of x is contained in Π
for all s sufficiently close to s0 if and only if the torsion vanishes for these parameter values.

Proof. Suppose first that the curve is entirely contained in the osculating plane for s close to s0.
The osculating plane at s0 is defined by the equation

[(y − a), T0, N0] = 0

where a = x(s0) and T0 and N0 represent the unit tangent and principal normal vectors at
parameter value s0. If we set y = x(s) and simplify this expression, we see that the curve x
satisfies the equation

x(s) ·B0 = a ·B0

where B0 = T0 × N0. If we differentiate both sides with respect to s we obtain the equation
x′(s) ·B0 = 0. Differentiating once again we see that x′′(s) ·B0 = 0. Since x′(s) = T(s) and N(s)
is a positive multiple of x′′(s) for s close to s0 (specifically at least close enough so that κ(s) is
never zero), then B0 is perpendicular to both T(s) and N(s). Therefore B(s) must be equal to
±B0. By continuity we must have that B(s) = B0 for all s close to s0 (Here are the details: Look
at the function B(s) · B0 on some small interval containing s0; its value is ± 1, and its value at
s0 is +1 — if its value somewhere else on the interval were −1, then by the Intermediate Value
Theorem there would be someplace on the interval where its value would be zero, and we know this
is impossible). Thus B(s) is constant, and by the preceding formulas this means that the torsion
of the curve must be equal to zero.

Conversely, suppose that the torsion is identically zero. Then by alternate description of torsion
in the lemma we know that B ′(s) ≡ 0, So that B(s) ≡ B0. We then have the string of equations

0 = T ·B0 = x′ ·B0 =
d

ds

(
x ·B0

)

which in turn implies that x · B0 is a constant. Therefore the curve x lies entirely in the unique
plane containing x(s0) with normal direction B0.
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Other planes associated to a curve

In addition to the osculating plane, there are two other associated planes through a point on
the curve x at parameter value s0 that are mentioned frequently in the literature. As above we
assume that the curve is a regular smooth curve with a continuous third derivative i arc length
parametrization, and nonzero curvature at parameter value s0.

Definitions. In the above setting the normal plane is the unique plane containing x(s0),
x(s0) + N(s0), and x(s0) + B(s0), and the rectifying plane is the unique plane containing x(s0),
x(s0) + T(s0), and x(s0) + B(s0). These three mutually perpendicular planes meet at the point
x(s0) in the same way that the usual xy-, yz-, and xz-planes meet at the origin.

Oriented curvature for plane curves

For an arbitrary regular curve in 3-space one does not necessarily have normal directions when
the curvature is zero, but for plane curves there is a unique normal direction up to sign. Specifically,
if x is a regular smooth plane curve parametrized by arc length and B is a unit normal vector to a
plane Π containing the image of x, then one has an associated oriented principal normal direction
at parameter value given by the cross product formula

N̂ (s) = B× x′(s)

and by construction Π is the unique plane passing through x(s), x(s) + x′(s), and x(s) = N̂ (s).
There are two choices of B (the two unit normals for π are negatives of each other) and thus there

are two choices for N̂ (s) such that each is the negative of the other. One can then define a signed

curvature associated to the oriented principal normal N̂ given by the formula

k(s) =
(

x′′(s) · N̂ (s)
)

and since x′′(s) is perpendicular to x′(s) and B this may be rewritten in the form

x′′(s) = k(s) N̂ (s) .

An obvious question is to ask what happens if κ(s0) = 0 (which also equals k(s) in this case)
and the sign of k(s) is negative for s < s0 and positive for s > s0. A basic example of this
sort is given by the graph of f(x) = x3 near x = 0, whose standard parametrization is given by
x(t) = (t, t3). In this situation the graph lies in the lower half plane y < 0 for t < 0 and in the in
the upper half plane y > 0 for t > 0, and the curve switches from being concave upward for t < 0
to concave downward (generally called convex beyond first year calculus courses). More generally,
one usually says that f has a point of inflection in such cases. The following result shows that more
general plane curves behave similarly provided the curvature has a nonvanishing derivative:

PROPOSITION. Let x be a regular plane smooth curve parametrized by arc length plus a

constant (hence |x′| = 1), assume that x has a continuous fourth derivative, let N̂ define a family
of oriented principal normals for x, and assume that that k(s0) = 0 but k′(s0) > 0. Then x(s) is
contained in the half plane

N̂ (s0) ·
(
y − x(s0)

)
< 0
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for s sufficiently close to s0 satisfying s < s0, and x(s) is contained in the half plane

N̂ (s0) ·
(
y − x(s0)

)
> 0

for s sufficiently close to s0 satisfying s > s0.

A similar result holds if k′(s0) < 0, and the necessary modifications of the statement and proof
for that case are left to the reader as an exercise.

Proof. To simplify the computations we shall choose coordinate systems such that x(s0) = 0 and
the plane is the standard coordinate plane through the origin with chosed unit normal vector e3.
It will also be convenient to denote the unit vector x′(s) by T(s). We shall need to work with a
third order approximation to the curve, which means that we are going to need some information
about x′′′(s0). Therefore the first step will be to establish the following formula:

k′(s0) = x′′′(s0) · N̂ (s0)

To see this, note that

k′(s) =
d

ds

(
x′′′ · N̂

)
=

(
x′′′(s) · N̂ (s)

)
+
(
x′′(s) · N̂

′
(s)
)

=
(
x′′′(s) · N̂ (s)

)
+
(

N̂ (s) · N̂
′
(s)
)

and the second summand in the right hand expression vanishes because | N̂ |2 is always equal to 1
(this is the same argument which implies that the unit tangent vector function is perpendicular to
its derivative).

Turning to the proof of the main result, the preceding paragraph and earlier consideration
show that the curve x is given near s0 by the formula

x(s) = (s− s0)T(s0) +
k(s) (s− s0)2

2
N̂ (s0) +

(s− s0)3
3!

x′′′(s0) + (s− s0)4 θ(s)

where θ(s) is bounded for s suffieicntly close to zero. To simplify notation further we shall write
∆s = s− s0.

If we take the dot product of the preceding equation with N̂ (s0) we obtain the formula, in

which y(s) is the dot product of θ(s) and N̂ (s0), so that y(s) is also bounded for s sufficiently
close to s0: (

x(s) · N̂ (s0)
)

=
k′(s0)

3!
(∆s)3 + y(s) (∆s)4

If s is nonzero but sufficiently close to zero then the sign of the right hand side is equal to the sign
of ∆s because

(i) the sign of the first term is equal to the sign of ∆s,

(ii) if we let M be a positive upper bound for |y(s)| and further restrict ∆s so that

|∆s| <
k′(s0)

6B

then the absolute value of the second term in the dot product formula will be less than
the absolute value of the first term.
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It follows that the sign of the dot product

(
x(s) · N̂ (s0)

)

is the same as the sign of the inital term

k′(s0)

3!
(∆s)3

which in turn is equal to the sign of ∆s. Since the dot product has the same sign as ∆s for s 6= 0 and

s sufficiently small, it follows that x(s) lies on the half plane defined by the inequality y · N̂ (s0) < 0

if s < s0 and x(s) lies on the half plane defined by the inequality y · N̂ (s0) > 0 if s > s0.

In fact, the center of the osculating circle also switches sides when one goes from values of s
that are less than s0 to values of s that are greater than s0. However, the proof takes considerably
more work.

COMPLEMENT. In the setting above, let z(s) denote the center of the osculating circle to x at
parameter value at parameter value s 6= s0 close to s0 (this exists because the curvature is nonzero
at such points). Then z(s) is contained in the half plane

N̂ (s0) ·
(
y − x(s0)

)
< 0

for s sufficiently close to s0 satisfying s < s0, and z(s) is contained in the half plane

N̂ (s0) ·
(
y − x(s0)

)
> 0

for s sufficiently close to s0 satisfying s > s0.

Proof. We need to establish similar inequalities to those derived above if x(s) is replaced by
z(s); note that the latter is not defined for parameter value s0 because the formula involves the
reciprocal of the curvature and the latter is zero at s0.

The center of the osculating circle at parameter value s 6= s0 was defined to be x + κ−1N,

where N is the ordinary principal normal; we claim that the latter is equal to x + k−1 N̂ . By
definition we have

x′′ = κN = k N̂

and since κ = ± k is nonzero we know that κ2 = k2. Dividing the displayed equation by this
common quantity yields the desired formula

κ−1N = k−1 N̂ .

Therefore the proof reduces to showing that the sign of

(
x(s) +

1

k(s)
N̂ (s)

)
· N̂ (s0)

is equal to the sign of ∆s.

Using the formula for x(s) near s0 that was derived before, we may rewrite the preceding
expression as

h(s) =
k′(s0)

3!
(∆s)3 + y(s) (∆s)4 +

1

k(s)
N̂ (s) · N̂ (s0) .
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We need to show that h(s) has the same sign as k(s) and its reciprocal, and this will happen if

`(s) = h(s)− 1

k(s)
=

k′(s0)

3!
(∆s)3 + y(s) (∆s)4 +

1

k(s)
N̂ (s) ·

(
N̂ (s0) − N̂ (s)

)

is bounded for s 6= s0 sufficiently close to zero. To see, this, suppose that |`(s)| ≤ A for some
A > 0. If we then choose δ > 0 so that |k(s)| < 1/A for for |∆s| < δ but ∆s 6= 0, if will follow that

∆s > 0 =⇒ h(s) =
1

k(s)
+

(
h(s)− 1

k(s)

)
> A + (−A) > 0

and similarly with all inequalities reversed and A switched with −A if ∆s < 0.

In order to prove that `(s) is bounded, it suffices to prove that each of the three summands
is bounded for, say, |∆s| ≤ r. The absolute value of the first is bounded by k ′(s0) r

3/6 and the
absolute value of the second is bounded by B r4 where B is a positive upper bound for |y(s)|. By
the Cauchy-Schwarz inequality the absolute value of the third is bounded from above by

∣∣∣ N̂ (s) − N̂ (s0)
∣∣∣

|k(s)|

and using the Mean Value Theorem we may estimate the numerator and denominator of this
expression separately as follows:

(i)
∣∣∣ N̂ (s)− N̂ (s0)

∣∣∣ ≤ P · |∆s|, where P is the maximum value of | N̂
′
| on [s0 − r, s0 + r].

(ii) k(s) = k′(S1)∆s for some S1 between s0 and s, so if we choose r so small that k′ > 0 on
[s0 − r, s0 + r], then |k(s)| ≥ Q∆s, where Q > 0 is the minimum of k ′ on that interval.

It then follows that the quotient P/Q is an upper bound for the absolute value of the third term in
the formula for `(s), and therefore the latter itself is bounded. This completes the proof that z(s)
lies on the half plane described in the statement of the result.

I.5 : Frenet-Serret Formulas

(O’Neill, §§ 2.3–2.4)

In ordinary and multivariable calculus courses, a great deal of emphasis is often placed upon
working specific examples, and as indicated in the discussion preceding Section I.1 of these notes
there is a wide assortment of interesting curves that can be studied using the methods of the
preceding sections. However, the course notes up to this point have not included the sorts of
worked out examples that one sees in a calculus book. The book by O’Neill does include a few
examples, but far fewer than one might expect in comparison to standard calculus texts. We have
reached a point in this course where the reasons for this difference should be explained.

We already touched upon one reason when we described computational techniques for finding
the curvature of a curve. Even in simple cases, it can be extremely difficult — if not impossible —
to write things out explicitly using pencil and paper along with the techniques and results that are
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taught in multivariable calculus courses. For example, we noted that arc length reparametrizations
often involve functions that ordinary calculus cannot handle in a straightforward manner. And the
situation gets even worse when one considers certain types of curves that arise naturally in classical
physics, most notably those arising when one attempts to describe the motions of a gravitational
system involving three heavenly bodies. In these cases it is not even possible to give explicit
formulas for the motion of the curves themselves, without even thinking about the added difficulty
of describing quantities like curvature and torsion. During the past quarter century, spectacular
advances in computer technology have provided powerful new tools for studying examples. A
few comments on the use of computer graphics in differential geometry appear in O’Neill. The
following book is an excellent reference for further information on studying curves and surfaces
using the software package Mathematica:

A. Gray. Modern Differential Geometry of Curves and Surfaces. (Studies in Advanced
Mathematics.) CRC Press, Boca Raton, FL etc., 1993. ISBN: 0-8493-7872-9.

The emphasis in this course will be on qualitative aspects of the differential geometry of curves
and surfaces in contrast to the quantitative emphasis that one sees in ordinary and multivariable
calculus. In particular, we are interested in the following basic sort of question:

Reconstructing curves from partial data. To what extent can one use geometric invariants
of a curve such as curvature and torsion to retrieve the original curve?

Both curvature and torsion are defined so that they do not change if one replaces a curve by
its image under some rigid motion of R

2 or R
3, so clearly the best we can hope for is to retrieve

a curve up to some transformation by a rigid motion. The main results of this section show that
curvature and torsion suffice to recover the original curve in a wide range of “reasonable” cases.

The crucial input needed to prove such results comes from the Frenet-Serret Formulas, which
describe the derivatives of the three fundamental unit vectors in the Frenet trihedron associated to
a regular smooth curve.

FRENET–SERRET FORMULAS. Let x be a regular smooth curve parametrized by arc
length (hence |x′| = 1), assume that x has a continuous third derivative, and assume also that
κ(s0) 6= 0. Let T(s), N(s) and B(s) be the tangent, principal normal and binormal vectors in the
Frenet trihedron for x at parameter value s0. Then the following equations describe the derivatives
of the vectors in the Frenet trihedron:

T ′ = κN
N ′ = − κT + τ B
B ′ = − τ N

Proof. We have already noted that the first and third equations are direct consequences of the
definition of curvature and torsion. To derive the second equation, we take the identity N = B×T
and differentiate it with respect to s:

N ′(s) = B ′(s)×T(s) + B (s)×T ′(s) =

−τ(s)
(
N(s)×T(s)

)
+ κ

(
B(s)×N(s)

)

Since T, N and B are mutually perpendicular unit vectors such that B = T ×N, as usual the
“BAC–CAB” rule for threefold cross products implies that N × T = −B and B × N = −T. If
we make these substitions into the displayed equations we obtain the second of the Frenet-Serret
Formulas.
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The significance of the Frenet-Serret formulas is that they allow one to describe a curve in
terms of its curvature and torsion in an essentially complete manner.

LOCAL UNIQUENESS FOR CURVES. Suppose that we are given two regular smooth curves
x and y defined on the same open interval containing s0, where both curves are parametrized by
arc length, both have continuous third derivatives and everywhere nonzero curvatures, and their
curvature and torsion functions of both curves are equal. Assume further that the Frenet trihedra
for both curves at s0 are equal. Then y = x on some open interval containing s0.

Proof. Let e1, e2 and e3 be the standard unit vectors. We shall only consider the simplified
situation where x(s0) = y(0) = 0 and the Frenet trihedra for x and y at parameter value s0 are
given by e1, e2 and e3 (one can always use a rigid motion to move the original curves into such
positions, and the motion will not change the curvature or torsion of either curve — this is not
really difficult to prove but it is a bit tedious and distracting).

Let {Tx(s), Nx(s), Bx(s)} and {Ty(s), Ny(s), By(s)} be the Frenet trihedra for x and y
respectively, and let

g(s) = |Tx(s)−Ty(s)|2 + |Nx(s)−Ny(s)|2 + |Bx(s)−By(s)|2 .

By the Frenet-Serret Formulas we then have that g ′ is equal to

2

( (
(Tx −Ty) ·

(
T′

x −T′
y

))
+
(
(Nx −Ny) ·

(
N′

x −N′
y

) )
+
(

(Bx −By) ·
(
B′

x −B′
y

) )
)

=

2

( (
κ (Tx −Ty) · (Nx −Ny)

)
+
(
τ (Bx −By) · (Nx −Ny)

)
−

(
κ (Nx −Ny) · (Tx −Ty)

)
−
(
τ (Nx −Ny) · (Bx −By)

) )
.

It is an elementary but clearly messy exercise in algebra to simplify the right hand side of the
preceding equation, and the expression in question turns out to be zero. Therefore the function g
must be a constant, and since our assumptions imply g(s0) = 0, it follows that g(s) = 0 for all s.
The latter in turn implies that each summand

|Tx −Ty|2 , |Nx −Ny|2 , |Bx −By|2

must be zero and hence that the Frenet trihedra for x and y must be the same. The first Frenet-
Serret Formula then implies x′ = y′, and since the two curves both go through the origin at
parameter value s0 it follows that x and y must be identical.

There is in fact a converse to the preceding result.

FUNDAMENTAL EXISTENCE THEOREM OF LOCAL CURVE THEORY. Given
sufficiently differentiable functions κ and τ on some interval (−c, c) such that κ > 0, there is an
h ∈ (0, c) and a sufficiently differentiable curve x defined on (0, h) such that x(0) = 0, the tangent
vectors to x at all point have unit length, the Frenet trihedron of x at 0 is given by the standard
unit vectors (

T(0), N(0), B(0)
)

=
(
e1, e2, e3

)

and the curvature and torsion functions are given by the restrictions of κ and τ respectively.
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This is a consequence of the fundamental existence theorem for systems of linear differential
equations. If the curve exists, then the Frenet-Serret formulas yield a system of nine first order
linear differential equations for the vector valued functions T, N, and B in the Frenet trihedron

T ′ = κN
N ′ = − κT + τ B
B ′ = − τ N

and if one is given κ and τ the goal is to see whether this system of first order linear differential
equations can be solved for T, N, and B, at least on some smaller interval (−h, h). If one has such
a solution then the curve x can be retrieved using the elementary formula

x(s) =

∫ s

0

T(u) du

where |s| < h (with the usual convention that
∫ s

0
= −

∫ 0

s
if s < 0). A proof of the existence

of a solution to the system of differential equations is given on pages 309–311 in the Appendix
to Chapter 4 of do Carmo. These results are also discussed in the files frenetnote.pdf and
expmatrix.pdf in the course directory.

The preceding two results combine to yield the Fundamental Theorem of Local Curve
Theory:

Given κ and τ as in the statement of the Existence Theorem, an initial vector x0 and an orthonormal
set of vectors (a, b, c) such that a× b = c, then there is a positive real number h1 and a unique
(sufficiently differentiable) curve x such that the tangent vectors to x at all point have unit length,
the Frenet trihedron of x at 0 is given by the standard unit vectors

(
T(0), N(0), B(0)

)
=

(
a, b, c

)

and the curvature and torsion functions are respectively given by the restrictions of κ and τ to
(−h1, h1).

In particular, this result implies that space curves are completely determined by their curvature
and torsion functions together with the Frenet trihedron at some initial value. The following special
case is a companion to our earlier characterization of lines as curves whose curvature is identically
zero:

CHARACTERIZATION OF CIRCULAR ARCS. Let x be a curve satisfying the conditions
in the statement of the Frenet-Serret Formulas. Then the restriction of x to some small interval
(s0 − δ, s0 + δ) is a circular arc if and only if the curvature is a positive constant and the torsion
is identically zero.

This follows immediately because we can always find a circular arc with given initial value
x0, initial Frenet trihedron

(
T0, N0, B0

)
and constant curvature κ > 0 (and also of course with

vanishing torsion); in fact, the equations for an osculating circle provide an explicit construction.

A strengthened Fundamental Theorem for plane curves

Since plane curves may be viewed as space curves whose third coordinates are zero (and whose
torsion functions are zero), the Fundamental Theorem of Local Curve Theory also applies to plane
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curves, and in fact the Fundamental Theorem amounts to saying that there is a unique curve with
a given (nonzero) curvature function κ, initial value x0 and initial unit tangent vector T0; in this
case the principal normal N0 is completely determined by the. perpendicularity condition and the
Frenet-Serret Formulas.

In fact, there is actually a stronger version of the Fundamental Theorem in the planar case.
In order to state and prove the Fundamental Theorem for space curves we needed to assume the
curvature was positive so that the principal normal N could be defined. We have already noted that
one can define N for plane curves even if the curvature is equal to zero. Geometrically, a standard
way of doing this is to rotate the unit tangent T in the counterclockwise direction through an angle
of π/2; in terms of equations this means that N = J(T), where J is the linear transformation

J(x, y) = (y, −x) .

As noted in the previous section, if x is a regular smooth curve in R
2 parametrized by arc length

plus a constant, this means that if we define an associated signed curvature by the formula

k(s) = x′′(s) ·N(s) = x′′(s) · [J(T)] (s)

then |k(s)| = κ(s).

For the sake of completeness, we shall formally state and prove the modified version of the
Frenet-Serret Formulas that holds in the 2-dimensional setting with N defined as above.

PLANAR FRENET–SERRET FORMULAS. Let x be a regular smooth curve parametrized
by arc length (hence |x′| = 1), assume that x has a continuous third derivative. Let T(s) and N(s)
and be the tangent and principal normal vectors for x at parameter value s0. Then the following
equations describe the derivatives of T and N:

T ′ = kN
N ′ = − kT

Proof. By definition the first equation is a direct consequence of the definition of signed curvature.
To derive the second equation, we take the identity N(s) = J(T(s) ) and differentiate it with respect
to s, obtaining

N ′(s) = J(T ′(s) ) = J
(
k(s)N(s)

)
= k(s) J

(
J (T(s) )

)
=

k(s) J2(T(s) ) = −k(s)T(s)

where the last equation follows because J 2 = −I.
One can use the notion of signed curvature to state and prove the following version of the

fundamental theorem for plane curves:

FUNDAMENTAL THEOREM OF LOCAL PLANE CURVE THEORY. Given a suffi-
ciently differentiable function κ on some interval (−c, c), an initial vector x0 and an orthonormal
set of vectors (a, b) such that b = J(a), then there is an h ∈ (0, c) and a sufficiently differentiable
curve x defined on (−h, h) such that x(0) = x0, the tangent vectors to x at all point have unit
length, the tangent-normal pair of x at at 0 is given by the standard unit vectors

(
T(0), N(0)

)
=

(
a, b

)
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and the curvature function is given by the restriction of κ to (−h, h).
The proof of this result is a fairly straightforward modification of the argument for space curves

and will not be worked out explicitly for that reason.

Local canonical forms

One application of the Frenet-Serret formulas is a description of a strong third order approxi-
mation to a curve in terms of curvature and torsion.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x′| = 1) such that x has a continuous fourth derivative and κ(0) 6= 0, and let {T, N, B }
be the Frenet trihedron at parameter value s = 0. Then a strong third order approximation to x
is given by

x(0) +

(
s− s2κ2

3!

)
T +

(
s2κ

2
− s3κ′

3!

)
N +

s3κτ

3!
B .

Proof. We already know that x′(0) = T and x′′(0) = κN. It suffices to compute x′′′(0), and the
latter is given by (

κN
)′

= κ′ N + κN ′ = κ′ N − κ2 T + κ τB

where the last is derived using the Frenet-Serret Formulas.

Here are two significant applications of the canonical form for the strong third order approxi-
mation. By the basic assumptions for the Frenet-Serret Formulas we have κ > 0.

APPLICATION 1. In the setting above, if τ(0) < 0 then the point x(s) lies on the side of the
osculating plane defined by the inequality (y − x(0)) ·B < 0, when s > 0 and s is sufficiently close
to 0, and x(s) lies on the side of the osculating plane defined by the inequality (y− x(0)) ·B > 0
when s < 0 and s is sufficiently close to 0. Similarly, if τ(0) > 0 then the point x(s) lies on the
side of the osculating plane defined by the inequality (y − x(0)) ·B > 0 when s < 0, and x(s) lies
on the side of the osculating plane defined by the inequality (y− x(0)) ·B < 0 when s > 0.

Derivation. We shall only do the case where τ > 0 and s > 0. The arguments in the other
cases are basically the same, the main difference being that certain signs and inequality directions
must be changed.

Let g(s) = (x(s)−x(0) ) ·B; then the orthonormality of the Frenet trihedron {T, N, B } and
the canonical form yield the equation

g(s) = +
s3κτ

3!
+ θ(s)

where |θ(s)| ≤ |s|4 ·M for some positive constant M . It follows that if |s| is small and s > 0 then
we have

g(s) ≥ +
s3κτ

3!
+ M · s4

and the right hand side (hence also g(s)) is negative provided

s <
κ|τ |
3!M

.
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APPLICATION 2. In the setting above, if κ′ 6= 0 and s 6= 0 is sufficiently close to zero then
x(s) lies on the side of the rectifying plane defined by the inequality

(
y− x(0)

)
·N < 0 .

Derivation. Let g(s) = (x(s)− x(0) ) ·N; then the canonical form implies an equation

g(s) = −
(
s2κ

2
+ −s

3κ′

3!

)
+ θ(s)

where |θ(s)| ≤ |s|4 ·M for some positive constant M . We might as well assume that M ≥ 1. It
follows that if |s| is small and nonzero then we have

|g(s)| ≥
(
s2κ

2
− |s|

3|κ′|
3!

)
− M · |s|4

and the right hand side is positive provided

|s| < min

(
κ

κ′
,

√
κ

2M

)
.

It follows that g(s) is nonzero (and in fact negative) under the same conditions.

Regular smooth curves in hyperspace

During the nineteenth century mathematicians and physicists encountered numerous questions
that had natural interpretations in terms of spaces of dimension greater than three (incidentally,
in physics this began long before the viewing of the universe as a 4-dimensional space-time in
relativity theory). In particular, coordinate geometry gave a powerful means of dealing with such
objects by analogy. For example, Euclidean n-space for and arbitrary finite n is given by the
vector space R

n, lines, planes, and various sorts of hyperplanes can be defined and studied by
algebraic methods (although geometric intuition often plays a key role in formulating, proving, and
interpreting results!), and distances and angles can be defined using a simple generalization of the
standard dot product. Furthermore, objects like a 4-dimensional hypercube or a 3-dimensional
hypersphere can be described using familiar sorts of equations. For example, a typical hypercube
is given by all points x = (x1, x2, x3, x4) such that 0 ≤ xi ≤ 1 for all i, and a typical hypersphere
is given by all points x such that

|x|2 = x2
1 + x2

2 + x2
3 + x2

4 = 1 .

A full investigation of differential geometry in Euclidean spaces of dimension ≥ 4 is beyond the
scope of this course, but some comments about the differential geometry of curves in 4-space seem
worth mentioning.

One can define regular smooth curves, arc length and curvature for parametrized 4-dimensional
curves exactly as for curves in 3-dimensional space. In fact, there are generalizations of the Frenet-
Serret formula and the Fundamental Theorem of Local Curve Theory. One complicating factor
is that the 3-dimensional cross product does not generalize to higher dimensions in a particularly
neat fashion, but one can develop algebraic techniques to overcome this obstacle. In any case,
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in four dimensions if a sufficiently differentiable regular smooth curve x is parametrized by arc
length plus a constant and has nonzero curvature and a nonzero secondary curvature (which is
similar to the torsion of a curve in 3-space), then for each parameter value s there is an ordered
orthonormal set of vectors Fi(s), where 1 ≤ i ≤ 4, such that F1 is the unit tangent vector and the
sequence of vector valued functions (the Frenet frame for the curve) satisfies the following system
of differential equations, where κ1 is curvature, κ2 is positive valued, and the functions κ1, κ2, κ3,
all have sufficiently many derivatives:

F′
1 = κ1 F2

F′
2 = − κ1 F1 + κ2 F3

F′
3 = −κ2 F2 + κ3 F4

F′
4 = −κ3 F3

The Fundamental Theorem of Local Curve Theory in 4-dimensional space states that locally
there is a unique curve with prescribed higher curvature functions κ1 > 0, κ2 > 0 and κ3, prescribed
initial value x(s0), and whose Frenet orthonormal frame satisfies Fi(s0) = vi for some orthonor-
mal basis {v1, v2, v3, v4 }. An online description and derivation of such formulas in arbitrary
dimensions is available at the sites

http://www.math.technion.ac.il/∼rbrooks/dgeo1.7.ps
http://en.wikipedia.org/wiki/Differential geometry of curves

and a discussion of such formulas in complete generality (i.e., appropriate for a graduate level
course) appears on page 74 of Hicks.
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II . Topics from Geometry and Multivariable Calculus

This unit covers three topics involving background material. The first is a discussion of differ-
ential forms. These objects play a major role in O’Neill’s treatment of the subject, and we shall
explain how one can pass back and forth between the classical vector formulations of concepts in
differential geometry and their restatements in terms of the more modern (and ultimately more
convenient) language of differential forms. Each approach appears frequently in the literature of the
subject, so an understanding of their relationship is always useful and sometimes absolutely nec-
essary. The second objective is to discuss some points regarding vector valued functions of several
variables, and especially those which will be needed for studying surfaces in Units III and IV. One
goal is to give concise and useful principles for working with such functions that closely resemble
well known results in elementary calculus (e.g., the linear approximation of functions near a point
using derivatives, the Chair Rule, differentiability criteria for inverse functions, change of variables
formulas in multiple integration). Finally, we shall use vector valued functions of several variables
to give an analytic definition of congruence for geometric figures, and we shall combine this with
the Frenet-Serret Formulas from Unit I to prove that two well behaved differentiable curves are
congruent if and only if their curvature and torsion functions are equal.

II.1 : Differential forms

(O’Neill, § 1.5–1.6)

During the 20th century mathematicians and physicists discovered that many advanced top-
ics in differential geometry could be handled more efficiently, and in greater generality, if certain
concepts were reformulated from vector terminology into slightly different notation. The central ob-
jects in this setting are called differential forms or exterior forms. Among other things, differential
forms provide answers to many cases of the following basic question:

Given a geometrical formula involving cross products in R
3, how can one generalize it to higher

dimensions?

A detailed answer to this question in terms of differential forms is beyond the scope of this course.
However, O’Neill works with differential forms frequently (but not exclusively), so it is worthwhile
to explain how one can pass between the language of vectors and differential forms. One basic use
of differential forms in differential geometry appears in Section 2.8 of O’Neill, where an abstract
analog of the Frenet-Serret Formulas is described. Chapters 6 and 7 of O’Neill discuss some other
basic aspects of classical differential geometry using differential forms.

BACKGROUND ON MULTIPLE INTEGRATION. The definition of differential forms is mo-
tivated by concepts involving double and triple integrals, so it will be necessary to discuss such
objects here. More precisely, we shall need material from a typical multivariable calculus course
or sequence through the main theorems from vector analysis. Files describing the background
material (with references to standard texts used in the Department’s courses) are included in the
course directory under the names background2.pdf. Here are some further online references for
background material:
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http://tutorial.math.lamar.edu/AllBrowsers/2415/DoubleIntegrals.asp

http://www.math.hmc.edu/calculus/tutorials/multipleintegration/

http://ndp.jct.ac.il/tutorials/Infitut2/node38.html

http://math.etsu.edu/MultiCalc/Chap4/intro.htm

http://www.maths.abdn.ac.uk/ igc/tch/ma2001/notes/node74.html

http://www.maths.soton.ac.uk/ cjh/ma156/handouts/integration.pdf

http://en.wikipedia.org/wiki/Multiple integral

Topics from multiple integration will also figure in a few subsequent sections, including the
discussion of the Change of Variables Formula in Section II.3 and the remarks on surface area in
Section III.5.

The basic objects

Everything can be done in R
n for all positive integers n, but we shall only need the cases where

n = 2 or 3 in this course, so at some points our statements and derivations may only apply for
these values of n.

Suppose that U is an open subset of R
n,where n = 2 or 3. If 0 < p ≤ n, then a differential

p-form may be described as follows.

The case p = 1. A 1-form is basically an integrand for line integrals over curves in U .
Specifically, it has the form

∑
i fi dxi, where 1 ≤ i ≤ n and each fi is a function on U with

continuous partial derivatives.

The case p = 2. If n = 2, then a 2-form is basically an integrand for double integrals over
subsets of U . Specifically, it has the form f(x, y) dx dy, where f has continuous partial derivatives.
If n = 3, then a 2-form is basically an integrand for certain surface integrals over subsets of U (more
precisely, flux integrals of vector fields taken over oriented surfaces). Specifically, these integrands
have the form

P dy dz + Qdz dx + Rdxdy

where P,Q,R are functions with continuous partial derivatives. For technical reasons that need
not be discussed at this point, one inserts a wedge sign ∧ between the second and third factors, so
that a monomial form is written H du ∧ dv.

The case p = 3. This case only arises when n = 3, where a 3-form is basically an integrand
for triple integrals over subsets of U . Specifically, it has the form f(x, y, z) dx dy dz, where f has
continuous partial derivatives. As in the case p = 2, one interpolates wedges between the differential
symbols dx, dy and dz so that the form is written f(x, y, z) dx ∧ dy ∧ dz.

Comparisons with vector fields

There is an obvious 1–1 correspondence between 1-forms and smooth vector fields, which we
may view as vector valued functions F from U to R

n such that each coordinate function has con-
tinuous partial derivatives. Specifically, if the coordinates of F are (P1, ..., Pn), then F corresponds
to the 1-form

ωF = P1 dx1 + · · · + Pn dxn
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and conversely the right hand side determines a smooth vector field whose coordinates are the
coefficients of the differential symbols dxi.

Of course, it is natural to ask why one might wish to make such a looking change of notation.
In particular, there should be some substantive advantage in doing so. One reason involves two
basic themes in multivariable calculus: (1) The gradient of a function. (2) Change of variables
formulas (e.g., among rectangular, polar, cylindrical or spherical coordinates). We shall think of a
change of variables as a generalization of the standard polar coordinate maps:

x = r cos θ , y = r sin θ

This takes open sets in the r θ plane to open sets in the x y-plane. Comparing the formulas for a
function’s gradient in two such coordinate systems can be extremely awkward. However, if we look
at the exterior derivative

df =
∑

i

∂f

∂xi

dxi

rather than the gradient, then one obtains a much more tractable change of variables formula:

∂f

∂x
dx +

∂f

∂y
dy ←→ ∂f

∂r
dr +

∂f

∂θ
dθ

If n = 3, there is a different but related 1–1 correspondence between 2-forms and vector fields,
in this case sending a vector field F with coordinate functions P,Q,R to the type of expression
displayed above.

P dy ∧ dz + Qdz ∧ dx + Rdx ∧ dy

The ∇ operator(s) and differential forms

The exterior derivative of a function is one case of a general construction of exterior derivatives
on differential forms, which sends every p-form ω to a (p + 1)-form dω; this can be extended to
all nonnegative integers by agreeing that a 0-form is just a function and a p-form is zero if p > n.
The formal definition is a bit complicated, but for our purposes it suffices to know that exterior
differentiation is completely determined by the previous construction for df and following simple
properties:

(1) For all forms ω we have d(dω) = 0.

(2) For all p forms ω and λ we have d(ω + λ) = dω + dλ.

(3) For all p-forms ω and pure differential 1-forms dxi we have d(ω ∧ dxi) = dω ∧ dxi.

(4) For all pure differential 1-forms dxi and dxj we have dxi ∧ dxj = − dxj ∧ dxi (hence it
vanishes if i = j).

Verification of these for n = 2 or 3 reduce to a sequence of routine computations.

When one passes from the vector fields or scalar valued functions to differential forms, the ∇
operator(s) passes to exterior derivatives. Here is a formal statement of this correspondence.

THEOREM. Let p and n be as above. The the following conclusions hold:
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(i) Suppose that p = 1 and n = 2, and F is the vector field with coordinate functions (P,Q).
If ωF is the differential 1-form corresponding to F, then

dωF =

(
∂Q

∂x
− ∂P

∂y

)
dx dy .

(ii) Suppose that p = 1 and n = 3, and F is the vector field with coordinate functions (P,Q).
If ωF is the differential 1-form corresponding to F, then

dωF = ΩG

where ΩG denotes the 2-form corresponding to G and G = ∇× F is the curl of F.

(iii) Suppose that p = 2 and n = 3, and F is the vector field with coordinate functions
(P,Q,R). If ΩF is the differential 2-form corresponding to F, then

dΩF = (∇ · F) dx dy dz

where ∇ · F denotes the divergence of F.

Verifying each of these is a routine computational exercise.

APPLICATIONS TO INTEGRAL FORMULAS IN VECTOR ANALYSIS. The preceding compar-
ison between exterior differentiation and the ∇ operator leads to the following unified statement
which includes the classical theorems of Green, Stokes and Gauss (also called the Divergence The-
orem):

∫

Bdy(X)

ω =

∫

X

dω

Here X is a region in R
2 or R

3 or an oriented surface, and Bdy(X) denotes its boundary curve(s)
or surface(s).

Proving this version of the theorems is beyond the scope of the course, but we have mentioned
it to suggest the potential usefulness of differential forms for expressing somewhat complicated
relationships in a relatively simple manner.

Connectedness

In many situations it is useful or necessary to assume that an open set has an additional
property called connectedness.

Definition. Let n = 2 or 3 (actually, everything works for all n ≥ 2, but in this course we are
mainly interested in objects that exist in 2- or 3-dimensional space). An open subset U of R

n will
be called a connected open domain if for each pair of points p and q in U there is a piecwise smooth
curve Γ defined on [0, 1] and taking values entirely in U such that Γ(0) = p and Γ(1) = q.

Most examples of open sets in this course are either connected or split naturally into a finite
union of pairwise disjoint open subsets. Here are some examples:

Example 1. An open disk of radius r > 0 about a point p, consisting of all x such that
|x − p| < r is connected. If x and y belong to such a disk, then consider the line segment curve
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γ(t) = ty + (1 − t)x, where t ∈ [0, 1]. This is an infinitely differentiable curve (its coordinate
functions are first degree polynomials), it joints x to y, and we have

|γ(t)| ≤ t |x| + (1− t) |y| < t r + (1− t) r = r

so that γ(t) lies in the open disk of radius r for all t ∈ [0, 1].

Example 2. Let i be a number between 1 and n, and let Hi be the set of all points in R
n

whose Ith coordinate satisfies xi 6= 0. Then Hi splits into a union of the two sets H+
i and H−

i of
points where xi is positive and negative respectively. Each of these is connected, and in fact two
points in H+

i or H−
i can be joined by the same sort of line segment curve as in Example 1. The

reason for this is that if the ith coordinates of x and y are positive or negative, the corresponding
property holds for each point γ(t).

Note, however, that H itself is not a connected open domain. Specifically, there is no curve
joining the unit vector ei to its negative. If such a curve did exist, then its ith coordinate zi would
be a continuous function from [0, 1] to the reals such that zi(0) = −1 and zi(1) = 1. By the
Intermediate Value Property for continuous functions on an interval, there would have to be some
parameter value u for which zi(u) = 0; but this would mean that γ(u) could not belong to Hi,
so we have a contradiction. The problem arises from our assumption that there was a continuous
curve in Hi joining the two vectors in question, so no such curve can exist.

To illustrate the role of connectedness, we shall consider the following question: Suppose
that U is an open subset of R

2 or R
3 and f is a real valued function on U such that all the partial

derivatives of f are defined and equal to zero. Is f a constant function?

The answer to this question depends upon whether or not U is connected.

Example. Let U = Hi, and defined f such that f(x) = 1 if the coordinate xi is positive and
f(x) = −1 if the coordinate xi is negative. Then f is not constant but one can check directly that
the partial derivatives of f are always defined and zero.

THEOREM. Let U be a connected subset of R
2 or R

3, and let f be a real valued function on
U such that all the partial derivatives of f are defined and equal to zero. Then f is a constant
function.

Proof. The key step is to prove the following: Suppose that p and q are points in U such that
the line segment joining p to q lies entirely in U . Then f(p) = f(q).

To prove this, let v = q− p, so that the line segment joining p to q has the parametrization
γ(t) = p + tv. For each index i let vi denote the ith coordinate of v. Let g(t) = f

(
γ(t)

)
; by the

Chain Rule we have

g′(t) =
∑

i

∂f

∂xi

(
γ(t)

)
· vi

and the right hand side is zero because all the partial derivatives of f are zero. Since g ′ = 0, by
results from single variable calculus we know that g is constant, and this means that f(p) = g(0) =
g(1) = f(q).

To prove the theorem, suppose that p and q are arbitrary points in U . By the definition
of connectedness there is a broken line curve joining these points. Suppose that this broken line
curve consists of the line segments S1, · · · , Sm such that p = x0, q = xm, and the endpoints for
each Sj are given by xi−1 and xi. Then by the reasoning of the previous paragraph we know that
f(p) = f(x0) = f(x1), f(x1) = f(x2), and similarly all the values f(xi) are all equal to each other.
In particular, it follows that f(p) = f(x0) = ... = f(xm) = f(q).
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II.2 : Smooth mappings

(O’Neill, §§ 1.7, 3.2)

From a purely formal viewpoint, the generalization from real valued functions of several vari-
ables to vector valued functions is simple. An n-dimensional vector valued function is specified by
its n coordinates, each of which is a real valued function. As in the case of one variable functions,
a vector valued function is continuous if and only if each coordinate function is continuous.

One reason for interest in vector valued functions of several real variables is their interpretation
as geometric transformations, which map geometric figures in the domain of definition to geometric
figures in the target space of the function. For example, in linear algebra one has linear transfor-
mations given by homogeneous linear polynomials in the coordinates, and it is often interesting
or useful to understand how familiar geometric figures in R

2 or R
3 are moved, bent or otherwise

distorted by a linear transformation. Examples are discussed in most linear algebra texts (for ex-
ample, see Section 2.4 of Fraleigh and Beauregard, Linear Algebra), and the following interactive
wev site allows the user to view the images of various quadrilaterals under linear transformations,
where the user has a wide range of choices for both geometric figure and the transformation:

http://merganser.math.gvsu.edu/david/linear/linear.html

The notion of a geometric mapping is also central to change of variables problems in multivariable
calculus. For example, it one wants to evaluate a double integral over a region A in the Cartesian
coordinate plane using polar coordinates, it is necessary to understand the geometric figure B in
the plane that maps to A under the vector valued function of two variables

Cart(r, θ) = (r cos θ, r sin θ) .

Since many different sets of polar coordinates yield the same point in Cartesian coordinates, it is
generally appropriate to assume that B lies in some set for which Cartesian coordinates are unique
or almost always so. For example, one might take B to be the set of all points that map to A and
whose r and θ coordinates satisfy 0 ≤ r and 0 ≤ θ ≤ 2π. Some illustrations appear in the following
site; the collection of pictures in the first is particularly extensive and makes very effective use of
different colors.

http://loriweb.pair.com/8polarcoord1.html

omega.albany.edu:8008/calc3/double-integrals-dir/polar-coord-m2h.html

If a vector valued function of several variables is defined on a connected domain in some
R

n, then one can formulate a notion of partial derivatives using the coordinate functions and the
usual methods of multivariable calculus, but exactly as in that subject such partial derivatives can
behave somewhat erratically if they are not continuous. However, if these partial derivatives are
continuous, then one has the following critically important generalization of a basic result on real
valued functions of several variables:

LINEAR APPROXIMATION PROPERTY. Suppose that U is a connected domain in R
n

and that f : U → R
m is a function with continuous first partial derivatives on U . Denote the

coordinate functions of f by fi, and for each x ∈ U let Df(x) be the matrix whose ith row is given
by the gradient vector ∇fi(x). Then for all sufficiently small but nonzero vectors h ∈ R

n we have

f(x + h) = f(x) +
[
Df(x)

]
h + |h| θ(h)
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where θ(h) satisfies

lim
h→0

θ(h) = 0 .

The matrix Df(x) is often called the derivative of f at x. If n = m then the determinant
of this matrix is just the Jacobian which arises in the change of variables formula for multiple
integrals.

Sketch of proof. For scalar valued functions, a version of this result is established in multivariable
calculus; specifically, in our case this result says that the coordinate functions satisfy equations of
the form

fi(x + h) = fi(x) + ∇fi(x) · h + |h| θ(ih)

where θ(h) satisfies

lim
h→0

θi(h) = 0 .

By construction, the rows of Df(x) are the gradient vectors of the coordinate functions at x, and
consequently the coordinates of

[
Df(x)

]
h are given by the expressions ∇fi(x) · h. The function

θ(h) is defined so that it coordinates are the functions θi(h), and the limit of θ at 0 is 0 because
the limit of each θi at 0 is 0.

The preceding result implies that a vector valued function of several variables with continuous
partial derivatives has a well behaved first degree approximation by a function of the form

g(x + h) = g(x) + B h

for some m× n matrix B (namely, the derivative matrix).

WARNING. Frequently mathematicians and physicists use superscripts to denote coordinates.
Of course this conflicts with the usual usage of superscripts for exponents, so one must be aware that
superscripts may be used as indexing variables sometimes. Normally such usage can be detected
by the large number of superscripts that appear or their use in places where one would normally
not expect to see exponents.

Smoothness classes. As for functions of one variable, we say that a vector valued function of
several variables is smooth of class Cr if its coordinate functions have continuous partial derivatives
of order ≤ r (agreeing that C0 means continuous) and that a function is smooth of class C∞ if its
coordinate functions have continuous partial derivatives of all orders.

The concept of derivative matrix for a vector valued function leads to a very neat formulation
of the Chain Rule:

VECTOR MULTIVARIABLE CHAIN RULE. Let U and V be connected domains in R
n

and R
m respectively, let f : U → V be a map whose coordinate functions have continuous partial

derivatives at x, and let g : V → R
p be a map whose coordinate functions have continuous partial

derivatives at f(x). Then the composite g of defined by

g of(y) = g
(
f(y)

)

also has coordinates with continuous partial derivatives at x and

D [g of ] (x) = D(g) (f(x)) oDf(x) .
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Proof. This follows directly by applying the chain rule for scalar valued functions to the partial
derivatives of the coordinate functions for g of .

COROLLARY. In the preceding result, if f and g are smooth of class Cr, then the same condition
holds for their composite g of .

Proof. First of all, if the result can be shown for r <∞ the case r =∞ will follow out because
C∞ is equivalent to Cs for all s <∞. Therefore we shall assume r <∞ for the rest of the proof.

If h is a q-dimensional vector valued function of p variables of class C r, then the derivative
matrix of h may be viewed as a p × q matrix valued function of p variables, or equivalently as a
pq-dimensional vector valued function of p variables, and this function is smooth of class C r−1. We
shall use this fact to prove the corollary by induction on r.

Suppose first that r = 1. Then the Chain Rule states that the entries of D [g of ] (x) are
polynomials in the entries of D(g) (f(x)) and Df(x). Since Dg, Df and f are all continuous and a
composite of continuous functions is continuous, it follows that D [g of ] (x) is a continuous function
of x.

Suppose now that we know the result for s < r, where r ≥ 2. Then exactly the same sort of
argument applies, with Cr−1 replacing “continuous” in the final sentence; this step is justified by
the induction hypothesis.

The file changevarexamples.pdf (as usual in the course directory) describes some examples
of smooth transformations f from R

2 to itself.

II.3 : Inverse and Implicit Function Theorems

(O’Neill, § 1.7)

The following topics are often discussed very rapidly or not at all in multivariable calculus
courses, but we shall need them at many points in the discussion of surfaces. The text for the
Department’s courses on single and multivariable calculus courses (Colley, Multivariable Calculus)
discusses these results as an optional part of Section 2.6 on pages 162–167. More detailed statements
and proofs of the results are contained in the text for the Department’s advanced undergraduate
course on real variables (Rudin, Principles of Mathematical Analysis, Third Edition). A statement
of the one result (the Inverse Function Theorem) also appears on page 131 of do Carmo. Here
are some online references:

http://www.ualberta.ca/MATH/gauss/fcm/calculus/ (continue with next line)
multvrbl/basic/ImplctFnctns/invrs fnctn explntn illstrtn2.gif

http://artsci.wustl.edu/∼e4111jn/InvFT14.pdf
http://www.sas.upenn.edu/∼kim37/mathcamp/Eduardo inverse.pdf

http://en.wikipedia.org/wiki/Inverse function theorem

We shall begin our discussion with the Implicit Function Theorem. The simplest form of this result
is generally discussed in the courses on differential calculus. In these courses one assumes that some
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equation of the form F (x, y) = 0 can be solved for y as a function of x and then attempts to find
the derivative y′. The standard formula for the latter is

df

dx
= −

(
∂F
∂x

)
(

∂F
∂y

)

where of course this formula can be used only if the denominator is nonzero. In fact if we have a
point (a, b) such that F (a, b) = 0 and the second partial of F at (a, b) is not zero, then the simplest
case of the Implicit Function Theorem proves that one can indeed find a differentiable function
f(x) for all values of x sufficiently close to a such that f(a) = b and for all nearby values of x we
have

y = f(x) ⇐⇒ F (x, y) = 0 .

Here is a general version of this result:

IMPLICIT FUNCTION THEOREM. Let U and V be connected domains in R
n and R

m

respecitvely, and let f : U ×V → R
m be a smooth function such that for some p = (a, b) ∈ U × V

we have f(a, b) = 0 and the partial derivative of f with respect to the last m coordinates is
invertible. Then there is an r > 0 and a smooth function

g : Nr(p)→ V

such that g(a) = b and for all u ∈ U0 we have f(u,v) = 0 if and only if v = g(u).

EXPLANATIONS. (1) We view the Cartesian product U × V as a subset of R
n+m under the

standard identification of the latter with R
n × R

m.

(2) The partial derivative of f with respect to the last m coordinates is the derivative of the
function f∗(v) = f(x, v), and smooth means smooth of class Cr for some r such that 1 ≤ r ≤ ∞.

Although it is possible to prove simple cases of this result fairly directly, the usual way of
establishing the Implicit Function Theorem is to derive it as a consequence of another important
result known as the Inverse Function Theorem. We shall be using this result extensively throughout
the remainder of the course.

Once again it is instructive to recall the special case of this result that appears in single variable
calculus courses. For real valued functions on an interval, the Intermediate Value Property from
elementary calculus implies that local inverses exist for functions that are strictly increasing or
strictly decreasing. Since the latter happens if the function has a derivative that is everywhere
positive or negative close to a given point, one can use the derivative to recognize very quickly
whether local inverses exist in many cases, and in these cases one can even compute the derivative
of the inverse function using the standard formula:

g = f−1 =⇒ g′(y) =
1

f ′(g(y))

Of course this formula requires that the derivative of f is not zero at the points under consideration.

If we are dealing with a function of n variables whose values are given by n-dimensional vectors,
one has the following far-reaching generalization in which the nonvanishing of the derivative is
replaced by the invertibility of the derivative matrix, or equivalently by the nonvanishing of the
Jacobian:

48



INVERSE FUNCTION THEOREM. Let U be a connected domain in R
n, let a ∈ U , and

let f : U → R
n be a Cr map (where 1 ≤ r ≤ ∞) such that Df(a) is invertible. Then there is a

connected domain W ⊂ U containing a such that the following hold:

(i) The restriction of f to W is 1− 1 and its image is a connected domain V .

(ii) There is a Cr inverse map g from V to some connected domain U0 ⊂ U containing a such
that g(f(x)) = x on U0.

For the purposes of this course it will suffice to understand the statements of the Inverse and
Implicit Function Theorems, so we shall restrict attention to this point and refer the reader to Rudin
for detailed proofs; a similar treatment of this material appears in Section II.2 of the following set
of notes for another course that are available online:

http://www.math.ucr.edu/∼res/math205C/lectnotes.pdf
.

WARNING. The Inverse Function only implies the existence of an inverse and does not provide any
general method for expressing the inverse in terms of the functions studied in first year calculus,
even if the coordinates of the original function have such a form. In fact, this is true even if we
restrict attention to real valued functions of a single real variable. One example of such a function
is the inverse function to f(x) = x + ex; note that this function is strictly increasing since its
derivative is always positive, and its limits as x→ ±∞ are equal to ±∞ respectively. Therefore it
follows that f has a strictly increasing inverse function, but it turns out that this function cannot
be expressed in terms of the functions one encounters in first year calculus. The online document

http://math.ucr.edu/∼res/math205A/Lambertfcn.pdf
provides some information and further references for this example. Another noteworthy example
is given by f(x) = x5 + x3 + x. This function is also strictly increasing, and its limits as x→ ±∞
are equal to ±∞ respectively, so that an inverse function exists. However, this function cannot be
expressed in familiar sorts of terms using addition, subtraction, multiplication, division, and taking
nth roots for n ≤ 5. Further discussion of this example appears in Section II.3 of the following
document:

http://math.ucr.edu/∼res/math144/transcendentals.pdf
On a more positive note, both x + ex and x5 + x3 + x have convergent power series expansions
for all real values of x (of course, in the second case there are only finitely many nonzero terms),
and for each example and each real number a the inverse function also has convergent power series
expansions at x = a; these formulas are valid over suitable open intervals of the form (a−Ra, a+Ra)
for some Ra > 0, but these expansions are not valid over the entire real line. In fact, one can set
up equations for the power series coefficients of the inverse functions in terms of the coefficients
for the power series of original functions at x = a (see the file inverse-series.pdf in the course
directory for more information).

REMARKS ON PROOFS. Finally, here are online references for the proofs of the Inverse and
Implicit Function Theorems. These are similar to the proofs in the previous online reference for
the theorems studied in the present section.

http://planetmath.org/encyclopedia/ProofOfInverseFunctionTheorem.html

http://planetmath.org/encyclopedia/ProofOfImplicitFunctionTheorem.html
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Change of variables in multiple integrals

In multivariable calculus courses, one is interested in changes of variables arising from smooth
mappings that are 1–1 and onto with Jacobians that are nonzero “almost everywhere.” The stan-
dard polar, cylindrical and spherical coordinates are the most basic examples provided that one
restricts the angle parameters θ and φ (in the spherical case) so there is no ambiguity; the Jacobian
condition is reflected by the fact that this quantity is nonzero for polar and cylindrical coordinates
if r 6= 0, and it is nonzero for spherical coordinates so long as ρ2 sinφ 6= 0. Further discussion of
this result in the general case appears on pages 333–336 of the background reference text by Mars-
den, Tromba and Weinstein, and on pages 995–1001 of the background reference text by Larson,
Hostetler and Edwards. Exercises 37–40 on page 339 of the first reference and exercises 60–61 on
page 1004 of the second are recommended as review. Other possible sources for background include
Section 5.5 of Colley and the following online commentary regarding the latter:

http://math.ucr.edu/∼res/math10B/comments0505.pdf
For the sake of completeness, here is a statement of the basic formula that applies to all

dimensions (not just 2 and 3).

CHANGE OF VARIABLES FORMULA. Let U and V be connected domains in R
n, and let

f : U → V be a map with continuous partial derivatives that is 1− 1 onto has a nonzero Jacobian
everywhere. Suppose that A and B are “nice” subsets of U and V respectively that correspond
under f , and let h be a continuous real valued function on V . Then we have

∫

B

h(v) dv =

∫

A

h
(
f(u)

)
|detDf(u)| du .

As in the case of polar, cylindrical and spherical coordinates, the result still holds if the
Jacobian vanishes on a set of points that is not significant for computing integrals (in the previous
terminology, one needs that the Jacobian is nonzero “almost everywhere,” and this will happen if
the zero set of the Jacobian is defined by reasonable sets of equations).

One can weaken the continuity assumption on h even more drastically, but this requires a more
detailed insights into integrals than we need here.

There is an extensive discussion of the proof of this result along with some illustrative examples
in Section IV.5 of the book Advanced Calculus of Several Variables, by C. H. Edwards, and a
mathematically complete proof appears on pages 252–253 of the previously cited book by Rudin.
As noted on page 252 of Rudin, this form of the change of variables theorem is too restrictive for
some applications, but in most of the usual applications one can modify the proof so that it extends
to somewhat more general situations; generally the necessary changes are relatively straightforward,
but carrying out all the details can be a lengthy process.

Remark on the absolute value signs. In view of the usual change of variables formulas for
ordinary integrals in single variable calculus, it might seem surprising that one must take the
absolute value of the Jacobian rather than the Jacobian itself. Some comments about the reasons
for this are given in the middle of page 252 in Rudin’s book. In fact, we dealt specifically with this
issue in Section I.3, when we proved that arc length remains unchanged under reparametrization.
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II.4 : Congruence of geometric objects

(O’Neill, §§ 3.1, 3.4–3.5)

The notion of congruence for geometrical figures plays a central role in classical synthetic
Euclidean geometry. For some time mathematicians — and users of mathematics — have generally
studied geometrical questions analytically using vectors and linear algebra (these often provide
neat and efficient ways of managing the usual coordinates in analytic geometry). A few simple
examples often appear in introductory treatments of vectors in calculus books or elsewhere, and in
fact one can state and prove everything in classical Euclidean geometry by such analytic means.
However, there are still numerous instances where it is useful to employ ideas from classical synthetic
geometry, and in particular this is true in connection with the Frenet-Serret Formulas from Unit
I. Therefore we shall formulate the analytic notion of congruence rigorously, and we shall use it to
state an important congruence principle for differentiable curves.

Isometries of R
n

Definition. Let F : R
n → R

n be a mapping (with no assumptions about continuity or differen-
tiability). Then f is said to be an isometry of R

n if it is a 1–1 correspondence from R
n onto itself

such that
|f(x) − f(y)| = |x − y|

for all x, y ∈ R
n.

Two subsets A,B ⊂ R
n are said to be weakly congruent if there is an isometry f of R

n such
that B is the image of A under the mapping f . If A and B are weakly congruent, then one often
writes A ∼= B in the classical tradition.

Since inverses and composites of isometries are isometries (and the identity is an isometry), it
follows that weak congruence is an equivalence relation.

The first step is to prove the characterization of isometries of a finite-dimensional Euclidean
space that is often given in linear algebra textbooks. To simplify our notation, we shall use the
term finite-dimensional Euclidean space to denote the vector spaces R

n with their standard inner
products.

PROPOSITION. If E is a finite-dimensional Euclidean space and F is an isometry from E to
itself, then F may be expressed in the form F (x) = b+A(x) where b ∈ E is some fixed vector and
A is an orthogonal linear tranformation of E (i.e., in matrix form we have that TA = A=1 where
TA denotes the transpose of A).

Notes. It is an elementary exercise to verify that the composite of two isometries is an isometry
(and the inverse of an isometry is an isometry). If A is orthogonal, then it is elementary to prove
that F (x) = b+A(x) is an isometry, and in fact this is done in most if not all undergraduate linear
algebra texts. On the other hand, if A = I then the map above reduces to a translation of the
form F (x) = b + x, and such maps are isometries because they satisfy the even stronger identity

F
(
x − y

)
= x − y .

Therefore every map of the form F (x) = b + A(x), where b ∈ E is some fixed vector and A is
an orthogonal linear tranformation of E, is an isometry of E. Therefore the proposition gives a
complete characterization of all isometries of E.
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Sketch of proof. This argument is often given in linear algebra texts, and if this is not done
then hints are frequently given in the exercises, so we shall merely indicate the basic steps.

First of all, the set of all isometries of E is a group (sometimes called the Galileo group of E). It
contains both the subgroups of orthogonal matrices and the subgroup of translations (G(x) = x+c
for some fixed vector c), which is isomorphic as an additive group to E with the vector addition
operation. Given b ∈ E let Sb be translation by b, so that A = S−F (0)

oF is an isometry from E
to itself satisfying G(0) = 0. If we can show that G is linear, then it will follow that G is given by
an orthogonal matrix and the proof will be complete.

Since G is an isometry it follows that

∣∣G(x)−G(y)
∣∣2 =

∣∣x− y
∣∣2

and since G(0) = 0 it also follows that g is length preserving. If we combine these special cases
with the general formula displayed above we conclude that 〈G(x), G(y)〉 = 〈x,y〉 for all x, y ∈ E.
In particular, it follows that G sends orthonormal bases to orthonormal bases. Let {u1, · · · ,un}
be an orthonormal basis; then we have

x =
n∑

i=1

〈x,ui〉 · ui

and likewise we have

G(x) =

n∑

i=1

〈G(x), G(ui)〉 ·G(ui) .

Since G preserves inner products we know that

〈x,ui〉 = 〈G(x), G(ui)〉 ·G(ui)

for all i, and this implies that G is a linear transformation.

Since an isometry is a mapping from R
n to itself, it is meaningful to ask about its continuity

or differentiability properties. The following result answers such questions simply and completely.

PROPOSITION. Let F : R
n → R

n be a mapping of the form F (x) = b +A(x), where b ∈ R
n

is some fixed vector and A is an arbitrary square matrix. Then for all x ∈ R
n we have DF (x) = A.

COROLLARY. Let V be open in R
m, let g : V → R

m have a continuous derivative, and let A
be an n× n matrix; by an abuse of language, let A also denote the linear transformation from R

n

to itself defined via left multiplication by A. Then we have D(A og) = A oDg.

Proofs. The statement in the proposition follows from the definition of the derivative as a matrix
whose entries are the partial derivatives of the coordinate functions. In this case the coordinate
functions are all first degree polynomials in n variables. The statement in the corollary follows from
the proposition and the Chain Rule.

The concept of weak congruence is close, but not identical, to the idea that there is a dynamic
rigid motion taking one figure to another; the main difference is that weak congruence also allows
the possibility that one figure is a mirror image of the other. For our purposes it is enough to know
that if F is an isometry then the orthogonal linear transformation DF has determinant equal to
±1, and the intuitive concept of rigid motion corresponds to the case where the determinant is
equal to +1. Therefore we shall say that F is a rigid motion if this determinant is +1, and we shall
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say that two weakly congruent figures A and B are strongly congruent, or more simply congruent,
if there is a rigid motion taking one to the other.

Congruence and differentiable curves

We shall say that two continuous curves α, β : [a, b]→ R
n are congruent if there is an isometry

F of R
n such that β = F oα. We are interested in the relationship between the curvatures and

torsions of congruent curves.

PROPOSITION. Let α, β : [a, b]→ R
3 be congruent differentiable curves whose tangent vectors

have constant length equal to 1 and whose curvatures are never zero. Then the curvature and
torsion functions for α and β are equal.

Proof. Let F be a rigid motion of R
3 such that β = F oα, express F in the usual form

F (x) = b +A(x) where b ∈ R
3 and A is an orthogonal transformation whose determinant is equal

to +1, and suppose that α has k continuous derivatives. By the Chain Rule we know that β also
has k continuous derivatives, and in fact β(k) = A oα(k).

Since |β′| = |α′| = 1, it follows that the curvatures are given by κα = |α′′| and κβ = |β′′|.
Since β′′ = A oα′′ and A is orthogonal, it follows that |β ′′| = |α′′|, and hence the curvatures of α
and β are equal.

We shall now show that the Frenet trihedra for the curves are related by

(
Tβ , Nβ , Bβ

)
=

(
A(Tα), A(Nα), A(Bα)

)
.

The result for the unit tangent vector is just a restatement of the relationship β ′ = A oα′, and the
result for the principal unit normal follows because we have

Nβ =
1

|β′′| β
′′ =

1

|β′′| A(α′′) =
1

|α′′| A(α′′) =

A

(
1

|α′′| α
′′

)
= A

(
Nα

)
.

We must next compare the binormals; this amounts to checking whether the following cross product
formula holds:

A
(
Bα

)
= A

(
Tα

)
× A

(
Nα

)
= Tα × Nβ

We shall do this using the Recognition Formula from Section I.1. By that result, all we have to
check is that the triple product satisfies

[
A(Tα), A(Nα), A(Bα)

]
= +1 .

This triple product is just the determinant of the matrix whose columns are the three vectors. This
matrix in turn factors as a product of A and the matrix whose columns are the Frenet trihedron
for α, and by the multiplicative properties of determinants we then have

[
A(Tα), A(Nα), A(Bα)

]
= detA ·

[
Tα, Nα, Bα

]
= (+1) · (+1) = +1
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so that the Recognition Formula implies the cross product identity. This completes the verification
of the relationship between the Frenet trihedra.

To complete the proof we need to show that the torsions satisfy τβ = τα. By definition we
have τβ(s) = −Bβ

′(s) · Nβ(s). Since Bβ = A(Bα), there is a corresponding identity involving
derivatives, and therefore by the preceding paragraph we have

τβ(s) = −A
(
Bα

′(s)
)
· A
(
Nα(s)

)
.

Since A is orthogonal, it preserves inner products, and consequently the right hand side is equal to
−Bα

′(s) ·Nα(s), which by definition is just τα(s). Combining these observations, we see that the
torsions of α and β are equal as claimed.

Uniqueness up to congruence

We are now ready to prove that curvature and torsion often determine a differentiable curve
up to congruence.

UNIQUENESS UP TO CONGRUENCE. Let α and β be sufficiently differentiable curves in
R

3 defined on the same open interval J containing s0, and assume that their curvatures and torsions
satisfy κα = κβ > 0 and τα = τβ . Then there is an isometry F of R

3 such that detDF (x) = +1
for all x and β = F oα.

Proof. Let
(
Tx, Nx, Bx

)
be the Frenet trihedron for the curve x = α or β at parameter value s0.

If P and Q denote the matrices whose columns are given by
{
Tα, Nα, Bα

}
and

{
Tβ, Nβ , Bβ

}

respectively, then P and Q are orthogonal matrices with determinants equal to +1 (this follows
because the columns are orthonormal and the third is the cross product of the first two). Therefore
the matrix C = P Q−1 is also orthogonal with determinant equal to +1. If we define F by the
formula

f(x) = C(x) + (β(s0)− α(s0) )

then γ = F oα is a curve whose curvatures and torsions are equal to those of α and β, and and its
Frenet trihedron at parameter value s0 is equal to the corresponding trihedron for β. By the local
uniqueness portion of the Fundamental Theorem of Local Curve Theory, it follows that there is an
open subinterval J ′ ⊂ J containing s0 such that the restrictions of γ = F oα and β to J ′ are equal.

There is a similar result on uniqueness up to congruence for plane curves with a given curvature
function; as in the 2-dimensional versions of the result from Section I.5, there is no torsion function
and it is not necessary to assume that the curvature is everywhere nonzero. The precise formulation
of this result and its proof are left to the reader.
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III . Surfaces in 3-dimensional space

In Unit I we discussed two approaches to studying a curve, either by viewing it as a set of points
in the plane or 3-dimensional space, or in terms of a parametrization. Similar considerations apply
to surfaces in R

3. Intuititvely speaking, a surface should be a subset that resembles a portion of
the plane near every point, and this will be the case if we have a suitable description of the surface
by parametric equations defined on some connected domain in R

2. However, as noted on page 57
of do Carmo, there is a major difference. For curves, it is often best simply to think of the curve
in terms of the vector valued function given by a parametrization. On the other hand, for surfaces
there is more of a balance between them as subsets of 3-dimensional space and objects given by
their parametrizing functions. As noted on page ix of O’Neill, a clear an adequate definition of
surfaces is important, but this is not always given in the classical references; our definition will be
equivalent to the ones in O’Neill and do Carmo.

One of the ultimate goals of classical surface theory is an analog of the Fundamental Theorem of
Local Curve Theory, which states that many regular smooth curves in R

3 are completely determined
near a point by their curvatures and torsions. The corresponding result for surfaces may be viewed
as a statement that a surface in R

3 is determined by a pair of 2× 2 matrix valued functions known
as the first and second fundamental forms; in fact, both of these forms take values in the set
of symmetric 2 × 2 matrices, and the possibilities for the first fundamental form are even more
significantly restricted. This unit and the next one develop many of the basic concepts that are
needed to study the differential geometry of surfaces, including some needed to formulate and to
prove a fundamental theorem for local surface theory. As in the case of curves, much of the work
involves generalizations of material from standard multivariable calculus courses. We shall not get
to the fundamental theorem in this course, but there is a discussion of this result in Section V.2 of
these notes.

III.1 : Mathematical descriptions of surfaces

(O’Neill, §§ 4.1, 4.8)

One weakness of classical differential geometry is its lack of any adequate defini-
tion of surface.

O’Neill, Preface, p. ix.

Some of the most basic examples of curves in R
2 are given by the graphs of differentiable

functions, and they can be described either as the set of points (x, y) where y = f(x) or alternatively
using a parametrization of the form r(t) = (t, f(t) ). Likewise, some of the most basic examples of
surfaces in R

3 are given by the graphs of differentiable functions, and they can be described either
as the set of points (x, y, z) where z = f(x, y) or else by means of a parametrization S(u, v) =
(u, v, f(u, v) ).
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If F is a function of two variables defined near (a, b) so that F (a, b) = 0 but the second partial
derivative at (a, b) is nonzero, then the Implicit Function Theorem implies that locally one can
solve the equation F (x, y) = 0 for y in terms of x, and it follows that locally the set F (x, y) = 0
is the image of a parametrized curve. More generally, if we know that ∇F (x, y) 6= 0 whenever
F (x, y) = 0, then at each point we can locally solve for one coordinate in terms of the other,
and using these solutions one can generally find a parametrization of the level set defined by the
equation F (x, y) = 0 which makes the latter into a regular smooth curve, at least if the level set
consists of only one connected piece (this happens for the circle defined by x2 + y2 = 1 but not
for the hyperbola y2 − x2 = 1). Proofs and more details about such constructions appear on pages
68–73 of Thorpe (see pages 16 and 26 of the latter for some key definitions).

Similarly, if F is a function of three variables such that ∇F (x, y, z) 6= 0 whenever F (x, y) = 0,
then at each point we can locally solve for one coordinate in terms of the other two, so we have
local parametrizations at each point. However, it is far more difficult to put together a global
parametrization even if the level set defined by F (x, y, z) = 0 consists only of one connected piece.
Perhaps the most basic example of this occurs for the unit sphere S2, which corresponds to the
equation x2 + y2 + z2 = 1. It is easy to check the gradient condition for this example, and it is
also easy to see write down explicit solutions for one variable in terms of the other two. However,
it is not easy to write down a parametrization in elementary terms. The obvious parametrizations
that one gets at different points cannot be pieced together as easily as one can piece together
parametrizations for curves. In the case of curves, it is enough to match things up at boundary
points of the intervals on which the partial parametrizations are defined , but the boundary sets
for the two dimensional planar regions cannot be dealt with so easily. Another point to consider is
that the parametrization of S2 by spherical coordinates

Σ(θ, φ) =
(
cos θ sinφ, sin θ sinφ, cosφ

)

is somewhat less regular than the corresponding parametrization of the unit circle as (cos θ, sin θ)
because it sends the infinite set of all parameter pairs with φ = 0 to the north pole, and it also
sends the infinite set of all parameter pairs with φ = π to the south pole. Just as we want
parametrizations for curves that are regular in the sense that their derivatives are zero, we shall
also want parametrizations for surfaces that are regular in the sense that every directional derivative
at every point is nonzero.

These considerations suggest that we need more flexibility with surface parametrizations than
we had for curve parametrizations. All of this will be made mathematically precise in the next
section.
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III.2 : Parametrizations of surfaces

(O’Neill, § 4.2)

The first objective is to define a regular smooth surface parametrization. This definition is
very close to the definition of a regular smooth parametrization for a curve.

Definition. A regular smooth surface parametrization of class r ≥ 1 is a smooth C r map x from
a connected domain U in R

2 to R
3 such that the 2× 3 matrix Dx(u, v) has maximum rank (which

equals 2) for all (u, v) ∈ U .

The condition on the matrix is equivalent to the nonvanishing of the cross product of the
partial derivative vectors

∂x

∂u
× ∂x

∂v

at all points of U , and in fact this is the form of the condition that is most often used in the
classical differential geometry of surfaces. Another consequence of the matrix condition is that the
directional derivatives of x in all directions and at all points are nonzero.

We should note that the standard parametrization of the sphere by the spherical coordinate
map X(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ) is not quite a regular parametrization for the entire
sphere, for we have

∂X

∂θ
× ∂X

∂φ
= −

(
cos θ sin2 φ, sin θ sin2 φ, cosφ sinφ

)

and this vector vanishes when sinφ = 0; in other words, when φ is an integral multiple of π, or
equivalently at the points which map to the north and south poles. — On the other hand, it is
possible to find a regular parametrization for the entire sphere such that the domain is a connected
region, and an example is given in the file plane2sphere.pdf, but this also has an important
disadvantage; namely, the associated map X is very far from being 1–1, either everywhere or
“almost everywhere.”

Normal thickenings of surfaces

The following result is not always mentioned in differential geometry texts, but it will be helpful
for our purposes.

NORMAL THICKENING PRINCIPLE. Let x be a regular smooth surface parametrization
of class r as above, let

y(s, t) =
∂x

∂u
(s, t) × ∂x

∂v
(s, t)

for (s, t) ∈ U , and let Φ(s, t, w) = x(s.t) + w y(s.t) for (s, t) ∈ U and w ∈ (−h, h) for some small
h > 0. Then for each (s, t) there is an ε > 0 (depending on (s.t) ) such that the following conclusions
hold on the disk

D = {(x, y, z) ∈ R
3 | (x− s)2 + (y − t)2 + z2 < ε2 } :

(i) The restriction of Φ to W is 1− 1 and its image is a connected domain V .
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(ii) There is a Cr inverse map Ψ from V to some connected domain U0 ⊂ U containing (s.t, 0)
such that Ψ(Φ(x, y, z) ) = (x, y, z) on U0.

The map Φ may be viewed as a thickening of x such that the vertical line segments (s0, t0, w)
— where the first two variables are held constant — are mapped to curves that are in some sense
perpendicular (or normal) to the surface at the point x(s0, t0)

Proof. By the Inverse Function Theorem it suffices to show that DΦ(s, t, 0) is invertible for all
(s.t) ∈ U , or equivalently that the Jacobian of Φ at these points is always nonzero.

Let xu and xv denote the partial derivatives of x with respect to the first and second variables
respectively. Then the Jacobian of Φ at (s, t, 0) is equal to the value of the vector triple product

[
xu, xv, xu × xv

]

at (s, t). But the triple product is equal to |xu × xv |2; as noted above, since Dx has rank 2 its
columns — which are xu and xv — are linearly independent, so that the cross product xu × xv

is nonzero for all (s, t) ∈ U , and therefore its length is positive for all such points. Therefore the
Jacobian of Φ is positive at all points (s, t, 0) such that (s, t) ∈ U .

EXAMPLE. Consider the parametric surface describing a part of the sphere by the spherical
coordinate map Σ described above where both θ and φ are assumed to lie in (−π, π). The image of
this function is the set of all points on S2 except for the great circle arc through (−1, 1, 0) joining
the north and south poles. Direct calculation then shows that Σu×Σv is equal to sinφ·Σ. Therefore
the normal extension is given by the formula

Φ(θ, φ, w) = (1 + w sin θ) · Σ(θ, φ) .

Note that this function maps the entire surface given by the graph w = −1/ sin θ into 0, and
therefore the normal extension is not globally 1–1. Furthermore, the Jacobian at points on the
curve must vanish because the second partial derivative of Φ at such points is equal to zero (note
that the second partial is equal to (1 +w sin θ) · Σ2).

In this example one still knows that there is some h > 0 such that Φ is 1–1 and has nonvanishing
Jacobian for all (s, t, w) such |w| < h and (s, t) ∈ U . However, it is also possible to construct
examples for which one cannot find a positive constant h that works for every point in U . The best
one can do in general is find a positive valued continuous function h(s, t) such that Φ is 1–1 and
has nonvanishing Jacobian for all (s, t, w) such |w| < h(s, t) and (s, t) ∈ U .

We now proceed to define a concept of surface that is equivalent to the definition on page 126
of O’Neill (and also the definition in do Carmo).

Definition. A geometric regular smooth surface Σ is a subset of R
3 such that for each p ∈ Σ

there is a smooth 1-1 map ψ defined on some open disk centered at 0 in R
3 such that the following

hold:

(i) The map ψ sends 0 to p, its Jacobian is nowhere zero, and its image W is an open connected
domain containing p.

(ii) If r is the radius of the disk on which ψ is defined, then the set W ∩ Σ is the set of all
points of the form ψ(u, v, 0) where u2 + v2 < r2.

CONSEQUENCE 1. If X denotes the restriction of ψ to the set of points whose third coordinate
is zero, then X is a regular smooth parametrization for Σ ∩W .
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Proof. Let D be the open disk, let D0 be the corresponding disk in R
2 consisting of all points

in D whose third coordinate is equal to zero, and let j denote the inclusion of D0 in D. Then by
the Chain Rule we have that DX(u, v) = Dψ(u, v, 0) ·Dj(u, v). Now Dj is simply the 3× 2 matrix
whose columns are the first two unit vectors, and accordingly it has rank 2, and by hypothesis we
know that Dψ(u, v, 0) has rank 3. Therefore the composite, which is DX(u, v), must have rank 2.

We shall sometimes say that the maps satisfying (i) and (ii) are thickened regular smooth
parametrizations near p.

It is natural to ask why we do not simply define a geometric regular smooth surface to be the
image of a smooth 1–1 regular parametrization. The reason for the more complicated definition is
to eliminate some “bad” examples that are described at the end of this section.

CONSEQUENCE 2. If Σ is a above and U is a connected domain such that Σ ∩ U is not
empty, then the latter is also a geometric regular smooth surface. Conversely, if Σ ⊂ R

3 and for
each p ∈ Σ there is an open disk Vp centered at p such that Σ ∩ Vp is a geometric regular smooth
surface, then Σ itself is a geometric regular smooth surface.

Proof. We begin by verifying the first inclusion. Let p be a point in the intersection, let ψ be
the map given in the definition above, and let D be the disk on which ψ is defined. The continuity
of ψ implies that there is some smaller disk D ′ ⊂ D centered at the origin such that the image of
D′ is contained in U . If we define ψ′ to be the restriction of ψ to U , then this restriction satisfies
the condition of property (ii) in the definition.

For the second conclusion, if ψ is a map satisfying all the required conditions with respect to
Σ ∩ Vp, then it also satisfies these conditions with respect to Σ itself. Since every point p on the
surface lies in a suitable connected domain Vp, it follows that property (ii) in the definition of a
geometric regular smooth surface is satisfied at every point.

The basic examples

Before proceeding further we should check that most or all the objects informally described
as surfaces are indeed surfaces in the sense of our definition. There are several separate cases to
consider.

GRAPHS OF SMOOTH FUNCTIONS. Suppose that we are given a function f that is defined
on a connected domain U ⊂ R

2 and has continuous partial derivatives at every point. Then the
graph of f is given by the standard regular smooth parametrization

g(x, y) =
(
x, y, f(x, y)

)

and we claim that Dg always has rank 2 (or equivalently that the cross product of the first and
second partial derivatives of g is nonzero at all points). Direct computation shows that




1 0
0 1
∂f
∂x

∂f
∂y




and it follows that the cross product of the columns has a third coordinate which is equal to +1.
This cross product will be used repeatedly throughout the remainder of the course, so we shall
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write it down explicitly:

∂g

∂x
× ∂g

∂y
=




− ∂f
∂x

− ∂f
∂y

1




The preceding shows that we have a 1–1 regular smooth parametrization for the graph of f .
We also need to show that property (ii) in the definition of a geometric regular smooth surface is
satisfied. The first step in doing so is to define a 3-dimensional thickening of the parametrization
map that is similar to the normal extension discussed previously. Specifically, if W is the connected
domain on which f is defined, then we thicken if to a map F defined on W×R by the simple formula

F(u, v, t) = (u, v, t+ f(u, v) ) .

It follows immediately that F is a smooth map with a smooth inverse given by

G(u, v, t) = (u, v, t− f(u, v) )

and that the graph of f is the image of W × {0}. Suppose now that p is a point on the graph of
f and that p = (u, v, f(u, v) ) for suitable u and v. Let q denote the vector (u, v), and suppose
that r > 0 is chosen so that the open 2-dimensional disk of radius r centered at q lies in W . If D
represents the 3-dimensional disk of radius r centered at 0 then the necessary map ψ for the point
p is given by ψ(x) = F(x + q); the right hand side is always defined because x + q always lies in
W × R when x ∈ D.

In the preceding discussion, we have described graphs in which x and y are the independent
variables and z is the dependent variables. Needless to say, one can permute the roles of the three
coordinates to consider graphs where each coordinate becomes the dependent variable, and similar
considerations show that such subsets are surfaces.

Notation. Parametrizations of surfaces as graphs of smooth functions are often called Monge
parametrizations or Monge patches in the literature.

LEVEL SETS OF REGULAR VALUES OF SMOOTH FUNCTIONS. These can be viewed as
generalizations of graphs, and they also include the usual quadric surfaces in R

3, at least if one
removes a relatively small number of “bad” point that are generally described as singularities;
perhaps the simplest example involves the cone defined by the equation x2 + y2 − z2 = 0, whose
vertex at 0 is clearly an exceptional point.

Suppose that we are given a smooth function f defined on a connected domain U ⊂ R
3, and

let C be a constant. We generally expect that the level set defined by the equation f(x, y, z) = C
(where (x, y, z) is assumed to lie in U) should define a surface. Perhaps the most fundamental
examples of this sort are planes that have equations of the form

Ax + B y + C z = D

(where not all of A, B, C are zero) and spheres defined by equations of the form

(x− a)2 + (y − b)2 + (z − c)2 = r2

(where r > 0). The best way to avoid pathologies is to require that C be a regular value in the
sense that the gradient ∇f(x, y, z) is not equal to 0 if f(x, y, z) = C. In both of the cases described
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above one can check this out directly. For the plane, the gradient is equal to (A,B,C) and this
vector is nonzero because we assumed that at least one of the three coefficients was nonzero. In
the case of the sphere, the gradient of f at an arbitrary point (x, y, z) is equal to

2
(
x− a, y − b, z − c

)

and therefore vanishes only at the point (a, b, c) which does not lie on the sphere (we assumed that
r > 0).

We now explain why such level sets are geometric regular surfaces in the sense described above;
if we modify our original function by subtracting off the constant C, we obtain a new function such
that the gradient is nonzero where the value of the function is zero, so there is no real loss of
generality in assuming that C = 0. Suppose that p = (a, b, c) is a point for which f(a, b, c) = 0.
Since we know that ∇f(a, b, c) 6= 0, at least one partial derivative of f at (a, b, c) is nonzero.
If, say, the third partial is nonzero,, then the Implicit Function Theorem implies that there is a
small connected domain of the form V ×W containing p — where V is a connected domain in R

2

containing (a, b) and W is an open interval in R containing c — and a smooth implicit function g
defined on W such that the intersection of the zero set of f with V ×W is equal to the graph of g.
We can then use the standard parametrization of a graph as the regular smooth parametrization
that is required at the point p. If one of the other partial derivatives at (a, b, c) is zero — say the
one with respect to the ith variable — then the the same considerations show that locally the zero
set is given by the graph of a function expressing the ith coordinate as a function of the other two.

One can check that this also works for the other basic types of quadric surfaces in the list
below, where all exceptional points are noted.

• Ellipsoids of the form
x2

a2
+

y2

b2
+

z2

c2
= 1

where a, b, c 6= 0. As in the case of the sphere, the gradient of the function on the left
hand side vanishes only at 0 and the latter does not belong to the level set described
above.

• Hyperboloids of the form

x2

a2
± y2

b2
− z2

c2
= 1

where a, b, c 6= 0. As in the previous case, the gradient of the function on the left hand
side vanishes only at 0 and the latter does not belong to the level set described above.

• Cones of the form
x2

a2
+

y2

b2
− z2 = 0

where a, b 6= 0 and we restrict to the open connected domain of points that are not equal
to 0. As in the previous cases, the gradient of the function on the left hand side vanishes
only at 0 and the latter has been excluded.

• Elliptic and hyperbolic paraboloids of the form

x2

a2
± y2

b2
= z
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where a, b 6= 0. In these cases the gradient for the difference of the left and right hand
sides never vanishes.

• Circular, elliptic and hyperbolic cylinders of the form

x2

a2
± y2

b2
= 1

where a, b 6= 0. In these previous case, the gradient for the difference of the left and right
hand sides vanishes only at points where x = y = 0, and no point of the form (0, 0, z)
belongs to one of the level sets described above.

• Parabolic cylinders of the form
x2

a2
= z

where a 6= 0. In these cases the gradient for the difference of the left and right hand sides
never vanishes.

This list is not quite exhaustive, but the only types of nondegenerate quadrics that are missing
are given by two planes that either intersect in a line (the hyperbolic cylinder equation with the
right hand side set equal to 0 rather than 1) and pairs of parallel lines defined by an equation of
the form x2 = a2 > 0 (see the end of Section IV.3 for more information on this point). In the first
case one must exclude the entire z-axis, but in the second case it is not necessary to exclude any
points at all.

CYLINDRICAL SURFACES. We have already discussed some standard examples of cylindrical
surfaces. Generalizations of these examples turn out to play an important role in many aspects
of geometry, so it is worthwhile to explain how some of them can be parametrized. The simples
examples of cylindrical surfaces arise when one takes a curve in R

2 defined by y = f(x) and
considers the set of all points (x, y, z) ∈ R

3 such that y = f(x). If J is the interval upon which f is
defined, then this surface is the subset of J ×R×R consisting of all points satisfying the equation
y− f(x) = 0, so this set will be a geometric surface because the gradient of y− f(x) is the nonzero
vector (−f ′(x), 1, 0). In this case one also has a simple explicit parametrization

x(u, v) = (u, f(u), v)

that maps J × R to the surface in a 1–1 onto fashion.

In the preceding example, one uses lines that are perpendicular to the xy-plane, but one can
also form such surfaces using a family of mutually parallel lines such that these lines are neither
parallel to nor contained in the xy-plane. The corresponding smooth parametrization in such cases
is given by the formula

Σ(t, s) = (t, f(t), 0) + s · (a, b, c)

where c 6= 0.

SURFACES OF REVOLUTION. Several of the quadric surfaces described above can be viewed
as surfaces of revolution about a coordinate axis, and more general surfaces of revolution also play
an important role in geometry. Therefore we shall consider the two basic types of examples that one
encounters in single variable calculus courses. Given a curve y = f(x) as above such that f(x) > 0
for all x, then we can construct a corresponding surface of revolution in R

3 about the x-axis. Such
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a surface is defined by an equation of the form y2 + z2 = f(x)2 on the set J × R× R, where J is
an open interval on which f is defined, and an explicit 1–1 global parametrization is given by

Σ(t, θ) =
(
t, f(t) cos θ, f(t), sin θ

)
.

Verification that this description yields a geometric surface is left to the reader as an exercise.

Similarly, if we are given a curve y = f(x) as above that is defined on an interval for which
x is always positive, then we can also construct a corresponding surface of revolution in R

3 about
the y-axis. In this case an explicit 1–1 global parametrization is given by

Σ(t, θ) =
(
t cos θ, f(t), t sin θ

)
.

Alternatively, one can view a surface of revolution about the y-axis as given by the equation
y = f(

√
x2 + z2 ); if f is defined on the interval (a, b) where a > 0, then the domain of definition

for the corresponding function of x and z is the annulus defined by the inequalities

a2 < x2 + z2 < b2 .

We shall give a slight generalization of this which shows that the torus given by rotating a circle
such as (x− 1)2 + y2 = 1 about the y-axis is a surface in the sense of these notes. Suppose we are
given a simple closed curve x in R

2 which can also be described as the set of solutions to F (u, v) = 0
where ∇F (a, b) 6= 0 at all points such that F (a, b) = 0, and suppose that the first coordinates of
all solutions to F (u, v) = 0 are greater than some positive number a. A parametrization of the
resulting surface of revolution is given by

X(t, θ) =
(
u(t) cos θ, v(t), u(t) sin θ

)

and if we set G(x, y, z) = F (
√
x2 + z2, y), then the surface of revolution consists of all points such

that G(x, y, z) = 0. In order to verify that this defines a surface in our sense, we need to show that
the gradient of G is nonzero at all points of the zero set of G. Here is a sketch of the proof: At each
point (u, v) such that F (u, v) we know that either the first partial derivative F1(u, v) or the second
partial derivative F2(u, v) is nonzero. Suppose now that G(x, y, z) = 0 and let u =

√
x2 + z2 and

v = y. If the second partial derivative of F is nonzero at (u, v), then the second partial derivative
of G is also nonzero at (x, y, z). If the first partial derivative of F is nonzero at (u, v) and x 6= 0,
then elementary calculations show that the first partial derivative of G is also nonzero at (x, y, z),
while if the first partial derivative is nonzero and z 6= 0, then the third partial derivative of G is also
nonzero at (x, y, z). Since u > a > 0 by hypothesis we know that x2 + z2 > a2 > 0, and therefore
at least one of x and z is always zero; this proves that the gradient of G is nonzero at every point
of the zero set.

RULED SURFACES. More generally, one can define another important generalization of cylin-
drical surfaces that also includes the cone that are ruled in the sense that one has parametrizations
for the entire surface of the form

X(u, v) = a(u) + v · b(u)

where a′(u) is never zero and the vectors a′(u) and b(u) are always linearly independent. Here are
some basic examples that are not cylindrical in the sense described above:
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• A hyperbolic paraboloid. Consider the surface of this type defined by the equation
z = x2 − y2. The right hand side factors as a product (x− y) (x + y), so the intersection
of the surface with the plane x− y = C is just the line at which the planes x− y = C and
z = C(x+y) intersect. This leads to the definition of parameters u = x−y and v = x+y,
and one can use these to parametrize the surface as

X(u, v) = ( 1
2 (u+ v), 1

2 (u− v), u v ) .

Here the curves defined by holding either u or v constant are straight lines, and one can
rewrite the parametrization in the form y(u) + v g(u) where

y(u) = 1
2 u (e1 + e2)

and
g(u) = 1

2 (e1 + e2) + u e3 .

• A hyperboloid of one sheet. Consider the surface of this type defined by the equation
x2 + y2 − z2 = 1. One can check directly that this surface can be parametrized using the
function

(cos u, sinu ) + v · (− sinu, cos u, 1)

and that a(u) = (cos u, sinu) and b(u) = (− sinu, cos u, 1) satisfy the basic conditions
described above.

• A cone. We shall only consider the nonsingular piece of the cone x2 + y2 − z2 = 0 in
the upper half plane where z > 0. In this case the parametrization is given by

X(u, v) = (v cos u, v sinu, v)

where u ∈ R and v > 0. One can give ruled parametric equations by the alternate formulas

(cos u, sinu, 1) + v · (cos u, sinu, 1)

where again u ∈ R but this time v > −1.

• The Möbius strip. Intuitively, this is formed by taking a rectangle AB CD for which
the length |AB| = |CD| is much greater than the width |BC| = |AD| and gluing sides
BC and AD so that B corresponds to D and A corresponds to C. One can model this
using the parametric equations

X(u, v) = (cos u, sinu, 0) + v ·
(
cos u cos(u/2), sinu cos(u/2), sin(u/2)

)

where u ∈ R and v ∈ (− 1
2 ,

1
2 ) (or one can take |v| < ε for some arbitrary ε that is positive

but less than 1).

In order to show this satisfies the condition for a surface, it will suffice to find a set of open
domains Ui such that every point in the image of the parametrization X lies in one of the domains
U1 and that on each set Ui the intersection of the Möbius strip with the zero set of some well
behaved smooth function on Ui. Geometrically, the key to doing this is to look at the intersection
of the surface with the planes containing the z-axis, which are defined in cylindrical coordinates
by equations of the form θ = C. In such planes one sees that the points of the Möbius strip are
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the points satisfying (r − 1)2 + z2 < ε2 and either z = (1 − r) tan 1
2C if C is not an odd multiple

of π or else by 1 − r = z cot 1
2C if C is not an even multiple of 2π. Therefore, on the set of

points in R
3 satisfying (r − 1)2 + z2 < ε2 and either x > 0 or y 6= 0, the intersection with the

Möbius strip is given by the equation z = (1 − r) tan 1
2θ, while on the set of points satisfying

(r − 1)2 + z2 < ε2 and either x < 0 or y 6= 0, the intersection with the Möbius strip is given by
the equation (1− r) = z cot 1

2θ.

Here are some online references, including some with animations showing the one-sidedness of
the Mb̈ius strip.

http://www.worldofescher.com/gallery/A29.html

http://www.mikejwilson.com/solidworks/(continue with next line)
files/mobius II animation.zip (This requires RealOne Player .)
http://www.physlink.com/Education/AskExperts/ae401.cfm

http://www.uta.edu/optics/sudduth/4d/(continue with next line)
nonorientable/moebius strip/math/mathematics.htm

http://www.mapleapps.com/categories/animations/gallery/anim pg3.shtml

http://www.tattva.com/vladi/director.html#6 (Scroll down the Movie List to the
last entry, which is called ”Mobius strip.” There are QuickTime and RealOne Player
versions of this loop.)
http://mathworld.wolfram.com/MoebiusStrip.html (This is a curious animation.)

Significant counterexamples

On the basis of our examples thus far, it is natural to ask whether the image of a parametrized
surface is always a geometric surface. It turns out that the answer is negative, even if one restricts
attentions to simple parametrizations that are globally 1–1. Here is one counterexample: Consider
the figure 8 curve ϕ(t) = (sin 2t, sin t) for t ∈ (0, 2π). One then has an associated cylindrical surface
with regular smooth parametrization Σ(t, w) = (sin 2t, sin t, w) for t ∈ (0, 2π) and w ∈ R. This
parametrization is also 1–1, but its image fails to satisfy the definition of a geometric surface when
p = 0. The key to seeing this is the following simple observation:

PROPOSITION. Let Σ be a geometric regular smooth surface in R
3, and let p ∈ Σ. Define Kp

to be the set of all vectors in R
3 that are realizable as tangent vectors y′(0), where y is a smooth

curve entirely contained in Σ such that y(0) = p. Then Kp is a 2-dimensional vector subspace of
R

3.

Proof. Let ψ be a smooth 1-1 map ψ defined on some open disk centered at 0 in R
3 such that

(i) it sends 0 to p, its Jacobian is nowhere zero, and its image W is an open connected domain
containing p, (ii) if r is the radius of the disk on which ψ is defined, then the set W ∩Σ is the set
of all points of the form ψ(u, v, 0) where u2 + v2 < r2.

Let ϕ be the inverse mapping to ψ, and suppose that y is a curve of the type described in
the conclusion of the proposition. By restricting to a small interval centered at 0, we may as well
assume that the image of y is contained in the image of ψ so that φ oy is defined. This is a curve
in the uv-plane, so its tangent vector at 0 also lies in this plane. By the Chain Rule, the tangent
vector to y = ψ o(ϕ oy) lies in the subspace of R

3 spanned by Dψ(0)e1 and Dψ(0)e2. Conversely,
every vector in this subspace is the tangent vector of a curve in the surface of the form ψ(tv) where
v lies in the subspace of R

3 spanned by the first two unit vectors.

65



Returning to the example, we now consider all curves of the form

(
sin 2a t, sin a (t− c π), b t

)

where a and b are arbitrary real numbers and c = 0 or 1. Each of these curves lies entirely in the
image of the parametrized surface, and at parameter value t each curve passes through 0. What
are the tangent vectors to these curves? They are equal to (2 a,± a, b). We claim there is no
2-dimensional vector subspace W of R

3 that contains this set. To see this, note that the set of all
tangent vectors described above contains the 2-dimensional subspace W0 spanned by (2, 1, 0) and
(0, 0, 1), and if W is a 2-dimensional subspace containing these and possibly other tangent vectors,
then W = W0. On the other hand, the given set of tangent vectors includes (2. − 1.0), which is
definitely not in W0. — It follows that the image of the 1–1 parametrization map is not a geometric
regular smooth surface in this case.

ANOTHER (more complicated) EXAMPLE. The cylindrical surface in Exercise 19 on pages
68–69 of do Carmo illustrates another way in which the image of a 1–1 parametrization may fail
to be a smooth surface. According to the defining conditions, for every point p of a geometric
surface Σ, for every connected domain W containing p there is a connected subdomain U ⊂ W
containing p such that every other point in Σ ∩ U can be joined to p by a smooth curve lying
entirely in Σ ∩ U . This property fails to hold for the surface described in the exercise; specifically,
consider the disk W of radius 1

4
about the origin and the points qn with coordinates

(
1

nπ
, 0

)
.

We claim that there are no smooth curves in Σ∩W joining the origin to such points. If there were,
then by the Intermediate Value Theorem for each value of t between 0 and 1/nπ there would be
points on these curves, and hence on the surface Σ, whose first coordinates are equal to t. However,
examination of the graph of sin(1/x) shows that the only point with first coordinate 2/( (2n+1)π)
on this curve have second coordinates with absolute values ≥ 1 and therefore such points do not
lie in W . If U is an arbitrary connected domain containing the origin, then it contains a disk of
some positive radius, and this disk contains all but finitely many of the points qn. Since one cannot
join these points to 0 in Σ ∩W by smooth curves lying completely within the latter intersection,
one certainly cannot find such curves in the even smaller intersection Σ∩U . Therefore Σ does not
satisfy the second condition required for a geometric surface.

Piecewise smooth surfaces

In Unit I we noted that there are many contexts in which it is necessary to consider curves
that are piecewise smooth, and likewise there are many contexts in which it is necessary to consider
piecewise smooth surfaces. In particular, such objects play important roles in multivariable integral
calculus, and perhaps the most obvious examples are given by the surfaces of cubes and cylinders.
For the sake of completeness, we note that formal definitions of piecewise smooth surfaces are given
in Section 7.1 of Colley (see Definition 1.3 on page 413) and in the following online file:

http://math.ucr.edu/∼res/math10B/comments0701.pdf
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