NAME:

Mathematics 138A-001, Winter 2010, Examination 1

Answer Key

1. [15 points] Suppose that $\gamma(t)=\left(t, \frac{2}{3} t^{3 / 2}\right)$ where $1 \leq t \leq 2$, and let $s(t)$ be the arc length reparametrization. Describe $s(t)$ explicitly as a function of t.

SOLUTION

The general formula is

$$
s(t)=\int_{1}^{t} \sqrt{x^{\prime 2}+y^{\prime 2}} d t
$$

and from the definition we know that the expression inside the square root sign is $1+t$. Therefore we have

$$
s(t)=\int_{1}^{t} \sqrt{1+u} d u=\left.\frac{2}{3}(1+t)^{3 / 2}\right|_{1} ^{t}=\frac{2}{3}\left((1+t)^{3 / 2}-2^{3 / 2}\right) .
$$

2. [25 points] Let $\gamma(s)$ be a smooth curve in coordinate 3 -space which has a modified arc length parametrization such that $\left|\gamma^{\prime}(s)\right|=1$ always. Define the curvature of γ at $s=s_{0}$, and in cases where this curvature is nonzero define the principal normal, binormal and torsion of the curve.

SOLUTION

The curvature is just $\left|\gamma^{\prime \prime}\left(s_{0}\right)\right|$; if this number is nonzero, then $\gamma^{\prime \prime}\left(s_{0}\right) \neq \mathbf{0}$ and $\mathbf{N}\left(s_{0}\right)$ is the unit vector $\left|\gamma^{\prime \prime}\left(s_{0}\right)\right|^{-1} \cdot \gamma^{\prime \prime}\left(s_{0}\right)$. The binormal is just $\mathbf{B}\left(s_{0}\right)=\mathbf{T}\left(s_{0}\right) \times \mathbf{N}\left(s_{0}\right)$, where $\mathbf{T}=\gamma^{\prime}$ in this situation, and the torsion is equal to $-\mathbf{B}^{\prime}\left(s_{0}\right) \cdot \mathbf{N}\left(s_{0}\right)$.
3. [10 points] Suppose that $\alpha(t)$ defines the circle with equation $x^{2}+y^{2}=4$ in the plane and $\beta(u)$ defines the circle with equation $(x+1)^{2}+y^{2}=9$. Let K_{1} and K_{2} be the respective curvatures of these circles at the point $(2,0)$. Evaluate the quotient K_{1} / K_{2}. State any results about the curvature of a circle that you use (but a derivation is not necessary).

SOLUTION

The α circle and the β circle have radii equal to 2 and 3 respectively, so the curvatures of these circles are equal to the reciprocal values of $\frac{1}{2}\left(=K_{1}\right)$ and $\frac{1}{3}\left(=K_{2}\right)$. Therefore $K_{1} / K_{2}=3 / 2$.
4. $\quad[25$ points $]$ Let $\mathbf{F}(u, v, w)=(u(1-v), u v(1-v), u v w)$, so that $\mathbf{F}(1,2,3)=$ $(-1,-2,6)$. Prove that for all (x, y, z) sufficiently close to $(-1,-2,6)$ the system of nonlinear equations $(x, y, z)=\mathbf{F}(u, v, w)$ can be solved for u, v and w.

SOLUTION

By the Inverse Function Theorem, the assertion in the second sentence will be true if we have

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}(1,2,3) \neq 0
$$

The general formula for the Jacobian is given by

$$
\left|\begin{array}{ccc}
1-v & v(1-v) & v w \\
-u & u-2 u v & u w \\
0 & 0 & u v
\end{array}\right|
$$

and if we evaluate this at $(u, v, w)=(1,2,3)$ we see that the value of the Jacobian at the given point is equal to

$$
\left|\begin{array}{ccc}
-1 & -2 & 6 \\
-1 & -3 & 3 \\
0 & 0 & 2
\end{array}\right|=2
$$

so that the Jacobian at $(1,2,3)$ is nonzero and hence for all (x, y, z) sufficiently close to $(-1,-2,6)$ the system of nonlinear equations $(x, y, z)=\mathbf{F}(u, v, w)$ can be solved for u, v and w.
5. [25 points] Let A denote the 2×2 rotation matrix

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

where $0<\theta<2 \pi$, and let $T(\mathbf{x})$ be the isometry $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ where \mathbf{b} is some vector in the coordinate plane. Prove that there is a unique vector \mathbf{z} such that $T(\mathbf{z})=\mathbf{z}$. [Hint: What does one know about solutions to the system of linear equations $(A-I)(\mathbf{x})=-\mathbf{b}$ for the given values of θ ?]

SOLUTION

The condition $T(\mathbf{x})=\mathbf{x}$ translates into the equation $A \mathbf{x}+\mathbf{b}=\mathbf{x}$, which after rearrangement is in turn is equivalent to $(A-I)(\mathbf{x})=-\mathbf{b}$. Thus we need to show that the latter has a unique solution for the given choice of A.

By linear algebra, a unique solution exists if and only if $A-I$ is invertible, or equivalently when $\operatorname{det}(A-I) \neq 0$. Direct computation shows that $\operatorname{det} A=2-2 \cos \theta$. Since $\cos \theta<1$ if $0<\theta<2 \pi$, the determinant is positive for all such choices of θ, and therefore in all cases we know that the given vector equation has a unique solution.

