
A submersion from the plane onto the 2 – sphere 
 

The objective is to construct a smooth map  X  from the coordinate plane  RRRR
2
  onto the 2 – sphere  

S
2  

which is a regular surface parametrization at all points of  RRRR
2
; in other words,  the 

derivative map  DX  from  RRRR
2
 to the space of 2 × 3 matrices over RRRR has rank  2  at all points of  

RRRR
2
, or equivalently the cross product of the partial derivatives  X1 × X2  is everywhere nonzero.   

We shall concentrate on describing the construction process itself; filling in the details can be 

done using methods and results from a graduate level course on smooth manifolds like 

Mathematics 205C. 

 

We shall begin the construction with a closed curve on the sphere which goes around the equator 

once and then goes around the basic meridian pair (0 and 180 degrees) once.   The initial and 

final point of this closed curve is located on the equator at 0 degrees longitude. 

 

 
 

(Source: http://www.vikdhillon.staff.shef.ac.uk/teaching/phy105/celsphere/meridian.gif) 
 

For the sake of definiteness we shall assume that the given curve is parametrized over the closed 

interval [ – 2ππππ, 2ππππ], with the portion over [ – 2ππππ, 0] corresponding to the equator and the portion 

over [ 0, 2ππππ] corresponding to the fundamental meridian pair.  We shall extend this to a curve 



parametrized over  [ – 4ππππ, 4ππππ]  by letting the piece over  [ – 4ππππ, 0]  correspond to going around 

the equator twice and letting the piece of  [ 0, 4ππππ]  correspond to going around the fundamental 

meridian pair twice. 

 

The next step is to modify this curve near  t  =  0  to obtain a regular smooth curve  ϕ  ϕ  ϕ  ϕ  on the 

sphere which agrees with the original one off some small interval    ( – h, h)  where  h  is much 

less than  ππππ/2.  Roughly speaking, the idea is to smooth out the 90 degree corner of the original 

curve at the point where t  =  0.  This construction is very similar to the one described in the 

proposition on page 3 of the following online document: 
 

http://math.ucr.edu/~res/math205A/nicecurves.pdf 
 

In terms of the previous illustration, the corner at  t  =  0  is smoothed out using the red piece in 

the illustration below: 
 

 
 

We shall now use the regular curve constructed in the preceding step to define a smooth 

submersion from a rectangular box in the plane to the sphere.  More generally, this can be done 

for an arbitrary regular smooth curve on the sphere, so let  γγγγ( t )  be an arbitrary curve of this sort.  

For the sake of simplicity assume that this curve is parametrized so that the tangent vector 

always has length 1.  In our example, we can in fact do this so that this new parametrization is 



essentially equal to the given one near the subintervals  [ – 4ππππ, – h]  and  [h, 4ππππ]; the only 

difference is that the parametrization intervals are shifted by some relatively small amount. 

So assume now that  γγγγ( t )  is defined on some interval  (a, b).  Since this curve lies on the sphere, 

we know that the for all values of  t  the vectors γγγγ( t ) and  γγγγ′( t ) are perpendicular vectors of unit 

length, so that their cross product  ββββ     ( t )  is a unit vector which is perpendicular to both of them.  

Define a map  σσσσ  from the open rectangular region  ( a, b)  ×  ( – ππππ/2, ππππ/2)  by the formula 
 

σσσσ(((( t, u)   =   (cos u)    γγγγ( t )  +  (sin u)    ββββ     ( t )    ....    
    

The partial derivatives of this function with respect to the first and second variables are given by 

the following formulas: 
 

σσσσ1111(((( t, u)   =   (cos u)    γγγγ′( t )  +  (sin u)    ββββ ′( t ) ,    σσσσ2222(((( t, u)   =   ( – sin u)    γγγγ( t )  +  (cos u)    ββββ     ( t ) 
 

CLAIM:   If  εεεε  > 0 is sufficiently small, then the two partial derivatives displayed above are 

linearly independent on the set [ a – εεεε, b + εεεε    ]  ×  ( – δδδδ, δδδδ)  for some  δδδδ  > 0.  Also, if   γγγγ( t )  is a 

(reparametrized) great circle curve for  c – η  η  η  η  <  t  <  c + η,  η,  η,  η,  then the two partial derivatives 

are linearly independent on the set   (c – ηηηη, c + ηηηη)  ×  ( –ππππ/2, ππππ/2).   
 

To see this, first note that the second partial derivative is perpendicular to  γγγγ′( t )  because it is a 

linear combination of nonzero orthonormal vectors with this property, and it is also nonzero.  If   

s  =  0, then the first partial derivative is a nonzero multiple of  γγγγ′( t )  and it follows that the two 

first partial derivatives at  (t, 0)  are linearly independent, so that their cross product is nonzero; 

but if this is true, then by continuity of the cross product we know that the latter is also nonzero 

at  (v, u)  if  v  is sufficiently close to  t  and  u  is sufficiently close to 0.   Basic results from 

point set theory then imply that the cross product of the partial derivatives is also nonzero on a 

set of the form  [ a – εεεε, b + εεεε    ]  ×  ( – δδδδ, δδδδ)  for some  δδδδ  > 0.  
 

Now suppose that we know that the restriction of the curve to (c – ηηηη, c + ηηηη) is a great circle 

curve.  In this case there is a fixed  2 – dimensional vector subspace  W  through the origin 

(namely, the span of  γγγγ( t )  and  γγγγ′( t ) ) such that γγγγ( t )  and  γγγγ′( t )  lie in  W.  It follows that the vectors   

ββββ     ( t )  are all unit vectors which are perpendicular to  W, and by continuity it follows that  ββββ     ( t )  

must be constant, so that  ββββ ′( t )  =  0.    Therefore in this case we also know that the two first 

partial derivatives are linearly independent on the subset  (c – ηηηη, c + ηηηη)  ×  ( –ππππ/2, ππππ/2).   This 

completes the proof of the claim. 

 
We shall now apply the preceding discussion to the map  σσσσ  obtained from the curve  ϕϕϕϕ  that was 

constructed above.  It follows that there is some  δδδδ  > 0 such that the restriction of  σσσσ  to the 

region 
 

U   =   ( – 4ππππ, – h)  ×  ( –ππππ/2, ππππ/2)   ∪∪∪∪  (– 2h, 2h) ×  ( – δδδδ, δδδδ)  ∪∪∪∪  (h, 4ππππ)   ×  ( –ππππ/2, ππππ/2) 
 

is a submersion.  By construction, the restriction of  σσσσ  to  ( – 4ππππ, – 2ππππ]  ×  ( –ππππ/2, ππππ/2)  maps the 

latter onto all points of the 2 – dimensional sphere except for the north and south poles  (0, 0, 1) 

and  (0, 0, – 1).  Likewise,  the restriction of  σσσσ  to  [2ππππ, 4ππππ)  ×  ( –ππππ/2, ππππ/2)  maps the latter onto 

all points of the 2 – dimensional sphere except for  (0, 1, 0) and (0, – 1, 0).  Combining these 



observations, we see that the restriction of  σσσσ  to  U  is a smooth submersion whose image is the 

entire  2 – sphere.   

 

CLAIM:   There is a subregion  V  of  U  such that  V contains both of the rectangular regions  

( – 4ππππ, – 2h)  ×  ( –ππππ/2, ππππ/2)  and  (h, 4ππππ)   ×  ( –ππππ/2, ππππ/2),  and  V  is diffeomorphic to  RRRR
2. 

 

The proof of this result is based upon basic properties of bump functions which are established in 

Mathematics 205C; these are described in Section II.3 on pages 57 – 60 of the following online 

document: 
 

http://math.ucr.edu/~res/math205C/lectnotes.pdf 
 

Specifically,  one starts with an infinitely differentiable positive real valued function  g  such that  

g  =  ππππ/2  on  ( – 4ππππ, – 2h]  and   [2h, 4ππππ),  the function  g  is decreasing on  [ – 2h, – h]  and 

increasing on  [h, 2h],  and  g  =  δδδδ/2  on  (– h, h).  The region  V  consists of all (t, u) such that  

|u|  ≤   g( t ) .   In this context we choose  h  such that  2h  is much less than, say,  ππππ/8;  since we 

can take  h  to be arbitrarily small, such a choice is possible.    
 

To complete the proof of the claim, we need to prove that  V  is diffeomorphic to  RRRR
2.  The first 

step is to prove that  V  is diffeomorphic to  ( – 4ππππ, 4ππππ)  ×  ( – ππππ/2, ππππ/2).   An explicit  “vertical” 

diffeomorphism from the latter to  V  is given by the map sending  (t, u)  to  ( t,  g( t ) · u) ;  the 

inverse map sends  (t, v)  to  ( t,  g( t )
 – 1

 · v).  The final step is to prove that every rectangular 

open set of the form  ( – a, a)  ×  ( – b, b)  is diffeomorphic to  RRRR
2.  In fact, it will suffice to show 

that each factor  ( – a, a)  is diffeomorphic to RRRR, and a standard diffeomorphism of this type is 

given by the map from  RRRR     to  ( – a, a)  sending  x  to  (2a/ππππ)  · Arctan  x . 

   

 

 

 

 

 

 


