EXERCISES FOR MATHEMATICS 138A # **WINTER 2004** The references denote sections of the text for the course: M. P. do Carmo, *Differential geometry of Curves and Surfaces*, Prentice-Hall, Saddle River NJ, 1976, ISBN 0-132-12589-7. # I. Classical Differential Geometry of Curves # I.1: Cross products (O'Neill, § 2.2) $Additional\ exercise$ 1. Verify that the cross product of vectors in \mathbb{R}^3 satisfies the *Jacobi identity*: $$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$$. #### I.2: Parametrized curves (O'Neill, § 1.4) O'Neill, pp.21-22: 2, 8 #### Additional exercises - 1. Find a parametrized curve $\alpha(t)$ which traces out the unit circle about the origin in the coordinate plane and has initial point $\alpha(0) = 1$. - **2.** Let $\alpha(t)$ be a parametrized cure which does not pass through the origin. If $\alpha(t_0)$ is the point in the image that is closest to the origin and $\alpha'(t_0) \neq 0$, show that $\alpha(t_0)$ and $\alpha'(t_0)$ are perpendicular. - 3. Two lines are said to be *skew lines* if they are disjoint but not parallel. Prove that the distance between the skew lines $\mathbf{x}(t) = \mathbf{x}_0 + t\mathbf{u}$ and $\mathbf{y}(t) = \mathbf{y}_0 + t\mathbf{v}$ is given by $$\rho = \frac{\mathbf{u} \times \mathbf{v} \cdot \mathbf{r}}{\mathbf{u} \times \mathbf{v}}$$ where $\mathbf{r} = \mathbf{x}_0 - \mathbf{y}_0$. [Hints: The shortest distance between the lines is given by a common perpendicular. You may assume the existence of a common perpendicular when working the problem. It might be helpful to let \mathbf{x}_1 and \mathbf{y}_1 from these lines lie on this common perpendicular.] 4. Prove that a regular smooth curve lies on a straight line if and only if there is a point that lies on all its tangent lines. ## I.3: Arc length and reparametrization (O'Neill, §§ 1.4, 2.2) O'Neill, pp. 56-57: 3-5, 10, 11 #### $Additional\ exercises$ - 1. Prove that a necessary and sufficient condition for the plane $\mathbf{N} \cdot \mathbf{x} = 0$ to be parallel to the line $\mathbf{x} = \mathbf{x}_0 + t \cdot \mathbf{u}$ is for \mathbf{N} and \mathbf{u} to be perpendicular. - 2. (a) Given a > 0, consider the set of all continuously differentiable real valued functions f on [0,1] such that f(0) = 0 and f(1) = a > 0. Define L(f) by the formula $L(f) = \int_0^a |f'(t)| dt$. Show that the minimum value of L(f) is a, and if equality holds then f' is everywhere nonnegative. [Hints: Since $f' \leq |f'|$ a similar inequality holds for their definite integrals. This inequality of integrals is strict if and only if f'(t) < |f'(t)| for some t, which happens if and only if f'(t) < 0 for that choice of t.] - (b) Let ρ , θ and ϕ denote the usual spherical coordinates, and suppose we have a curve on the sphere of radius 1 about the origin with parametric equations of the form $$\mathbf{x}(t) = (\cos \theta(t) \sin \phi(t), \sin \theta(t) \sin \phi(t), \cos \phi(t))$$ for continuously differentiable functions $\theta(t)$ and $\phi(t)$. Prove that the length of this curve is given by the formula $$\int_{a}^{b} \sqrt{(\theta'(t))^{2} + \sin^{2}\theta(t) (\phi'(t))^{2}} dt$$ where the curve is defined on [a, b]. (c) Show that among all regular smooth curves \mathbf{x} that are defined on [0,1], have images on the unit spere, and connect the points (1,0,0) and $(\cos a,\sin a,0)$ for some $a<\pi$, the curve of shortest length is given by the great circle arc joining the endpoints, and that any other curve with this length is a weak reparametrization of the great circle arc $(i.e., if \alpha)$ is the standard great circle arc, then any other curve β must have the form $\beta(t) = \alpha(f(t))$, where f is a 1-1 function from [0,1] to [0,a] that is continuously differentiable and satisfies $f' \geq 0$. [Hints: Let \mathbf{y} be the curve in the xy-plane obtained from \mathbf{x} by replacing $\phi(t)$ with $\pi/2$; in other words, \mathbf{y} is the perpendicular projection of the original curve onto the xy-plane. Why does the spherical coordinate arc length formula show that the length of \mathbf{x} is greater than or equal to the length of \mathbf{y} ? And why is there strict inequality if $\phi'(t_0) \sin \theta(t_0) \neq 0$ somewhere? Why does this mean that the plane curve $(\cos \theta(t), \sin \theta(t), 0)$ is a weak reparametrization of $(\cos at, \sin at, 0)$? Recall that by continuity the latter implies $\phi'(t) \neq 0$ for all t sufficiently close to t_0 . What does part (a) imply if ϕ is constant?] Note. The final part of the problem is a special case of the well known result that the shortest curve on a sphere joining two points is given by the smaller of the arcs on the great circle through the points; in fact, one can use this special case to prove the general statement. [A file containing a detailed proof may be inserted into the course directory eventually.] # Curvature and torsion Additional exercises - Suppose a curve is given in polar coordinates by $r = r(\theta)$ where $\theta \in [a, b]$. - (i) Show that the arc length is $\int_a^b \sqrt{r^2 + (r')^2} d\theta$. (ii) Show that the curvature is $$k(\theta) = \frac{2(r')^2 - rr' + r^2}{[r^2 + (r')^2]^{3/2}} .$$ - Let α and β be regular parametrized curves such that β is the arc length reparametrization of α . Let t be the parameter for α and s for β . Prove the following: - (a) $dt/ds = 1/|\alpha'|$, $d^2t/ds^2 = -(\alpha' \cdot \alpha''/|\alpha'|^4)$ - (b) The curvature is given by $$k(t) = \frac{\alpha' \times \alpha''}{|\alpha'|^3}$$ (c) The torsion is given by $$\tau(t) = -\frac{\alpha' \times \alpha'' \cdot \alpha'''}{|\alpha' \times \alpha''|^2}$$ (d) If α has coordinate functions x and y, then the signed curvature of α at t is equal to $$k(t) = \frac{x'y'' - x''y'}{[(x')^2 + (y')^2]^{3/2}}$$ - 3. Show that the curvature of a regular parametrized curve α at t_0 is equal to the curvature of the plane curve γ which is the perpendicular projection of α onto the osculating plane of α at t_0 . - Consider the problem of designing a set of railroad tracks that contains a pair of parallel tracks along with a third going from the first to the second smoothly. Mathematically, the parallel tracks themselves may be viewed as corresponding to the parallel lines y=0 and y=1 in the coordinate plane, and the track going from one to the other may be viewed as a regular smooth curve that is the graph of a twice differentiable function f such that f(x) is zero if $t \le 0$, f(x) = 1if $t \geq 1$, and on [0,1] the function f is given by a polynomial p(x). The existence of a second derivative ensures that the slope of the tangent line would be a continuous function of x, and in addition we want to assume that the curvature is also a continuous function of x. Find a polynomial p(x) of degree 5 such that all the required conditions are fulfilled. [Hint: If we are given a graph curve with parametric equatitons (t, y(t)), then the curvature at parameter value t is given by the formula $$k(t) = \frac{|y''|}{(1+(y')^2)^{3/2}}$$ and one step in the argument is to use this fact to compute p''(0) and p''(1). In fact, the conditions of the problem uniquely specify the values of p and its first and second derivatives at both 0 and 1. Why does this mean the only values to find are the coefficients of x^3 , x^4 and x^5 ? 3 Optional. Graph the function f using calculator or computer graphics. #### I.5: Frenet-Serret Formulas (O'Neill, $\S\S\ 2.3-2.4$) O'Neill, pp. 64-66: 1, 5 $Additional\ exercises$ - 1. Let \mathbf{x} be a regular smooth curve with a continuous third derivative, and let $(\mathbf{T}, \mathbf{N}, \mathbf{B})$ be its Frenet trihedron. Prove that there is a vector \mathbf{W} (the *Darboux vector*) such that $\mathbf{T}' = \mathbf{W} \times \mathbf{T}$, $\mathbf{N}' = \mathbf{W} \times \mathbf{N}$, and $\mathbf{B}' = \mathbf{W} \times \mathbf{B}$. What is the length of \mathbf{W} ? - 2. If **x** is defined for t > 0 by the formula $$\mathbf{x}(\mathbf{t}) = \left(t, \frac{1+t}{t}, \frac{1-t^2}{t}\right)$$ show that \mathbf{x} is planar. # II. Topics from Multivariable Calculus and Geometry ### II.1: Differential forms (O'Neill, §§ 1.5–1.6) O'Neill, pp. 25–26: 5, 6 (first part only), 9 (last sentence only) O'Neill, pp. 31–32: 1, 3–5 $Additional\ exercise$ 1. Suppose that ω is a 2-form on \mathbb{R}^3 such that $\omega \wedge dx = 0$. Explain why there is a 1-form θ such that $\omega = \theta \wedge dx$. # II.2: Smooth mappings (O'Neill, §§ 1.7, 3.2) $Additional\ exercises$ **Definition.** A subset K of \mathbb{R}^n is said to be *convex* if whenever \mathbf{x} and \mathbf{y} lie in K then the whole line segment defined by the parametrized curve $\mathbf{x} + t(\mathbf{y} - \mathbf{x})$ for $t \in [0, 1]$ is contained in K. - 1. Prove that an open convex set is a connected domain [Hint: Imitate the proof for the set of all point whose distance from some point \mathbf{p} is less than some positive number r.]. - 2. Show by example that an intersection of two connected domains in \mathbb{R}^2 is not necessarily a connected domain. [Hint: Let U be the annular region defined by the inequalities $1 < x^2 + y^2 < 9$ and let V be the horizontal strip defined by the inequality $|y| < \frac{1}{2}$. Verify that U is arcwise connected using the polar coordinate mapping, which yields a continuous 1–1 mapping from the convex set $(1,3) \times [0,2\pi)$ onto U. If $U \cap V$ were connected then by a result in the Appendix to Chapter 5 in do Carmo, it would also be arcwise connected. Suppose now that \mathbf{x} is a curve joining the points (± 2.0) . By the Intermediate Value Theorem there must be some parameter value t_0 such that the first coordinate of $\mathbf{x}(t_0)$ is equal to zero. Why does this mean that \mathbf{x} cannot lie entirely inside $U \cap V$? - **3.** Given an matrix A with real entries , let |A| denote the Euclidean length given by the square root of the standard sum $\sum_{i,j} |a_{i,j}|^2$. If P and Q are two matrices with real entries such that the product PQ can be defined, prove that $|PQ| \leq |P| \cdot |Q|$. - **4.** Let U be a convex connected domain in \mathbf{R}^n , and let $f:U\to\mathbf{R}^m$ be a smooth \mathcal{C}^1 function. - (a) Prove that $$f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \left(\left[Df(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) \right] (\mathbf{y} - \mathbf{x}) \right) dt$$ for all $\mathbf{x}, \mathbf{y} \in U$. [Hint: Explain why the integrand is the derivative of the function $$f\left(\mathbf{x} + t\left(\mathbf{y} - \mathbf{x}\right)\right)$$ using the Chain Rule.] (b) Suppose that the derivative matrix function Df satisfies $|Df| \leq M$ on U. Prove that $$|f(\mathbf{y}) - f(\mathbf{x})| \le M \cdot |\mathbf{y} - \mathbf{x}|$$ for all $\mathbf{x}, \mathbf{y} \in U$. **Note.** An inequality of this sort is called a *Lipschitz condition*. #### II.3: Inverse and Implicit Function Theorems # $Additional\ exercises$ - 1. Suppose that $f: \mathbf{R} \to \mathbf{R}$ is a \mathcal{C}^r function such that its derivative f' is everywhere positive and the limits of f(t) as $t \to \pm \infty$ are $\pm \infty$ respectively. Prove that f has a \mathcal{C}^r inverse function. - **2.** Prove that $F(x,y)=(e^x+y,\,x-y)$ defines a 1–1 onto \mathcal{C}^{∞} map from \mathbf{R}^2 to itself with a \mathcal{C}^{∞} inverse. - **3.** Prove that $F(x,y)=(xe^y+y, xe^y-y)$ defines a 1-1 onto \mathcal{C}^{∞} map from \mathbf{R}^2 to itself with a \mathcal{C}^{∞} inverse. - **4.** (a) Using the change of variables formula, explain briefly why the area of a set in \mathbb{R}^2 is the same as the area of its image under a rigid motion of the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, where A is a rotation matrix $$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$ - (b) More generally, if we are given an arbitrary **affine** transformation as above, where the only condition on A is invertibility, how is the area of a set \mathcal{F} related to the area of its image $T(\mathcal{F})$? - 5. A smooth C^r mapping f from a connected domain $U \subset \mathbf{R}^2$ into \mathbf{R}^2 is said to be regularly conformal at $\mathbf{p} = (u_0, v_0) \in U$ if the Jacobian of f is positive and for all regular smooth curve pairs \mathbf{x} and \mathbf{y} satisfying $\mathbf{x}(s_0) = \mathbf{y}(s_0) = \mathbf{p}$ the angle between $\mathbf{x}'(s_0)$ and $\mathbf{y}'(s_0)$ is equal to the angle between $[f \circ \mathbf{x}]'(s_0)$ and $[f \circ \mathbf{y}]'(s_0)$. - (a) Prove that the partial derivatives of the coordinate functions satisfy the Cauchy-Riemann equations: $$\frac{\partial f_1}{\partial x_1} = \frac{\partial f_2}{\partial x_2}, \qquad \frac{\partial f_2}{\partial x_1} = -\frac{\partial f_1}{\partial x_2}$$ [Hint: If $A = Df(\mathbf{p})$, one needs to show that $\cos \angle (A\mathbf{x}, A\mathbf{y}) = \cos \angle (\mathbf{x}, \mathbf{y})$ for all nonzero vectore \mathbf{x} and \mathbf{y} . Let \mathbf{a}_1 and \mathbf{a}_2 denote the columns of A, and let J denote counterclockwise rotation through $\pi/2$. Why is $\mathbf{a}_2 = c J(\mathbf{a}_1)$ for some constant c, and why does the determinant condition imply c is positive? Explain why $A(\mathbf{e}_1 + \mathbf{e}_2) = \mathbf{a}_1 + \mathbf{a}_2$ must be perpendicular to $A(\mathbf{e}_1 - \mathbf{e}_2) = \mathbf{a}_1 - \mathbf{a}_2$, and use this to conclude that c = 1.] (b) There is a modified version of this relation that holds among the partial derivatives if the Jacobian is **negative**. State it and explain why it is true. [Hint: Consider what happens if one composes f with the reflection map S(x, y) = (x, -y).] **Note.** Functions satisfying the Cauchy-Riemann equations are also known as *complex analytic* functions, and they are the central objects studied in complex variables courses. ### II.4: Congruence of geometric figures - 1. Let F be an isometry of \mathbb{R}^n , and let \mathbf{x} and \mathbf{y} be distinct points of \mathbb{R}^n such that $F(\mathbf{x}) = \mathbf{x}$ and $F(\mathbf{y}) = \mathbf{y}$. Suppose that \mathbf{z} is a point on the line joining \mathbf{x} to \mathbf{y} that can be expressed as $\mathbf{z} = t\mathbf{x} + (1-t)\mathbf{y}$ for some scalar t. Prove that $F(\mathbf{z}) = \mathbf{z}$ also holds. [Hints: Use the fact that $F(\mathbf{w}) = A(\mathbf{w}) + \mathbf{b}$ for some linear transformation A along with the identity $\mathbf{b} = t\mathbf{b} + (1-t)\mathbf{b}$.] - 2. Prove that congruent curves have equal lengths. # III. Surfaces in 3-Dimensional Space ## III.1: Mathematical descriptions of surfaces (O'Neill, §§ 4.1, 4.8) O'Neill, pp. 132-133: 1, 4bc, 5, 9 $Additional\ exercises$ - 1. Write down equations defining the surfaces given by the following geometric conditions: - (a) The set of points that are equidistant from the point (0,0,4) and the xy-plane. - (b) The set of points that are equidistant from the point (0,2,0) and the plane defined by the equation y=-2. - (c) The set of points that are equidistant from the points (0,0,0) and (1,0,0). - (d) The set of points for which the sum of the distances to $(\pm 1, 0, 0)$ is equal to 5. - 2. Let \mathbf{a} , \mathbf{b} and \mathbf{c} be linearly independent vectors in \mathbf{R}^3 . Prove that there is a unique sphere containing these three points and $\mathbf{0}$; *i.e.*, show that the system of equations $$|\mathbf{x} - \mathbf{a}|^2 = |\mathbf{x} - \mathbf{b}|^2 = |\mathbf{x} - \mathbf{c}|^2 = |\mathbf{x}|^2$$ has a unique solution \mathbf{x} . 3. Find the inverse map to the stereograpic projection onto \mathbb{R}^2 described in Example 5.2 of O'Neill, and show how to cover the sphere by two parametrized pieces. #### III.2: Parametrizations of surfaces (O'Neill, § 4.2) Additional exercises - 1. Let $f(x, y, z) = (x + y + z 1)^2$. - (i) What are the critical points and values? - (ii) For which c is the level set for c a regular surface? - (iii) Same questions for xuz^2 . - **2.** Let Σ be a geometric regular smooth surface, let U be a connected domain in \mathbb{R}^3 containing Σ , and let $\mathbf{g}: U \to \mathbb{R}^3$ be a smooth 1–1 onto map such that the Jacobian of \mathbf{g} is nowhere zero (hence it has a global inverse), its image is a connected domain, and more generally the image of any connected subdomain of U is also a connected domain. Prove that $\mathbf{g}(\Sigma)$ is also a geometric regular smooth surface. ### III.3: Tangent planes (O'Neill, § 4.3) O'Neill, pp. 150–153: 6bc, 10 **0.** Show that the tangent plane is the same at all points along a ruling of a cylinder. **Definition.** A surface S is said to be *globally convex* at a point \mathbf{p} if all points of S lie on one of the half planes determined by this tangent plane at \mathbf{p} (*i.e.*, if the equation of the tangent plane is $\mathbf{a} \cdot \mathbf{x} = b$, then the points of the surface are completely contained in the set determined by the inequality $\mathbf{a} \cdot \mathbf{x} \leq b$ or the reverse inequality $\mathbf{a} \cdot \mathbf{x} \geq b$). A surface is said to be strictly globally convex if in addition for each point \mathbf{p} the intersection of S with the tangent plane consists only of the point \mathbf{p} . The surface S is said to be *locally convex* or strictly locally convex at \mathbf{p} if there is an open disk D containing \mathbf{p} such that $S \cap D$ is globally convex or strictly globally convex. - 1. Let **X** be a parametrized surface defined on a connected domain U, and let $(a, b) \in U$. Define a level function L(u, v) by $L(u, v) = [\mathbf{X}(u, v), \mathbf{X}_u(a, b), \mathbf{X}_v(a, b)]$ (the vector triple product). - (a) Explain why the surface is locally convex at $\mathbf{p} = \mathbf{X}(a, b)$ if and only if L has a relative maximum or minimum at (a, b) and why the surface is strictly locally convex there if and only if L has a strict relative maximum or minimum. - (b) Why does the gradient of L vanish at (a, b)? - (c) If H(a,b) is the determinant $$\begin{bmatrix} \mathbf{X}_{u,u}(a,b), \ \mathbf{X}_{u}(a,b), \ \mathbf{X}_{v}(a,b) \end{bmatrix} \qquad \begin{bmatrix} \mathbf{X}_{u,v}(a,b), \ \mathbf{X}_{u}(a,b), \ \mathbf{X}_{v}(a,b) \end{bmatrix} \\ \begin{bmatrix} \mathbf{X}_{v,u}(a,b), \ \mathbf{X}_{u}(a,b), \ \mathbf{X}_{v}(a,b) \end{bmatrix} \qquad \begin{bmatrix} \mathbf{X}_{v,v}(a,b), \ \mathbf{X}_{u}(a,b), \ \mathbf{X}_{v}(a,b) \end{bmatrix}$$ explain why a surface is **NOT** locally convex at **p** if H(a, b) < 0. [Hint: Why does L have a saddle point at (a, b)?] - (d) In the notation of the preceding part of the problem, show that the surface is strictly locally convex at \mathbf{p} if H(a,b) > 0. [Hint: Why does L have a strict local maximum or minimum?] - (e) If **X** is a graph parametrization of the form $\mathbf{X}(u,v) = (u,v,f(u,v))$, prove that H(a,b) is a 2×2 determinant of a matrix whose entries are the corresponding second partial derivatives of f at (a,b). - (f) Apply the preceding to show that if $p \geq 2$ then the graph of the function $$z = (1 - |x|^p - |y|^p)^{1/p}$$ is strictly locally convex at all (x, y) such that $|x|^p + |y|^p < 1$. In particular, the case p = 2 merely states that the usual sphere is strictly locally convex at each point (in fact, all these surfaces are globally strictly convex, but we shall not attempt to prove this). [Hint: If r > 1, explain why the derivative of $|x|^r$ is equal to $r|x|^{r-1}$. There are three cases, depending upon whether x is positive, negative or zero.] **NOTE.** By interchanging the roles of the three coordinates in the preceding result one can in fact show that the sets defined by the equations $|x|^p + |y|^p + |z|^p = 1$ are all regular smooth surfaces and are strictly locally convex at all points. Further study. Graph the intersection of this surface with the xz-plane for p=3 and 4 using calculator or computer graphics. Try this also for larger values of p and describe the limit of these surfaces as $p \to \infty$. 2. Let S be the cylindrical surface given by the parametric equation(s) $\mathbf{X}(u,v) = (u \cos u, u \sin u, v)$ for $u \in (\pi/2, 9\pi/2)$ and $v \in (-1, 1)$. This is a cylinder generated by the Archimedean spiral curve in the plane given in polar coordinates by $r = \theta$. Show that S is locally convex at each point but not globally convex at some point in S (for example, at $(2\pi,0,0)$). [Hints: Use the results of the preceding exercise to show that the surface is locally convex, and draw a sektch to show that there are points of this curve which lie on both sides of the tangent line to the curve at $(2\pi,0,0)$. Can you use this to find two points on the curve which lie on opposite sides of the tangent line? **NOTE.** One can modify the example in this exercise to get a surface that is strictly locally convex but not globally convex at $(2\pi, 0, 0)$ by taking $\sin v$ rather than v to be the third coordinate. - 3. For each of the following quadric surfaces, determine the sets of points p where the surface is locally convex and where it is strictly locally convex. - (a) The hyperboloid of two sheets defined by the equation $z^2 x^2 y^2 = 1$, where the two pieces are parametrized by $\mathbf{X}(u, v) = (\sinh v \cos u, \sinh v \sin u, \pm \cosh v)$. - (b) The hyperboloid of one sheet defined by the equation $x^2 + y^2 z^2 = 1$, parametrized by $\mathbf{X}(u, v) = (\cosh v \cos u, \cosh v \sin u, \sinh v).$ - (c) The elliptic paraboloid defined by the equation $z = x^2 + y^2$. (d) The hyperbolic paraboloid defined by the equation $z = y^2 x^2$. - Determine the tangent planes to the surface $x^2 + y^2 z^2 = 1$ at all points (x, y, 0) and show they are all parallel to the z-axis. - Let f be a smooth function. Show that the tangent planes to the surface z = xf(y/x), where $x \neq 0$, all pass through the origin. - Show that if all the normals to a connected surface pass through some point, then the surface is part of a sphere. - Show that the tangent planes of the common points for the spheres defined by $|\mathbf{x}|^2 = 1$ and $|\mathbf{x} - \mathbf{a}|^2 = 1$ are perpendicular if and only if $|\mathbf{a}|^2 = 2$. How does this generalize if the radius of one sphere is r and the radius of the other sphere is s? #### III.4: The First Fundamental Form #### Additional exercises 1. Show that the first fundamental form on the surface of revlution $$\mathbf{X}(u,v) = (f(u)\cos v, f(u)\sin v, g(v))$$ is given by $f^2 dv dv + ((f')^2 + (q')^2) dt dt$. If the first fundamental form on a parametrized patch has the form du du + f(u, v) dv dv, prove that the v-parameter curves cut off equal segments on all u-parameter curves (the former are the curves where the v coordinate is held constant, and the latter are the curves for which the ucoordinate is held constant). - **3.** Compute the first fundamental forms of the following parametrized surfaces where they are regular. - (i) The ellpsoid $(a \sin u \cos v, b \sin u \sin v, c \cos u)$. - (ii) The ellptic paraboloid ($au \cos v, bu \sin v, u^2$). - (iii) The hyperbolic paraboloid $(au \cosh v, bu \sinh v, u^2)$. - (iv) The two sheeted hyperboloid $(a \sinh u \cos v, b \sinh u \sin v, c \cosh u)$. - **4.** Show that a surface of revolution can be parametrized so that E = E(v), F = 0, G = 1. #### III.5: Surface area (O'Neill, § 6.7) #### Additional exercises - 1. Find the area of the corkscrew surface with parametrization $\mathbf{X}(r,\theta) = (r \cos \theta, r \sin \theta, \theta)$ for $1 \le r \le 2$ and $0 \le \theta \le 2\pi$. - 2. Find the area of the parametrized Möbius strip $$\mathbf{X}(u,v) = (\cos u, \sin u, 0) + v \cdot (\cos u \cos(u/2), \sin u \cos(u/2), \sin(u/2))$$ where $u \in (0, 2\pi)$ and $v \in (-h, h)$ with $0 < h < \frac{1}{2}$. You may view the area as being given by an integral over $[0, 2\pi] \times [-h, h]$. ### III.6: Curves as surface intersections (O'Neill, ???) # Additional exercises - 1. The twisted cubic with parametric equations (t, t^2, t^3) is the intersection of the cylindrical surfaces defined by the equations $z x^3 = 0$ and $y x^2 = 0$. What is the angle between the gradients of these functions at the point (x, x^2, x^3) ? - **2.** Show that the parametrized curve $\mathbf{x}(\theta) = (1 + \cos \theta, \sin \theta, 2 \sin(\theta/2))$ is regular and lies on the sphere of radius 2 about the origin and the cylinder $(x-1)^2 + y^2 = 1$. Also show that the normal vectors to the two surfaces are linearly independent at the points of intersection if $y \neq 0$. - **3.** Let f and g be two functions with continuous derivatives defined on the open unit disk $u^2 + v^2 < 1$, and suppose there is a point (a, b) in this open disk where f(a, b) = c = g(a, b), so that the graphs of the surfaces intersect at (a, b, c). Prove that the intersection is transverse if and only if $\nabla f(a, b) \neq \nabla g(a, b)$.