EXERCISES FOR MATHEMATICS 138A
WINTER 2004

The references denote sections of the text for the course:

M. P. do Carmo, Differential geometry of Curves and Surfaces, Prentice-Hall, Saddle River
NJ, 1976, ISBN 0-132-12589-7.

I. Classical Differential Geometry of Curves

I.1: Cross products

(O’Neill, § 2.2)
Additional exercise

1. Verify that the cross product of vectors in R3 satisfies the Jacobi identity:

ax(bxc) + bx(cxa) + ecx(axb) = 0.

1.2 : Parametrized curves

(O’Neill, § 1.4)
O’Neill, pp-21-22: 2, 8
Additional exercises

1. Find a parametrized curve «(t) which traces out the unit circle about the origin in the
coordinate plane and has initial point (0) = 1.

2.  Let a(t) be a parametrized cure which does not pass through the origin. If «a(ty) is
the point in the image that is closest to the origin and o'(ty) # 0, show that a(ty) and o/ (ty) are
perpendicular.

3. Two lines are said to be skew lines if they are disjoint but not parallel. Prove that the
distance between the skew lines x(t) = x¢ + tu and y(t) = yo + tv is given by

_uxv-r
p= uxv

where r = x¢ — yo. [Hints: The shortest distance between the lines is given by a common perpen-

dicular. You may assume the existence of a common perpendicular when working the problem. It

might be helpful to let x; and y; from these lines lie on this common perpendicular.]

4. Prove that a regular smooth curve lies on a straight line if and only if there is a point
that lies on all its tangent lines.



I.3: Arc length and reparametrization

(O’Neill, §§ 1.4, 2.2)
O’Neill, pp. 56-57: 3-5, 10, 11
Additional ezercises

1. Prove that a necessary and sufficient condition for the plane N - x = 0 to be parallel to
the line x = x¢ + ¢ u is for N and u to be perpendicular.

2. (a) Given a > 0, consider the set of all continuously differentiable real valued functions f
on [0,1] such that f(0) =0 and f(1) = a > 0. Define L(f) by the formula L(f) = foa |f'(t)] dt .
Show that the minimum value of L(f) is a, and if equality holds then f’ is everywhere nonnegative.
[Hints: Since f’ < |f'| a similar inequality holds for their definite integrals. This inequality of
integrals is strict if and only if f/(¢) < |f’(¢)| for some ¢, which happens if and only if f(¢) < 0 for
that choice of ¢.]

(b) Let p, 6 and ¢ denote the usual spherical coordinates, and suppose we have a curve on the
sphere of radius 1 about the origin with parametric equations of the form

x(t) = (cos(t) sing(t), siné(t) sin$(t), cos ¢(t))

for continuously differentiable functions 6(t) and ¢(¢). Prove that the length of this curve is given
by the formula

b
/ O + sino) (o' (1) dt

where the curve is defined on [a, b].

(c) Show that among all regular smooth curves x that are defined on [0, 1], have images on the
unit spere, and connect the points (1,0,0) and (cosa,sina,0) for some a < 7, the curve of shortest
length is given by the great circle arc joining the endpoints, and that any other curve with this
length is a weak reparametrization of the great circle arc (i.e., if « is the standard great circle arc,
then any other curve 8 must have the form 5(¢t) = «( f(¢) ), where f is a 1-1 function from [0, 1] to
[0, a] that is continuously differentiable and satisfies f’ > 0. [Hints: Let y be the curve in the zy-
plane obtained from x by replacing ¢(¢) with 7/2; in other words, y is the perpendicular projection
of the original curve onto the xy-plane. Why does the spherical coordinate arc length formula show
that the length of x is greater than or equal to the length of y? And why is there strict inequality
if ¢'(to) sinf(ty) # 0 somewhere? Why does this mean that the plane curve (cosf(t), sin(t),0) is
a weak reparametrization of (cos at,sinat,0? Recall that by continuity the latter implies ¢'(¢) # 0
for all ¢ sufficiently close to to. What does part (a) imply if ¢ is constant?]

Note. The final part of the problem is a special case of the well known result that the shortest
curve on a sphere joining two points is given by the smaller of the arcs on the great circle through
the points; in fact, one can use this special case to prove the general statement. [A file containing
a detailed proof may be inserted into the course directory eventually.]



I.4: Curvature and torsion

(O’Neill, § 2.3)
Additional exercises

1. Suppose a curve is given in polar coordinates by r = r(6) where 0 € [a, b].

(¢) Show that the arc length is fab T2+ (r')2 db.

(74) Show that the curvature is

2(r")2 —rr’ + 12
k(0) = [r2 + (r')2]3/2

2. Let a and B be regular parametrized curves such that § is the arc length reparametrization
of a. Let ¢t be the parameter for « and s for 5. Prove the following:

(a) dt/ds = 1/|a|, d*t/ds® = —(a' - &' /| |*

(b) The curvature is given by

o x o
(c) The torsion is given by
o X oo
0= e

(d) If a has coordinate functions z and y, then the signed curvature of « at ¢ is equal to

.”L‘Iy” _ x”y’

(@) + TP

k(t) =

3. Show that the curvature of a regular parametrized curve « at ty is equal to the curvature
of the plane curve v which is the perpendicular projection of a onto the osculating plane of « at
to.

4. Consider the problem of designing a set of railroad tracks that contains a pair of parallel
tracks along with a third going from the first to the second smoothly. Mathematically, the parallel
tracks themselves may be viewed as corresponding to the parallel lines y = 0 and y = 1 in the
coordinate plane, and the track going from one to the other may be viewed as a regular smooth
curve that is the graph of a twice differentiable function f such that f(z) is zero if t <0, f(z) =1
if t > 1, and on [0,1] the function f is given by a polynomial p(z). The existence of a second
derivative ensures that the slope of the tangent line would be a continuous function of z, and in
addition we want to assume that the curvature is also a continuous function of . Find a polynomial
p(z) of degree 5 such that all the required conditions are fulfilled. [Hint: If we are given a graph
curve with parametric equatitons (¢, y(¢)), then the curvature at parameter value ¢ is given by the

formula
II|

_ ly
R Y WO

and one step in the argument is to use this fact to compute p”’(0) and p”(1). In fact, the conditions

of the problem uniquely specify the values of p and its first and second derivatives at both 0 and
1. Why does this mean the only values to find are the coefficients of 23, z* and z57]
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Optional. Graph the function f using calculator or computer graphics.

I.5: Frenet-Serret Formulas

(O’Neill, §§ 2.3-2.4)
O’Neill, pp. 64-66: 1, 5
Additional exercises

1. Let x be a regular smooth curve with a continuous third derivative, and let (T, N, B)
be its Frenet trihedron. Prove that there is a vector W (the Darbouz vector) such that T' = W x T,
N’ =W x N, and B’ = W x B. What is the length of W?

2. If x is defined for ¢ > 0 by the formula

1+t 1—1¢2
xt) = (6 )

show that x is planar.

II. Topics from Multivariable Calculus and Geometry

I1.1: Differential forms

(O’Neill, §§ 1.5-1.6)

O’Neill, pp. 25-26: 5, 6 (first part only), 9 (last sentence only)
O’Neill, pp. 31-32: 1, 3-5

Additional exercise

1. Suppose that w ia a 2-form on R3 such that w A dz = 0. Explain why there is a 1-form
0 such that w = 0 A dz.

I1.2: Smooth mappings

(O’Neill, §§ 1.7, 3.2)
Additional exercises

Definition. A subset K of R” is said to be convez if whenever x and y lie in K then the whole
line segment defined by the parametrized curve x + ¢ (y — x) for ¢ € [0, 1] is contained in K.

1.  Prove that an open convex set is a connected domain [Hint: Imitate the proof for the
set of all point whose distance from some point p is less than some positive number 7.].

2. Show by example that an intersection of two connected domains in R? is not necessarily a
connected domain. [Hint: Let U be the annular region defined by the inequalities 1 < 22 +y? < 9
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and let V' be the horizontal strip defined by the inequality |y| < % Verify that U is arcwise

connected using the polar coordinate mapping, which yields a continuous 1-1 mapping from the
convex set (1,3) x [0,27) onto U. If U NV were connected then by a result in the Appendix to
Chapter 5 in do Carmo, it would also be arcwise connected. Suppose now that x is a curve joining
the points (£2.0). By the Intermediate Value Theorem there must be some parameter value ¢
such that the first coordinate of x(%j) is equal to zero. Why does this mean that x cannot lie
entirely inside U N V7]

3. Given an matrix A with real entries , let |A| denote the Euclidean length given by the
square root of the standard sum }_, . lai j|. If P and Q are two matrices with real entries such
that the product P @ can be defined, prove that |[P Q| < |P|-|Q].

4. Let U be a convex connected domain in R”, and let f : U — R™ be a smooth C!
function.
(a) Prove that

1
=16 = [ (IDf ety =)y =) a
for all x, y € U. [Hint: Explain why the integrand is the derivative of the function

fx+t(y —x))
using the Chain Rule.]
(b) Suppose that the derivative matrix function D f satisfies |[Df| < M on U. Prove that

fy)—fx)] < M-|y—x|
forallx,y € U.

Note. An inequality of this sort is called a Lipschitz condition.

I1.3 : Inverse and Implicit Function Theorems

(O’Neill, § 1.7)
Additional exercises

1. Suppose that f : R — R is a C" function such that its derivative f’ is everywhere
positive and the limits of f(¢) as ¢ — £ oo are & oo respectively. Prove that f has a C" inverse
function.

2. Prove that F(z,y) = (e* +y, x — y) defines a 1-1 onto C* map from R? to itself with

a C* inverse.

3. Prove that F(z,y) = (ze¥ + y, ze¥ — y) defines a 1-1 onto C*® map from R? to itself
with a C* inverse.

4. (a) Using the change of variables formula, explain briefly why the area of a set in R? is
the same as the area of its image under a rigid motion of the form 7'(x) = Ax + b, where A is a

rotation matrix
cos —sinf
sinf cos®



(b) More generally, if we are given an arbitrary affine transformation as above, where the only
condition on A is invertibility, how is the area of a set F related to the area of its image T'(F)?

5. A smooth C™ mapping f from a connected domain U C R? into R? is said to be regularly
conformal at p = (ug, vo) € U if the Jacobian of f is positive and for all regular smooth curve pairs
x and y satisfying x(sg) = y(so) = p the angle between x'(sy) and y’(so) is equal to the angle
between [f °x]'(so) and [f°y] (so).

(a) Prove that the partial derivatives of the coordinate functions satisfy the Cauchy-Riemann

equations:
oh _ O 0L _ _Oh
8.’131 8.’132’ 8:31 8552

[Hint: If A= Df(p), one needs to show that cos Z(Ax, Ay) = cos Z(x, y) for all nonzero vectore
x and y. Let a; and as denote the columns of A, and let J denote counterclockwise rotation through
m/2. Why is ag = c¢J(a;) for some constant ¢, and why does the determinant condition imply c is
positive? Explain why A(e; + e3) = a; + a; must be perpendicular to A(e; — e3) = a; — ay, and
use this to conclude that ¢ = 1.]

(b) There is a modified version of this relation that holds among the partial derivatives if the
Jacobian is negative. State it and explain why it is true. [Hint: Consider what happens if one
composes f with the reflection map S(z,y) = (z, —y).]

Note. Functions satisfying the Cauchy-Riemann equations are also known as complex analytic
functions, and they are the central objects studied in complex variables courses.

I1.4: Congruence of geometric figures

(O’Neill, 8§ 3.1, 3.4-3.5)
do Carmo, § 1-7, pp. 47-50: 1, 3, 15
Additional exercises

1. Let F be an isometry of R™, and let x and y be distinct points of R such that F(x) = x
and F(y) = y. Suppose that z is a point on the line joining x to y that can be expressed as
z = tx + (1 — t)y for some scalar ¢. Prove that F(z) = z also holds. [Hints: Use the fact that
F(w) = A(w) + b for some linear transformation A along with the identity b = tb + (1 — ¢)b.]

2. Prove that congruent curves have equal lengths.



