I. Classical Differential Geometry of Curves

This is a first course on the differential geometry of curves and surfaces. It begins with
topics mentioned briefly in ordinary and multivariable calculus courses, and two major goals are
to formulate the mathematical concept(s) of curvature for a surface and to interpret curvature for
several basic examples of surfaces that arise in multivariable calculus.

Basic references for the course

We shall begin by citing the official text for the course:

B. O’'Neill. Elementary Differential Geometry. (Second Edition), Harcourt/Academic
Press, San Diego CA, 1997, ISBN 0-112-526745-2.

This document is intended to provide a fairly complete set of notes that will reflect the content
of the lectures; the approach is similar but not identical to that of O’Neill. At various points we
shall also refer to the following alternate sources. The first of these is a text at a slightly higher
level, and the second is the Schaum’s Outline Series review book on differential geometry, which
is contains a great deal of information on the classical approach, brief outlines of the underlying
theory, and many worked out examples.

M. P. do Carmo, Differential geometry of Curves and Surfaces, Prentice-Hall, Saddle River
NJ, 1976, ISBN 0-132-12589-7.

M. Lipschultz, Schaum’s Outlines — Differential Geometry, Schaum’s/McGraw-Hill, 1969,
ISBN 0-07-037985-8.

At many points we assume material covered in the preceding two courses, so we shall include a
few words on such background material. This course explicitly assumes prior experience with the
elements of linear algebra (including matrices, dot products and determinants), the portions of
multivariable calculus involving partial differentiation, and some familiarity with the a few basic
ideas from set theory such as unions and intersections. For the sake of completeness, a file describing
the background material (with references to standard texts used in the Department’s courses) is
included in the course directory and can be found in the files called background.*, where * is one
of the extensions dvi, ps, or pdf.

The name “differential geometry” suggests a subject which uses ideas from calculus to obtain
geometrical information about curves and surfaces; since vector algebra plays a crucial role in
modern work on geometry, the subject also makes extensive use of material from linear algebra. At
many points it will be necessary to work with topics from the prerequisites in a more sophisticated
manner, and it is also necessary to be more careful in our logic to make sure that our formulas
and conclusions are accurate. At numerous steps it might be necessary to go back and review
things from earlier courses, and in some cases it will be important to understand things in more
depth than one needs to get through ordinary calculus, multivariable calculus or matrix algebra.
Frequently one of the benefits of a mathematics course is that it sharpens one’s understanding and
mastery of earlier material, and differential geometry certainly provides many opportunities of this
sort.



The origins of differential geometry

The paragraph below gives a very brief summary of the developments which led to the emer-
gence of differential geometry by the beginning of the 19" century. Further information may be
found in any of several books on the history of mathematics.

Straight lines and circles have been central objects in geometry ever since its beginnings.
During the 5*® century B.C.E., Greek geometers began to study more general curves, most notably
the ellipse, hyperbola and parabola but also other examples (for example, the Quadratrix of Hippias,
which allows one to solve classical Greek construction problems that cannot be answered by means
of straightedge and compass). In the following centuries Greek mathematicians discovered a large
number of other curves and investigated the properties of such curves in considerable detail for a
variety of reasons. By the end of the Middle Ages in the 15*® century, scientists and mathematicians
had discovered further examples of curves that arise in various natural contexts. The development
of analytic geometry and calculus, especially during the 17" and 18" centuries, yielded powerful
new techniques for analyzing curves and their properties. In particular, these advances created a
unified framework for understanding the work of the Greek geometers and a setting for studying
new classes of curves and problems beyond the reach of classical Greek geometry. Interactions with
physics played a major role in the mathematical study of curves beginning in the 15" century,
largely because curves provided a means for analyzing the motion of physical objects. By the
beginning of the 19"™*" century, the differential geometry of curves had begun to emerge as a
subject in its own right.

This unit describes the classical nineteenth century theory of curves in the plane and 3-
dimensional space.

References for examples

Here are some web links to sites with pictures and written discussions of many curves that
mathematicians have studied during the past 2500 years:

http://www-gap.dcs.st-and.ac.uk/~history/Curves/Curves.html
http://www.xahlee.org/SpecialPlaneCurves_dir/specialPlaneCurves.html
http://facstaff.bloomu.edu/skokoska/curves.pdf

1.0 : Partial differentiation

(O"Neill, § 1.1)

This is an extremely brief review of the most basic facts that are covered in multivariable
calculus courses.

The basic setting for multivariable calculus involves cartesian or Euclidean n-space, which
is denoted by R"™. At first one simply takes n = 2 or 3 depending on whether one is interested in
2-dimensional or 3-dimensional problems, but much of the discussion also works for larger values of
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n. We shall view elements of these spaces as vectors, with addition and scalar multiplication done
coordinatewise.

In order to do differential calculus for functions of two or more real variables easily, it is
necessary to consider functions that are defined on open sets. One say of characterizing such a set
is to say that U C R™ is open if and only if for each p = (p1,...,pn) € U there is an € > 0 such that
ifx = (21, ...,x,) € U satisfies |z; — p;| < ¢ for all ¢, then x € U. Alternatively, a set is open if and
only if for each p € U there is some § > 0 such that the set of all vectors x satisfying |x — p| < § is
contained in U (to see the equivalence of these for n = 2 or 3, consider squares inscribed in circles,
squares circumscribed in circles, and similarly for cubes and spheres replacing squares and circles).

Continuous real valued functions on open sets are defined using the same sorts of e—¢ conditions
that appear in single variable calculus. Vector valued functions are completely determined by the n
scalar functions giving their coordinates, and a vector valued function is continuous if and only if all
its scalar valued coordinate functions are continuous. As in single variable calculus, polynomials are
always continuous, and standard constructions on continuous functions — for example, algebraic
operations and forming composite functions — produce new continuous functions from old ones.

More generally, one can also define limits for functions of several variables either by means of
the standard € — § condition; for functions of several variables, the appropriate condition for asking
whether

lim f(x) = b

xX—a
is that the function f should be defined for all x sufficiently close to a with the possible exception
of x = a. In other words, there is some r > 0 such that f is defined for all x satsisfying

0 < |x—a] <r.

The definition of limit works equally well for vector and scalar valued functions, and the following
basic result is often extremely useful when considering limits of vector

VECTOR LIMIT FORMULA. Let F be a vector valued function defined on a deleted neigh-
borhood of a with values in R™, let f; denote the i*® coordinate function of F, and suppose that

lim fi(z) = b

X—a

holds for alli. Let e; denote the it® unit vector in R™, whose itP

other coordinates are equal to zero. Then we have

coordinate is equal to 1 and whose

lim Fl(.’E) = Z bz e; .m
=1

X—a

The previou statement about continuity of vector valued functions (continuous <= all coor-
dinate functions are continuous) is an immediate consequence of this formula.s

Partial derivatives

Given a real valued function f defined on an open set U, its partial derivatives are formed as
follows. For each index i between 1 and n, consider the functions obtained by holding all variables
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except the i*® variable constant, and take ordinary derivatives of such functions. The corresponding
derivative is denoted by the standard notation

of
(9.7,‘1' '

The gradient of f is the vector Vf whose i*® coordinate is equal to the i** partial derivative.
One then has the following fundamentally important linear approximation result.

THEOREM. Let f be a function defined on an open subset U C R"™, and let x € U. Suppose
also that V f is also continuous on U. Then there is a 6 > 0 and a function 0 defined for |h| < §
such that

fx+h) = f(x) + Vf(x)-h + |h[-6(h)

where limy o |0(h)| =0,

Derivations of this theorem are given in virtually every calculus book which devotes a chapter
to partial differentiation. It is important to note that the existence of partial derivatives by itself
is not even enough to ensure that a function is continuous (standard examples like

Ty

flz,y) = P

for (z,y) # (0,0) and f(0,0) = 0 are also given in nearly all calculus books).



I.1: Cross products

(O"Neill, § 2.2)

Courses in single variable or multivariable calculus usually define the cross product of two
vectors and describe some of its basic properties. Since this construction will be particularly
important to us and we shall use properties that are not always emphasized in calculus courses, we
shall begin with a more detailed treatment of this construction.

Note on orthogonal vectors

One way of attempting to describe the dimension of a vector space is to suggest that the
dimension represents the maximum number of mutually perpendicular directions. The following
elementary result provides a formal justification for this idea.

PROPOSITION. LetS = {a;, --- ,ax} be a set of nonzero vectors that are mutually perpen-
dicular. Then S is linearly independent.

Proof. Suppose that we have an equation of the form

n

ZCiai =0

i=1
for some scalars ¢;. If 1 < j < k we then have

n

n
0 = O-aj = (Zciai) -aj = Z(ciai -aj)
=1

=1

and since the vectors in S are mutually perpendicular the latter reduces to cj|a;|>. Thus the original
equation implies that c;|a;|? = 0 for all j. Since each vector aj is nonzero it follows that |a;|? > 0
for all j which in turn implies ¢; = 0 for all j. Therefore S is linearly independent.m

Properties of cross products

Definition. If a = (a1, as,a3) and b = (by, b, b3) are vectors in R3 then their cross product or
vector product is defined to be

axb = (a2b3 — asba, asb; —aibs, a1bs — a2b1) .

If we define unit vectors in the traditional way as i = (1,0,0), j = (0,1,0), and k = (0,0,1), then
the right hand side may be written symbolically as a 3 x 3 deterinant:

i j k
a; a2 as
by ay as



The following are immediate consequences of the definition:

(1) axb = —-bxa

(2) (ca)xb = c(axb)

3) ax(b+c) = (axb) + (axc)

Other properties follow directly. For example, by (1) we have that a x a = —a X a, so that

2a x a = 0, which means that a x a = 0. Also, if ¢ = (¢1, ¢z, ¢c3) then the triple product
[e,a,b] = c-(axDb)
is simply the determinant of the 3 x 3 matrix whose rows are ¢, a, b in that order, and therefore

we know that
the cross product a X b is perpendicular to both a and b.m

The basic properties of determinants yield the following additional identity involving dot and
cross products:

[c,a,b] = [a,b,c]
This follows because a determinant changes sign if two rows are switched, for the latter implies
[C, a, b] = _[aa c, b] = [a7 b7 C] -
The following property of cross products plays an extremely important role in this course.

PROPOSITION. Ifa and b are linearly independent, then a, b and a x b form a basis for R3.

Proof. First of all, we claim that if a and b are linearly independent, then a X b # 0. To see
this we begin by writing out |a x b|? explicitly:

laxb|? = (azbz — azb)? + (azby — a1b3)? + (a1by — azb;)?
Direct computation shows that the latter is equal to
(af + a3 +a3) (b3 + b3 +b3) — (a1bi + azbs + azbs)> = |a|’|b*> — (a-b)?
In particular, if a and b are both nonzero then
laxb| = |a||b||sin®

where 6 is the angle between a and b. Since the sine of this angle is zero if and only if the vectors
are linearly dependent, it follows that a x b # 0 if a and b are linearly independent.

Suppose now that we have an equation of the form
za+yb+z(axb) = 0

for suitable scalars x, y, z. Taking dot products with a x b yields the equation z|a x b|? = 0, which
by the previous paragraph implies that z = 0. One can now use the linear independence of a and b
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to conclude that z and y must also be zero. Therefore the three vectors a, b and a x b are linearly
independent, and consequently they must form a basis for R3.m

APPLICATION. Later in these notes we shall need the following result:

RECOGNITION FORMULA. Ifa,b € R? are perpeudicular unit vectors and ¢ = a x b, then
the triple product [a, b, c] is equal to 1.

Derivation. By the length formula for a cross product and the perpendicularity assumption, we
know that |¢| = |a|-|b| =1-1=1. But we also have

1 = |c = c-(axb) = c,a,b] = a,b,c]

which is the equation that we want.m

In may situations it is useful to have formulas for more complicated expressions involving cross
products. For example, we have the following identity for computing threefold cross products.

“BAC—CAB” RULE. ax (b xc)=b(a-c)—c(a-b), or in more standard format the left
hand side is equal to (a-c)b — (a-b)ec.

Derivation. Suppose first that b and ¢ are linearly dependent. Then their cross product is zero,
and one is a scalar multiple of the other. If b = z ¢, then it is an elementary exercise to verify that
the right hand side of the desired identity is zero, and we already know the same is true of the left
hand side. If on the other hand ¢ = y b, then once again one finds that both sides of the desired
identity are zero.

Now suppose that b and ¢ are linearly independent, so that b x ¢ # 0. Note that a vector is
perpendicular to b x ¢ if and only if it is a linear combination of b and ¢. The ( <= ) implication
follows from the perpendicularity of b and ¢ to their cross product and the distributivity of the
dot product, while the reverse implication follows because every vector is a linear combination

zb+yc+z(bxc)
and this linear combinationn is perpendicular to the cross product if and only if z = 0; i.e., if and
only if the vector is a linear combination of b and c.
Since the vector b x (b X c) is perpendicular to b X ¢ we may write it in the form

bx (bxc) = zb+yc

for suitable scalars  and y. If we take dot products with b and ¢ we obtain the following equations:

0 = [bbbxc] = (b-(bx(bxc))) = b-(zb+yc) = z(b-b)+y(b-c)

—bxc?> = —[(bxc),b,c] = [b,(bxc),c] = [c,b,(bxc) =
(c-(bx(bxc))) = ¢ (zb+yc) = z(b-c)+y(c-c)
If we solve these equations for z and y we find that £ =b - ¢ and y = —b - b. Therefore we have
bx(bxc) = (b-c)b—(b-b)c).
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Similarly, we also have

cx(bxc) = (c-c)b—(b-c)c)).

Therefore, if we writea =pb+q9c + T(b X c) we have

ax(bxe) = pbx(bxec) + gex(bxe) =

(p(c-c) +q(c-c)) b — (p(b-b)+q(b-c)) c.
Since b and ¢ are perpendicular to their cross product, the right hand side of the previous equation
isequal to (a-¢c)b—(a-b)cm

The formula for a x (b X c) yields numerous other identities. Here is one that will be particularly
useful in this course.

PROPOSITION. Ifa, b, ¢ and d are arbitrary vectors in R> then we have the following identity:

(axb)-(cxd) = (a-c)(b-d) — (a-d)(b-c)

Proof. By definition, the expression on the left hand side of the display is equal to the triple
product [(axb),c,d]. As noted above, the properties of determinants imply that the latter is equal
to [d, (a x b), c], which in turn is equal to

d-(ax (bxc)) = d-((a-c)b—(a-b)c)
and if we expand the final term we obtain the expression (a-¢)(b-d) — (a-d)(b-c)=
Cross products and higher dimensions

Given the relative ease in defining generalizations of the inner (or dot) product and the use-
fulness of the 3-dimensional cross product in mathematics and physics, it is natural to ask whether
there are also generalizations of the cross product. However, it is rarely possible to define good
generalizations of the cross product that satisfy most of the latter’s good properties. Partial but
significantly more complicated generalizations can be constructed using relatively sophisticated
techniques (for example, from tensor algebra or Lie algebras), but such material goes far beyond
the scope of this course. Here are two online references containing further information:

http://www.math.niu.edu/~rusin/known-math/95/prods
http://www.math.niu.edu/~rusin/known-math/96/octonionic
We shall not use the material in these reference subsequently.

Although one does not have good theories of cross products in higher dimensions, there is
a framework for generalizing many important features of this construction to higher dimensions.
This it the theory of differential forms; a discussion of the 2- and 3-dimensional cases appears in
Section II.1 of these notes.



1.2 : Parametrized curves

(O"Neill, § 1.4)

There is a great deal of overlap between the contents of this section and certain standard topics
in calculus courses. One major difference in this course is the need to work more systematically
with some fundamental but relatively complex theoretical points in calculus that can be overlooked
when working most ordinary and multivariable calculus problems. In particular this applies to the
definitions of limits and continuity, and accordingly we shall begin with some comments on this
background material.

Useful facts about limits

In ordinary and multivariable calculus courses it is generally possible to get by with only a
vague understanding of the concept of limit, but in this course a somewhat better understanding
is necessary. In particular, the following consequences of the definition arise repeatedly.

FACT 1. Let f be a function defined at all points of the interval (a — h,a + h) for some h > 0
except possibly at a, and suppose that

lim f(z) =b>0.

r—ra

Then there is a 6 > 0 such that § < h and f(xz) > 0 provided = € (a — §,a + ) and z # a.

FACT I1. In the situation described above, if the limit exists but is negative, then there is a
d > 0 such that 6 < h and f(z) > 0 provided = € (a — 6,a+ J) and = # a.

FACT III. FEach of the preceding statements remains true if 0 is replaced by an arbitrary real
number.

Derivation(s). We shall only do the first one; the other two proceed along similar lines. By
assumption b is a positive real number. Therefore the definition of limit implies there is some § > 0
such that |f(z) — b| < b provided provided z € (a — §,a + 0) and z # a. It then follows that

f@) = b+ (f@) —b) > b—f@-b > b-1b > 0

which is what we wanted to show.m
We shall also need the following statement about infinite limits:

FACT IV. Let f be a continuous function defined on some open interval containing 0 such that f is
strictly increasing and f(0) = 0. Then for each positive constant C there is a positive real number h
sufficiently close to zero such that z € (0, h) = 1/f(z) > C andz € (—h,0) = 1/f(z) < -C.

Proof. Let ¢ be the positive number 1/C; by continuity we know that |f(z)| < € if x € (—h, h)
for a suitably small A > 0. Therefore z € (0, h) = 0< f(z) <eand z € (—h,0) = —e<
f(z) < 0. The desired inequalities follow by taking reciprocals in each case.n



What is a curve?

There are two different but related ways to think about curves in the plane or 3-dimensional
space. One can view a curve simply as a set of points, or one can view a curve more dynamically as
a description of the position of a moving object at a given time. In calculus courses one generally
adopts the second approach to define curves in terms of parametric equations; from this viewpoint
one retrieves the description of curves as sets of points by taking the set of all points traced out
by the moving object. For example, the line in R? defined by the equation y = mz is the set of
points traced out by the parametrized curve defined by z(t) = ¢t and y(¢) = m¢. Similarly, the unit
circle defined by the equation z2 4 42 = 1 is the set of points traced out by the parametrized curve
z(t) = cost, y(t) = sint. The set of all points expressible as x(t) for some ¢ € J will be called the
image of the parametrized curve (since it represents all point traced out by the curve this set is
sometimes called the trace of the curve, but we shall not use this term in order to avoid confusion
with the entirely different notion of the trace of a matrix). We shall follow the standard approach
of calculus books here unless stated otherwise.

A parametrized curve in the plane or 3-dimensional space may be viewed as a vector-valued
function 7 or x defined on some interval of the real line and taking values in V' = R? or R2. In this
course we usually want our curves to be continuous; this is equivalent to saying that each of the
coordinate functions is continuous. Given that this is a course in differential geometry it should
not be surprising that we also want our curves to have some decent differentiability properties. If x
is the vector function defining our curve and its coordinates are given by x;, where ¢ runs between
1 and 2 or 1 and 3 depending upon the dimension of V', then the derivative of x at a point ¢ is
defined using the coordinate functions:

x'(t) = (1(t), 25(t), z5(t) )

Strictly speaking this is the definition in the 3-dimensional case, but the adaptation to the 2-
dimensional case is immediate — one can just suppress the third coordinate or view R? as the
subset of R? consisting of all points whose third coordinate is zero.

Definition. A curve x defined on an interval J and taking values in V = R? or R? is differentiable
if x'(t) exists for all t € J. The curve is said to be smooth if x’ is continuous, and it is said to be
a reqular smooth curve if it is smooth and x'(¢) is nonzero for all ¢ € J. The curve will be said to
be smooth of class C™ for some integer r > 1 if x has an r*® order continuous derivative, and the
curve will be said to be smooth of class C* if it is infinitely differentiable (equivalently, C" for all
finite r).

The crucial property of regular smooth curves is that they have well defined tangent lines:

Definition. Let x be a regular smooth curve and let a be a point in the domain J of x.
The tangent line to x at the parameter value ¢ = a is the unique line passing through x(a) and
x(a) + x'(a). There is a natural associated parametrization of this line given by

T(u) =x(a) + ux'(a) .

One expects the tangent line to be the “best possible” linear approximation to a smooth curve.
The following result confirms this:

PROPOSITION. In the notation above, if u # 0 is small and a + u € J then we have
x(a+u) = x(u) + ux'(a) + uO(u)
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where lim,_,q O(u) = 0. Furthermore, if p is any vector such that
x(a+u) = x(u) + up + uW(u)

where lim,_,o W (u) = 0, then p = x'(a).

Proof. Given a vector a we shall denote its i*® coordinate by a;.

Certainly there is no problem writing x(a + u) in the form x(u) + ux'(a) + u©(u) for some
vector valued function ©; the substance of the first part of the proposition is that this function goes
to zero as u — 0. Limit identities for vector valued functions are equivalent to scalar limit identities
for every coordinate function of the vectors, so the proof of the first part of the proposition reduces
to checking that the coordinates 6; of © satisfy lim,_,o 0;(u) = 0 for all i. However, by construction
we have

zi(a+u) —z;(a
o) = B )
and since x is differentiable at a the limit of the right hand side of this equation is zero. Therefore
we have where lim,,_,o ©(u) = 0.

Suppose now that the second equation in the statement of the proposition is valid. As in the
previous paragraph we have
zi(a +u) — zi(a)

wilu) = . - 5@

but this time we know that lim,_,o w;(u) = 0 for all 7. The only way these equations can hold is if
pi(a) = zi(a) for all im

Piecewise smooth curves

There are many important geometrical curves that that are not smooth but can be decomposed
into smooth pieces. One of the simplest examples is the boundary of the square parametrized in
a counterclockwise sense. Specifically, take x to be defined on the interval [0,4] by the following
rules:

(a) (
(b) x(t
(0) (
(d) x(t) =

The formulas for (a) and (b) agree when ¢t = 1, and likewise the formulas for (b) and (c) agree
when ¢ = 2, and finally the formulas for (¢) and (d) agree when ¢ = 3; therefore these formulas
define a continuous curve. On each of the intervals [n,n + 1] for n = 0, 1,2, 3 the curve is a regular
smooth curve, but of course the tangent vectors coming from the left and the right at these values
are perpendicular to each other. Clearly there are many other examples of this sort, and they

include all broken line curves. The following definition includes both these types of curves and
regular smooth curves as special cases:

) (t,0)  forte0,1]
) = (1,t—1)forte[L,2]
) (

(

2—t,1) fort € [2,3]
0,1—1t) for t € [3,4]

Definition. A continuous curve x defined on an interval [a, b] is said to be a regular piecewise
smooth curve if there is a partition of the interval given by points

a = po < p1 - < pp1 <pp =0b
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such that for each i the restriction x[i] of x to the subinterval [p;_1,p;] is a regular smooth curve.

For the boundary of the square parametrized in the counterclockwise sense, the partition is
given by
0 <1 < 2 < 3 < 4.

Calculus texts give many further examples of such curves, and the references cited at the
beginning of this unit also contain a wide assortment of examples. One important thing to note
is that at each of the partition points p; one has a left hand tangent vector x’(p;—) obtained from
x[i] and a right hand tangent vector x'(p;+) obtained from x[i + 1], but these two vectors are
not necessarily the same. In particular, they do not coincide at the partition points 1,2,3 for the
parametrized boundary curve for the square that was described above.

Taylor’s Formula for vector valued functions

We shall need an vector analog of the usual Taylor’s Theorem for polynomial approximations
of real valued functions on an interval.

VECTOR VALUED TAYLOR’S THEOREM. Let g be a vector valued function defined on
an interval (a —r,a+1) that has continuous derivatives of all orders less than or equal to n+1 on
that interval. Then for |h| < r we have

"~ b “tha+h—t)"
sath) = g + Y pe®@ + [ S e a
> % a .

where g%) as usual denotes the k™ derivative of g.

Proof. Let R,(h) be the integral in the displayed equation. Then integration by parts implies

that B
Rocah) = 5 g™(a) + Ra(h)

and the Fundamental Theorem of Calculus implies that
gla+h) = gla) + Ri(h).
Therefore if we set Ry = 0 we have
gla+h) = gla) + > (Ri(h) = Rx-1(h)) + Ra(h)
k=1
and if we use the formulas above to substitute for the terms Ry (h) — Rx_1(h) and R, (h) we obtain
the formula displayed above.n

The following consequence of Taylor’s Theorem will be particularly useful:

COROLLARY. Given g and the other notation as above, let P,(h) be the sum of
gla) + kz Eg( )(a) .
=1
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Then given 1o < r and |h| < T < r we have |g(a + h) — P,(h)| < C |h|"*!, for some positive
constant C.

Proof. The length of the difference vector in the previous sentence is given by

a+h _ n
/ (a’ +h t) g(n+1) (t) dt

n! <

R ()] =
. “thl (@ +h—t)"
sign(h) - / —

(ma“th—alﬁro |g(n+1)(t)|) /0

where M is a positive constant at least as large as the maximum value of |g("*1) (¢)| for |t —a| < ro.m

g(""'l)(t)‘ dt <

|h| n n+1
Ydu < M [h
! (n+1)!
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I.3: Arc length and reparametrization

(O’Neill, §§ 1.4, 2.2)

Given a parametrized smooth regular curve x defined on a closed interval [a, b], as in calculus
we define the arc length of x from ¢t = a to t = b to be the integral

b
L = /\x’(t)|dt.

The motivation for this definition is usually discussed in calculus courses, and it is reviewed below in
the subsection on arc length for curves that are not necessarily smooth. More generally, ifa <t <b
then the length of the curve from parameter value a to parameter value ¢ is given by

s(t) = /: I’ ()] du -

By the Fundamental Theorem of Calculus, the partial arc length function s is differentiable on [a, b]
and its derivative is equal to |x’(¢)|. If we have a regular smooth curve, this function is continuous
and everywhere positive (hence s(t) is a strictly increasing function of t), and the image of this
function is equal to the closed interval [0, L].

Reparametrizations of curves

Given a parametrized curve x defined on an interval [a, b], it is easy to find other parametriza-
tions by simple changes of variables. For example, the curve y(¢) = x(¢ + a) resembles the original
curve in many respects: For example, both have the same tangent vectors and images, and the
only real difference is that y is defined on [0,b — a] rather than [a, b]. Less trivial changes of vari-
able can be extremely helpful in analyzing the image of a curve. For example, the parametrized
curve x(t) = (et — et et + e~t) has the same image as the the upper piece of the hyperbola
y? — 22 = 4 (i.e., the graph of y = v/4 + z2); as a graph, this curve can also be parametrized using
y(u) = (u, V4 + u?). These parametrizations are related by the change of variables u = 2sinh¢; in
other words, we have

x(t) = y(2sinht) .

Note that u varies from —oo to +00 as ¢ goes from —oo to 400, and u/(t) = cosht > 0 for all ¢.

More generally, it is useful to consider reparametrizations of curves corresponding to functions
u(t) such that u'(¢) is never zero. Of course the sign of v’ determines whether u is strictly increasing
or decreasing, and it is useful to allow both possibilities. Suppose that we are given a differentiable
function u defined on [a, b] such that u' is never zero on [a,b]. Then the image ot u is some other
closed interval, say [c,d]; if u is increasing then u(a) = ¢ and u(b) = d, while if u is decreasing
then u(a) = d and u(b) = c. It follows that u has an inverse function ¢ defined on [c¢, d] and taking
values in [a,b]. Furthermore, the derivatives dt/du and du/dt are reciprocals of each other by the
standard formula for the derivative of an inverse function.

It is important to understand how reparametrization changes geometrical properties of a curve
such as tangent lines and arc lengths. The most basic thing to consider is the effect on tangent
vectors.
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PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let u :
[a,b] = [c,d] be a function with a continuous derivative that is nowhere zero, and let y(t) = x(u(t) ).
Then

This is an immediate consequence of the Chain Rule.s

COROLLARY. For each t € [a,b] the tangent line to y at parameter value t is the same as the
tangent line to x at u(t). Furthermore, the standard parametrizations are related by a linear change
of coordinates.

Proof. By definition, the tangent line to x at u(t) is the line joining x(u(t)) and x(u(t)) +
x'(u(t)). Similarly, the tangent line to y at ¢ is the line joining y () = x(u(t) ) and

y(®) +y' () =x(u(t)) + ') x'(u(t)) -

Since the line joining the distinct points (or vectors) a and a + b is the same as the line joining a
and a + c¢b if ¢ # 0, it follows that the two tangent lines are the same (take a = y(¢), b = x'(u)
and ¢ = u/(t)).

In fact, we have obtained standard linear parametrizations of this line given by f(z) =a+zb
and g(w) = a+ cwb. Tt follows that g(w) = f(cw).m

Arc length is another property of a curve that does not change under reparmetrization.

PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let u :
[a,b] = [c,d] be a function with a continuous derivative that is nowhere zero, and let y(t) = x(u(t) ).

Then
d b
/ I (o) dhu = / 1y ()] de

Proof. The standard change of variables formula for integrals implies that

d b
/|x’(u)|du:/ i (u(t) ) |o/(6)] dt -

Some comments about this formula and the absolute value sign may be helpful. If u is increasing
then the sign is positive and we have u(a) = ¢ and u(b) = d, so |u/(t)| = v'(t); on the other hand if
u is decreasing, then the Fundamental Theorem of Calculus suggests that the integral on the left
hand side should be equal to

a
/
so that the formula above holds because v’ < 0 implies |u/| = —u'. In any case, the properties of

vector length imply that the integrand on the right hand side of the change of variables equation
is |u'(t) - x'(u)|, which by the previous proposition is equal to |y’(t)|.=

()| -0 = = [ )] -voa - [

X' (u(t) )‘ [ (8)] dt

If v is a regular smooth curve defined on [a, b], then the arc length function

s(t) = / v/ ()] du
15



often provides an extremely useful reparametrization because of the following result:

PROPOSITION. Letv be as above, and let x be the reparametrization defined by x(s v(u 3) ),
where p is the inverse function to the arc length function X : [a,b] — [0,L]. Then |x (s)] =1 for
all s.

Proof. By the Fundamental Theorem of Calculus we know that X' (¢) = |v/(¢)|. Therefore by the
Chain Rule we know that
X'(s) = w'(s)v'(uls))

and by the differentiation formula for inverse functions we know that

1 1

KO = ey T = e

and if we substitute this into the expression given by the chain rule we see that

X'() = [TV (T6))] = sy V(T(9))] = 1.a

Arc length for more general curves

The geometric motivation for the definition of arc length is described in Exercises 8-0 on pages
10-11 oF po CARMO; specifically, given a parametrized curve x defined on [a, b] one picks a finite
set of points %; such that

a = tp < t1 < - < typ=0b

and views the length of the inscribed broken line joining %, to t1, t1 to t2 efc. as an approximation
to the length of the curve. In favorable circumstances if one refines the finite set of points by
taking more and more of them and making them closer and closer together, the lengths of these
broken line curves will have a limiting value which is the arc length. Exercise 9(b) on page 11 of
DO CARMO gives one example of a curve for which no arc length can be defined. During the time
since do Carmo’s book was published, a special class of such curves known as fractal curves has
received considerable attention. The parametric equations defining such curves all have the form
x(t) = lim,, o X, (t), where each x,, is a piecewise smooth regular curve and for each n one obtains
X, from x,_; by making some small but systematic changes. Some online references with more
information on such curves are given below.

http://mathworld.wolfram.com/Fractal.html
http://academy.wolfram.agnescott.edu/ lriddle/ifs/ksnow/lsnow/htm
http://en2.wikipedia.org/wiki/Koch_snowflake

http://en.wikipedia.org/wiki/Fractal_geometry
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I.4: Curvature and torsion

(O"Neill, § 2.3)

Many calculus courses include a brief discussion of curvature, but the approaches vary and it
will be better to make a fresh start.

Definition. Let x be a regular smooth curve, and assume it is parametrized by arc length
plus a constant (i.e., |x'(s)| = 1 for all s). The curvature of x at parameter value s is equal to

k(s) = |x"(s)l-

The most immediate question about this definition is why it has anything to do with our
intuitive idea of curvature. The best way to answer this is to look at some examples.

Suppose that we are given a parametrized line with an equation of the form x(¢t) = a+tb
where |b| = 1. It then follows that x is parametrized by arc length by means of ¢, and clearly we
have x(t) = 0. This means that the curvature of the line is zero at all points, which is what we
expect.

Consider now an example that is genuinely curved; namely, the circle of radius r about the
origin. The arc length parametrization for this curve has the form

>

(s) = (rcos(s/r), rsin(s/r) )
and one can check directly that its first two derivatives are given as follows:
x"(s) = (— sin(s/r), cos(s/r))
x(s) = (_cos(s/r) _sin(s/r) )

ro T
It follows that the curvature of the circle at all points is given by the reciprocal of the radius.m

The following simple property of the “acceleration” function x”(s) turns out to be quite im-
portant for our purposes:

PROPOSITION. The vectors x"(s) and x'(s) are perpendicular.

Proof. We know that |x'(s)| is always equal to 1, and thus the same is true of its square, which
is just the dot product of x'(s) with itself. The product rule for differentiating dot products of two
functions then implies that

0 = Ciig(x'(s)-x'(s)) = 2(x'(s)-x"(s))

and therefore the two vectors are indeed perpendicular.m

Geometric interpretation of curvature

We begin with a very simple observation.
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PROPOSITION. If x(s) is a smooth curve (parametrized by arc length) whose curvature k(s)
is zero for all s, then x(s) is a straght line curve of the form x(s) = x(0) + sx’(0).

Proof. Since x(s) is the length of x”(s), if the curvature is always zero then the same is true for
x"(s). But this means that x'(s) is constant and hence equal to x’(0) for all s, and the latter in
turn implies that x(s) = x(0) + sx'(0).=

Given a smooth curve, the tangent line to the curve at a point ¢ may be viewed as a first order
linear approximation to the curve. The notion of curvature is related to a corresponding second
order approximation to the curve at parameter value ¢ by a line or circle. We begin by making this
notion precise:

Defintion. Let n be a positive integer. Given two curves a(¢) and b(¢) defined on an interval J
containing t, such that a(ty) = b(ty), we say that a and b are strong n'" order approzimations to
each other if there is an ¢ > 0 such that |h| < ¢ and ¢ty + h € J imply

|b(to +h) — a(to+h)| < C|nr*Tt

for some constant C' > 0. The analytic condition on the order of approximation is often formulated
geometrically as the order of contact that two curves have with each other at a given point; as the
order of contact increases, so does the speed at which the curves approach each other. The most
basic visual examples here are the z-axis and the graphs of the curves 2™ near the origin. Further
information relating geometric ideas of high order contact and Taylor polynomial approximations
is presented on pages 87-91 of the Schaum’s Outline Series book on differential geometry (M.
Lipschultz, Schaum’s Outlines — Differential Geometry, Schaum’s/McGraw-Hill, 1969, ISBN 0-
07-037985-8).

LEMMA. Suppose that the curves a(t) and b(t) are defined on an interval J containing to such
that a(ty) = b(ty), and assume also that a and b are strong n'® order approzimations to each other
at ty. Then for each reqular smooth reparametrization t(u) with to = t(ug) the curves a°t and bet
are strong n'® order approzimations to each other at ug.

Proof. Let Jy be the domain of the function ¢(u), and let Kj be a closed bounded subinterval
containing ug such that the latter is an endpoint of K if and only if it is an endpoint of Jy. Denote
the maximum value of |¢/(u)| on this interval by M. Then by hypothesis and the Mean Value
Theorem we have

b(tuo + 1)) — a(tlug+h)| < Cliuo+h) —tu)*' < CM™ - [pH

which proves the assertion of the lemma.n

In the terminology of n*® order approximations, if we are given a regular smooth curve x
then a strong first order approximation to it is given by the tangent line with the standard linear
parametrization

L(to + h) = x(to) + hx'(t) .

Furthermore, this line is the unique strong first order linear approximation to x.
Here is the main result on curvature and strong second order approximations.

THEOREM. Let x be a regular smooth curve defined on an interval J containing 0 such that
x' has a continuous second derivative and |x'| =1 (hence x is parametrized by arc length plus a
constant).
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(1) If the curvature of x at 0 is zero, then the tangent line is a strong second order approzimation
to x.

(13) Suppose that the curvature of x at 0 is nonzero, let N be the unit vector pointing in the
same direction as x"(0) (the latter is nonzero by the definition and nonvanishing of the curvature
at parameter value 0). If T is the circle through x(0) such that [1] its center is x(0) + (x(0)) !N,
[2] it lies in the plane containing this center and the tangent line to the curve at parameter value
zero, then T is a strong second order approzimation to x.

For the sake of completeness, we shall describe the unique plane containing a given line and
an external point explicitly as follows. If a, b and c are noncollinear points in R? then the plane
containing them consists of all x such that x — a is perpendicular to

(b — a) X (c — a)
which translates to the triple product equation
[(x—a), (b—a), (c-a) = 0.
Suppose now that b; and ¢; are points on the line containing b and ¢. Then we may write
by = ub + (1—-u)c, ¢; = vb + (1-v)c
for suitable real numbers u and v. The equations above immediately imply the following identities:

(by —a) = u(b —a) + (1-u)(c — a)

(¢t —a) = v(b —a) + (1-v)(c — a).

These formulas and the basic properties of determinants imply
[(x—a).(b; —a), (c; —a)] =

[(x —a).u(b; —a), v(ci —a)] + [(x—a).(1-u)(bi—a),( 1—v)(c: —a)] =
w(x —a), (b-a),(c-a)] + (1-u)(1-v)[(x—-a),(c-a),(b-a)] =
wd — 1—-u)(1—-v)0 = 0

and hence the equation
(x—a), (b—a), (c—a)] = 0

implies the corresponding equation if b and ¢ are replaced by two arbitrary points on the line
containing b and c.=

Proof of Proposition. Consider first the case where k(0) = 0. Then the tangent line to
the curve has equation L(s) = sx’(0) and the second order Taylor expansion for x has the form
x(s) = sx'(0) + 1s2x"(0) + s36(s) where 6(s) is bounded for s sufficiently close to zero. The
assumption x(0) = 0 implies that x”(0) = 0 and therefore we have x(s) — L(s) = s26(s) where
0(s) is bounded for s sufficiently close to zero. Therefore the tangent line is a strong second order
approximation to the curve if the curvature is equal to zero.
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Suppose now that x(0) # 0, and let N be the unit vector pointing in the same direction as

x"(0). Define z by the formula
1

r(0)
and consider the circle in the plane of z and the tangent line to x at parameter value s = 0 such

that the center is z and the radius is 1/k(0). If we set r equal to 1/k(0) and T = x’(0), then a
parametrization of this circle in terms of arc length is given by

z = x(0) +

I'(s) = =z — rcos(s/r)N + rsin(s/r)T .

Using the standard power series expansions for the sine and cosine function and the identity z =
x(0) —r N, we may rewrite this in the form

52

I'(s) = x(0) + o

N + s3a(s)N + sT + s36(s)T

where a(s) and 3(s) are continuous functions and hence are bounded for s close to zero. On the
other hand, using the Taylor expansion of x(s) near s = 0 we may write x(s) in the form

2

x(0) + sx'(0) + %x”(O) + $SW(s)

where W (s) is bounded for s close to zero. But x’(0) = T and

so that T'(s) — x(s) has the form s®W(s) where W(s) is a bounded function of s. Therefore the
circle defined by T is a strong second order approximation to the original curve at the parameter
value s = (O.m

Notation. If the curvature of x is nonzero near parameter value s as in the proposition, then
the center of the strong second order circle approximation

is called the center of curvature of x at parameter value s. The circle itsef is called the osculating
circle to the curve at parameter value s (in Latin, osculare = to kiss).

Complementary result. A more detailed analysis of the situation shows that if x£(0) # 0 then
the circle given above is the unique circle that is a second order approximation to the original curve
at the given point.m

Computational techniques

Although the description of curvature in terms of arc length parametrizations is important for
theoretical purposes, it is usually not particularly helpful if one wants to compute the curvature of
a given curve at a given point. One major reason for this is that the arc length function s(¢) can
only be written down explicitly in a very restricted class of cases. In particular, if we consider the
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graph of the cubic polynomial y = z3 with parametrization (¢, 3) on some interval [0, a] then the
arc length parameter is given by the formula

s(t) = /Ot\/mdu

and results of P. Chebyshev from the nineteenth century show that there is no “nice” formula
for this function in terms of the usual functions one studies in first year calculus. Therefore it is
important to have formulas for curvature in terms of arbitrary parametrizations of a regular smooth
curve.

Remarks.

1. The statement about the antiderivative of /1 + 9z is stronger than simply saying that
no one has has been able to find a nice formula for the antiderivative. It as just as impossible to
find one as it is to find two positive whole numbers a and b such that /2 = a/b.

2. A detailed statement of Chebyshev’s result can be found on the web link

http://mathworld.wolfram.com/Integral.html

and further references are also given there.

The following formula appears in many calculus texts:

FIRST CURVATURE FORMULA Let x be a smooth regular curve, let s be the arc length
function, let k(t) = k(s(t)), and let T(t) be the unit tangent vector function obtained by multiplying
x/'(t) by the reciprocal of its length. Then we have

T/ (2)]

Derivation. We have seen that T (s) is equal to x/(s), and therefore by the chain rule we have
T'(t) = S@T(s@t) = K (@)Ix"(s).

Taking lengths of the vectors on both sides of this equation we see that
T/ = K@ X'(s)] = X&) k@)

which is equivalent to the formula for k(¢) displayed above.m
Here is another formula for curvature that is often found in calculus textbooks.

SECOND CURVATURE FORMULA Let x be a smooth reqular curve, let s be the arc length
function, let T(t) be the unit length tangent vector function, and let k(t) = k(s(t)). Then we have

[x'() x x"(1)]

S MOk

Derivation. As in the derivation of the First Curvature Formula we have x’ = s'T. Therefore
the Leibniz product rule for differentiating the product of a scalar function and a vector function
yields

xl/ — SHT + S,TI .
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Since T x T = 0 the latter implies
x'xx" = (") (TxT’).

Since |T| = 1 it follows that T - T’ = 0; i.e., the vectors T and T' are orthogonal. This in turn
implies that |T x T'| is equal to |T|-|T’| so that

Xoxx'| = SPITxT] = R = (T = T
(at the next to last step we again use the identity |T| = 1). It follows that

/(1) x x"(t)
20k

T|

and the Second Curvature Formula follows by substitution of this expression into the First Curva-
ture Formula.m

Osculating planes

Thus far we have discussed lines and circles that are good approximations to a curve. Given a
curve in 3-dimensional space one can also ask whether there is some plane that comes as close as
possible to containing the given curve. Of course, for curves that lie entirely in a single plane, the
definition should yield this plane.

Given a continuous curve x(t), and a plane II, one way of making this notion precise is to
consider the function A(t) giving the distance from x(¢) to II. If the point x(¢y) lies on II, then
A(ty) = 0 and one test of how close the curve comes to lying in the plane is to determine the extent
to which the zero function is an n*® order approximation to A(t) for various choices of n. In fact, if
k(to) # 0 then there is a unique plane such that the zero function is a second order approximation
to A(t), and this plane is called the osculating plane to x at parameter value ¢ = ty. Formally, we
proceed as follows:

Definition. Let x(s) be a regular smooth curve parametrized by arc length (so that |x'| = 1),
and assume that k(sg) # 0. Let a = x(0), let T = x'(sp), and let N be the unit vector pointing in
the same direction as x"(sg). The osculating plane to the curve at parameter value sg is the unique
plane containing the three noncollinear vectors a, a + T, and a + N.

It follows that the equation defining the osculating plane may be written in the form

[(y—a), T,N] = 0.

We can now state the result on the order of contact between curves and their osculating planes.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length (hence |x'| = 1),
assume that x has a continuous third derivative, and assume also that k(so) # 0. Let II be the
osculating plane of x at parameter value sg, and let A(s) denote the distance between x(s) and II.
Then the osculating plane is the unique plane through x(sg) such that the zero function is a second
order approzimation to the distance function A(s) at sg.

Proof. Let a = x(sg), let T = x'(sg), let N be the unit vector pointing in the same direction
as x"'(sg), and let B be the cross product T x N. Then the oscularing plane is the unique plane
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containing a, a + T, and a + N, and the distance between a point y and the osculating plane is
the absolute value of the function D (y) = (y —a) - B. The second order Taylor approximation to
x(s) with respect to sg is then given by the formula

(s — s0)% k(s0)

5 ‘N + (s—s50)°W(s)

x(s)=a + (s—s9)-T +

where W (s) is bounded for s sufficiently close to sg. Therefore since B is perpendicular to T and
N we have ~
D (x(s)) = (s—s%)°W(s)-B

where W(s) - B is bounded for s sufficiently close to so. Therefore the given curve has order of
contact at least two with respect to its osculating plane.

Suppose now that we are given some other plane through a; then one has a normal vector V
to the plane of the form B+ p T + ¢ N where p and ¢ are not both zero. The distance between x(s)
and plane through a with normal vector V will then be the absolute value of a nonzero multiple of

the function
((x(s) - a)-v)

which is equal to

(s — 80)% K(s0)

gls=s0) = (s=s0)(T-V) + 2 (N-V) + (s—50)*(W(s)-V).
We then have (5 s0)
?3 - 80;)3 B (s —p30)2 + (s _qSO) + (W(s)-V)

where the third term on the right is bounded. But since at least one of p and ¢ is nonzero, it follows
that the entire sum is not a bounded function of s if s is close to sg. Therefore the curve cannot
have order of contact at least two with any other plane through a.m

Torsion

Curvature may be viewed as reflecting the rate at which a curve moves off its tangent line.
The notion of torsion will reflect the rate at which a curve moves off its osculating plane. In order
to define this quantity we first need to give some definitions that play an important role in the
theory of curves.

Definitions. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x’| = 1), assume that x has a continuous third derivative, and assume also that x # 0
near the parameter value so. The principal unit normal vector at parameter value s is N(s) =
|x""(s)| 71 x"(s). We have already encountered a special case of this vector in the study of curvatures
and osculating planes, and if T(s) = x'(s) denotes the unit tangent vector then we know that
{T(s), N(s) } is a set of perpendicular vectors with unit length (an orthonormal set).

If x is a space curve (i.e., its image lies in 3-space), the binormal vector at parameter value s
is defined to be B(s) = T(s) x N(s). It then follows that { T(s), N(s), B(s)} is an orthonormal
basis for R3, and it is called the Frenet trihedron (or frame) at parameter value s.

One can frequently define a Frenet trihedron at a parameter value sy even if the curvature
vanishes at sg, but there are examples where it is not possible to do so. In particular, consider the
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curve given by x(t) = (¢, 0, exp(—1/t2)) if t > 0 and x(t) = (¢, exp(—1/¢2)0) if t > 0. If we set
x(t) = 0, then x will be infinitely differentiable because for each & > 0 we have

. dF 2

th_I)nO% exp(—1/t°) = 0
(this is true by repeated application of L’Hospital’s Rule) and in fact the curvature is also nonzero
if t # 0 and t? # 2/3. Therefore one can define a principal unit normal vector N(¢) when ¢ # 0
but, say, |t| < % However, if ¢ > 0 this vector lies in the zz-plane while if ¢ < 0 it lies in the
zy-plane, and if one could define a continuous unit normal at ¢ = 0 it would have to lie in both of
these planes. Now the unit tangent at ¢ = 0 is the unit vector e;, and there are no unit vectors that
are perpendicular to e; that lie in both the zy- and zz-planes. Therefore there is no way to define
a continuous extension of N to all values of ¢. On the other hand, Problem 4.15 on pages 75-76
of Schaum’s Outline Series on Differential Geometry provides a way to define principal normals in

some situations when the curvature vanishes at a given parameter value.n

The following online notes contain further information on defining a parametrized family of
moving orthonormal frames associated to a regular smooth curve:

http://ada.math.uga.edu/teaching/math4250/Html/Bishop.htm

One can retrieve the Frenet trihedron from an arbitrary regular smooth reparametrization with
a continuous second derivative.

LEMMA. In the setting above, suppose that we are given an arbitrary reparametrization with
continuous second derivative, and let s(t) denote the arc length function. Then the Frenet trihedron
at parameter value to is given by the unit vectors pointing in the same directions as T(t), T'(t),
and their cross product. Furthermore, if one considers the reoriented curve y with parametrization
y(t) = x(—t), then the effect on the Frenet trihedron is that the first two unit vectors are sent to
their negatives and the third remains unchanged.

Proof. It follows immediately from the Chain Rule that the unit tangent T remains unchanged
under a standard reparametrization with s’ > 0. Furthermore, the derivation of the formulas for
curvature under reparametrization show that T'(t) is a positive multiple of x”(s). this proves
the assertion regarding the principal normals. Finally, if we are given two ordered sets of vectors
{a, b} and {c, d} such that ¢c and d are positive multiples of a and b respectively, then ¢ x d is
a positive multiple of a x b, and this implies the statement regarding the binormals.

If one reverses orientations by the reparametrization ¢t — —t%, then the Chain Rule implies
that T and its derivative are sent to their negatives, and this proves the statement about the first
two vectors in the trihedron. The statement about the third vector follows from these and the cross
product identity a x b = (—a) x (—b).=

We are finally ready to define torsion.
Definition. In the setting above the torsion of the curve is given by 7(s) = B'(s) - N(s).
The following alternate characterization of torsion is extremely useful in many contexts.
LEMMA. The torsion of the curve is given by the formula B'(s) = 7(s) N(s).

Proof. If we can show that the left hand side is a multiple of N(s), then the formula will follow
by taking dot products of both sides of the equation with N(s) (note that the dot product of the
latter with itself is equal to 1). To show that the left hand side side is a multiple of N(s), it suffices
to show that it is perpendicular to T(s) and B(s). The second of these follows because

0 = %(1) = d%(B-B) = 2B-(dd—]:)
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and the first follows because

dB d dN dN
— = —(TxN) = N xN Tx—) =T —
ds ds( xN) (kN )+( xds) X(ds)

which implies that the left hand side is perpendicular to T.u

We had mentioned that the torsion of a curve is related to the rate at which a curve moves
away from its osculating plane. Here is a more precise statement about the relationship:

PROPOSITION. Let x be a reqular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1), assume that x has a continuous third derivative, and assume also that k(sg) # 0.
Let II be the osculating plane of x at parameter value sg. Then the image of x is contained in 11
for all s sufficiently close to sg if and only if the torsion vanishes for these parameter values.

Proof. Suppose first that the curve is entirely contained in the osculating plane for s close to sg.
The osculating plane at sq is defined by the equation

[(y—a),To, NO] =0

where a = x(sg) and Ty and Ny represent the unit tangent and principal normal vectors at
parameter value so. If we set y = x(s) and simplify this expression, we see that the curve x
satisfies the equation

X(S)'BO = a-BO

where By = Ty x Ny. If we differentiate both sides with respect to s we obtain the equation
x'(s) - Bg = 0. Differentiating once again we see that x"(s) - By = 0. Since x'(s) = T(s) and N(s)
is a positive multiple of x(s) for s close to sy (specifically at least close enough so that r(s) is
never zero), then B is perpendicular to both T(s) and N(s). Therefore B(s) must be equal to
+ By. By continuity we must have that B(s) = By for all s close to sy (Here are the details: Look
at the function B(s) - By on some small interval containing sg; its value is £+ 1, and its value at
sp 18 +1 — if its value somewhere else on the interval were —1, then by the Intermediate Value
Theorem there would be someplace on the interval where its value would be zero, and we know this
is impossible). Thus B(s) is constant, and by the preceding formulas this means that its torsion
must be equal to zero.

Conversely, suppose that the torsion is identically zero. Then by alternate description of torsion
in the lemma we know that B'(s) = 0, So that B(s) = By. We then have the string of equations

= XI'BO = i(XBo)

0 ds

I
—
g

which in turn implies that x - Bg is a constant. Therefore the curve x lies entirely in the unique
plane containing x(s¢) with normal direction By.m
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Other planes associated to a curve

In addition to the osculating plane, there are two other associated planes through a point on
the curve x at parameter value sy that are mentioned frequently in the literature. As above we
assume that the curve is a regular smooth curve with a continuous third derivative i arc length
parametrization, and nonzero curvature at parameter value sg.

Definitions. In the above setting the normal plane is the unique plane containing x(s),
x(s0) + N(sp), and x(s¢) + B(sg), and the rectifying plane is the unique plane containing x(sg),
x(sg) + T(so), and x(sg) + B(sg). These three mutually perpendicular planes meet at the point
x(80) in the same way that the usual zy-, yz-, and zz-planes meet at the origin.

Oriented curvature for plane curves

For an arbitrary regular curve in 3-space one does not necessarily have normal directions when
the curvature is zero, but for plane curves there is a unique normal direction up to sign. Specifically,
if x is a regular smooth plane curve parametrized by arc length and B is a unit normal vector to a
plane II containing the image of x, then one has an associated oriented principal normal direction
at parameter value given by the cross product formula

—~

N (s) = Bxx/(s)

and by construction II is the unique plane passing through x(s), x(s) + x'(s), and x(s) = /I\T(s)
There are two choices of B (the two unit normals for 7 are negatives of each other) and thus there
are two choices for T\T\(s) such that each is the negative of the other. One can then define a signed
curvature associated to the oriented principal normal N given by the formula

An obvious question is to ask what happens if k(sg) = 0 (which also equals k(s) in this case)
and the sign of k(s) is negative for s < sy and positive for s > so. A basic example of this
sort is given by the graph of f(z) = z3 near x = 0, whose standard parametrization is given by
x(t) = (t, t3). In this situation the graph lies in the lower half plane y < 0 for ¢ < 0 and in the in
the upper half plane y > 0 for ¢ > 0, and the curve switches from being concave upward for ¢ < 0
to concave downward (generally called convez beyond first year calculus courses). More generally,
one usually says that f has a point of inflection in such cases. The following result shows that more
general plane curves behave similarly provided the curvature has a nonvanishing derivative:

PROPOSITION. Letx be a regular plane smooth curve parametrized by arc length plus a constant
(hence |x'| = 1), assume that x has a continuous fourth derivative, let N define a family of oriented

principal normals for x, and assume that that k(sg) = 0 but k'(sg) > 0. Then x(s) is contained in
the half plane

—

N (s0) - (3 — x(50)) < 0
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for s sufficiently close to so satisfying s < so, and x(s) is contained in the half plane

—

N (so) - (y —x(s0)) > 0

for s sufficiently close to sy satisfying s > sg.

A similar result holds if £'(s¢) < 0, and the necessary modifications of the statement and proof
for that case are left to the reader as an exercise.

Proof. To simplify the computations we shall choose coordinate systems such that x(s¢) = 0 and
the plane is the standard coordinate plane through the origin with chosed unit normal vector es.
It will also be convenient to denote the unit vector x’(s) by T(s). We shall need to work with a
third order approximation to the curve, which means that we are going to need some information
about x"'(sg). Therefore the first step will be to establish the following formula:

—

E'(so) = x""(s0) -+ N (so)

To see this, note that

(x”'(s) : N(s)) n (x"(s) - ﬁ’(s)) - (x'"(s) - N(s)) n (N(s) N (s))

and the second summand in the right hand expression vanishes because |I\T\|2 is always equal to 1
(this is the same argument which implies that the unit tangent vector function is perpendicular to
its derivative).

Turning to the proof of the main result, the preceding paragraph and earlier consideration
show that the curve x is given near sy by the formula

k _ 2 _ 3
x(s) = (s—s0)T(s0) + M N (s9) + %x”’(so) + (s —50)*0(s)
where 6(s) is bounded for s suffieicntly close to zero. To simplify notation further we shall write

As = s — sg.

If we take the dot product of the preceding equation with /I\T(so) we obtain the formula, in

which y(s) is the dot product of 6(s) and /N\(so), so that y(s) is also bounded for s sufficiently
close to sg:

(x)- N(s0) = F00 (ae)? 4 y(s) (20"

If s is nonzero but sufficiently close to zero then the sign of the right hand side is equal to the sign
of As because

(7) the sign of the first term is equal to the sign of As,
(17) if we let M be a positive upper bound for |y(s)| and further restrict As so that

k' (s0)
68

|As| <

then the absolute value of the second term in the dot product formula will be less than
the absolute value of the first term.
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It follows that the sign of the dot product

is the same as the sign of the inital term

K'(s0)

30 (As)?

which in turn is equal to the sign of As. Since the dot product has the same sign as As for s # 0 and
s sufficiently small, it follows that x(s) lies on the half plane defined by the inequality y- N (sp) < 0

—

if s < 59 and x(s) lies on the half plane defined by the inequality y - N (s¢) > 0 if s > so.m

In fact, the center of the osculating circle also switches sides when one goes from values of s
that are less than sg to values of s that are greater than sg. However, the proof takes considerably
more work.

COMPLEMENT. In the setting above, let z(s) denote the center of the osculating circle to x at
parameter value at parameter value s # sq close to s (this ezists because the curvature is nonzero
at such points). Then z(s) is contained in the half plane

—

N (s0) - (y = x(s0)) < 0

for s sufficiently close to sy satisfying s < sqg, and z(s) is contained in the half plane

—

N (s0) - (y —x(s0)) >0
for s sufficiently close to sy satisfying s > sq.

Proof. We need to establish similar inequalities to those derived above if x(s) is replaced by
z(s); note that the latter is not defined for parameter value sy because the formula involves the
reciprocal of the curvature and the latter is zero at sg.

The center of the osculating circle at parameter value s # sy was defined to be x + k!N,
where N is the ordinary principal normal; we claim that the latter is equal to x + E~IN. By
definition we have e

x' = kN = kN

and since kK = £k is nonzero we know that x?> = k2. Dividing the displayed equation by this
common quantity yields the desired formula

TIN = EIN .

Therefore the proof reduces to showing that the sign of

(x(s) + k(l—s) T\I‘(s)) - N (s0)

is equal to the sign of As.

Using the formula for x(s) near sy that was derived before, we may rewrite the preceding
expression as
_ K(so) 3 4 I 5 ~N
h(s) = —5 (Bs)° +y(s) (As)" + 7= N(s) - N(so) -
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We need to show that h(s) has the same sign as k(s) and its reciprocal, and this will happen if

() = ho) s = e AP (89 + s N - (Rl - R (o)

is bounded for s # sq sufficiently close to zero. To see, this, suppose that |¢(s)] < A for some
A > 0. If we then choose § > 0 so that |k(s)| < 1/A for for |As| < § but As # 0, if will follow that

As > 0 = h(s) = ﬁ—l—(h(s)—ﬁ) S A4 (4) > 0

and similarly with all inequalities reversed and A switched with —A if As < 0.

In order to prove that £(s) is bounded, it suffices to prove that each of the three summands
is bounded for, say, |As| < r. The absolute value of the first is bounded by k'(sg) r3/6 and the
absolute value of the second is bounded by Br* where B is a positive upper bound for |y(s)|. By
the Cauchy-Schwarz inequality the absolute value of the third is bounded from above by

— —~

N(s) — N(so)
|k (s)|

and using the Mean Value Theorem we may estimate the numerator and denominator of this
expression separately as follows:

(2) /N\(s) - /N\(so) < P - |As|, where P is the maximum value of |ﬁ,\ on [sg — 1, S+ 7.

(17) k(s) = k'(S1) As for some S; between sy and s, so if we choose 7 so small that &' > 0 on
[so — T, so + 7], then |k(s)| > Q As, where @ > 0 is the minimum of £’ on that interval.

It then follows that the quotient P/Q is an upper bound for the absolute value of the third term in
the formula for /(s), and therefore the latter itself is bounded. This completes the proof that z(s)
lies on the half plane described in the statement of the result.m
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I.5: Frenet-Serret Formulas

(O’Neill, §§ 2.3-2.4)

In ordinary and multivariable calculus courses, a great deal of emphasis is often placed upon
working specific examples, and as indicated in the discussion preceding Section I.1 of these notes
there is a wide assortment of interesting curves that can be studied using the methods of the
preceding sections. However, the course notes up to this point have not included the sorts of
worked out examples that one sees in a calculus book. The book by O’Neill does include a few
examples, but far fewer than one might expect in comparison to standard calculus texts. We have
reached a point in this course where the reasons for this difference should be explained.

We already touched upon one reason when we described computational techniques for finding
the curvature of a curve. Even in simple cases, it can be extremely difficult — if not impossible —
to write things out explicitly using pencil and paper along with the techniques and results that are
taught in multivariable calculus courses. For example, we noted that arc length reparametrizations
often involve functions that ordinary calculus cannot handle in a straightforward manner. And the
situation gets even worse when one considers certain types of curves that arise naturally in classical
physics, most notably those arising when one attempts to describe the motions of a gravitational
system involving three heavenly bodies. In these cases it is not even possible to give explicit
formulas for the motion of the curves themselves, without even thinking about the added difficulty
of describing quantities like curvature and torsion. During the past quarter century, spectacular
advances in computer technology have provided powerful new tools for studying examples. A few
comments on the use of computer graphics in differential geometry appear in O’Neill. The following
book is an excellent reference for further information on studying curves and surfaces using the
software package Mathematica:

A. Gray. Modern Differential Geometry of Curves and Surfaces. (Studies in Advanced
Mathematics.) CRC Press, Boca Raton, FL etc., 1993. ISBN: 0-8493-7872-9.

The emphasis in this course will be on qualitative aspects of the differential geometry of curves
and surfaces in contrast to the quantitative emphasis that one sees in ordinary and multivariable
calculus. In particular, we are interested in the following basic sort of question:

Reconstructing curves from partial data. 7o what extent can one use geometric invariants
of a curve such as curvature and torsion to retrieve the original curve?

Both curvature and torsion are defined so that they do not change if one replaces a curve by
its image under some rigid motion of R? or R3, so clearly the best we can hope for is to retrieve
a curve up to some transformation by a rigid motion. The main results of this section show that
curvature and torsion suffice to recover the original curve in a wide range of “reasonable” cases.

The crucial input needed to prove such results comes from the Frenet-Serret Formulas, which
describe the derivatives of the three fundamental unit vectors in the Frenet trihedron associated to
a regular smooth curve.

FRENET-SERRET FORMULAS. Letx be a reqgular smooth curve parametrized by arc length
(hence |x'| = 1), assume that x has a continuous third derivative, and assume also that k(so) # 0.
Let T(s), N(s) and B(s) be the tangent, principal normal and binormal vectors in the Frenet
trihedron for x at parameter value sg. Then the following equations describe the derivatives of the
vectors in the Frenet trihedron:
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T = s N
N' = — kT — 7B
B' = TN

Proof. We have already noted that the first and third equations are direct consequences of the
definition of curvature and torsion. To derive the second equation, we take the identity N = B x T
and differentiate it with respect to s:

N'(s) = B'(s)xT(s) + B(s) xT'(s) =

7(s) (N(s) x T(s)) + & (B(s) x N(s))

Since T, N and B are mutually perpendicular unit vectors such that B = T x N, as usual the
“BAC-CAB?” rule for threefold cross products implies that N x T = —B and B x N = —T. If
we make these substitions into the displayed equations we obtain the second of the Frenet-Serret
Formulas.m

The signifiance of the Frenet-Serret formulas is that they allow one to describe a curve in terms
of its curvature and torsion in an essentially complete manner.

LOCAL UNIQUENESS FOR CURVES. Suppose that we are given two reqular smooth curves
x and y defined on the same open interval containing sg, where both curves are parametrized by
arc length, both have continuous third derivatives and everywhere nonzero curvatures, and their
curvature and torsion functions of both curves are equal. Assume further that the Frenet trihedra
for both curves at sy are equal. Then y = x on some open interval containing sg.

Proof. Let e;, ex and e3 be the standard unit vectors. We shall only consider the simplified
situation where x(sg) = y(0) = 0 and the Frenet trihedra for x and y at parameter value s are
given by e;, es and e3 (one can always use a rigid motion to move the original curves into such
positions, and the motion will not change the curvature or torsion of either curve — this is not
really difficult to prove but it is a bit tedious and distracting).

Let { Tx(s), Nx(s), Bx(s)} and { Ty (s), Ny(s), By(s)} be the Frenet trihedra for x and y
respectively, and let

g(s) = |Tx(s) = Ty(s)]” + |Nu(s) = Ny(s)|* + [Bx(s) = By(s)” -

By the Frenet-Serret Formulas we then have that ¢’ is equal to

2(((Tx_Ty)'(T;<_TIy)) +<(Nx_Ny)'(N;c_le)) + ((Bx—By)'(B;_B;))> =
2<<H(Tx—Ty)-(Nx—Ny)) + (T(Bx—By)-(Nx—Ny)) _

(5 (Nx = Ny) (T = Ty) ) - (T<Nx—Ny)-<Bx—By>)>.

It is an elementary but clearly messy exercise in algebra to simplify the right hand side of the
preceding equation, and the expression in question turns out to be zero. Therefore the function g
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must be a constant, and since our assumptions imply g(sg) = 0, it follows that g(s) = 0 for all s.
The latter in turn implies that each summand

|Tx—Ty|2 ’ |Nx_Ny|2 ) |Bx—By|2

must be zero and hence that the Frenet trihedra for x and y must be the same. The first Frenet-
Serret Formula then implies x’ = y’, and since the two curves both go through the origin at
parameter value sq it follows that x and y must be identical.m

There is in fact a converse to the preceding result.

FUNDAMENTAL EXISTENCE THEOREM OF LOCAL CURVE THEORY. Given
sufficiently differentiable functions k and T on some interval (—c, ¢) such that k > 0, there is an
h € (0,¢) and a sufficiently differentiable curve x defined on (0,h) such that x(0) = 0, the tangent
vectors to x at all point have unit length, the Frenet trihedron of x at 0 is given by the standard
unit vectors

(7). N©), BO)) = (e e2es)

and the curvature and torsion functions are given by the restrictions of k and T respectively.m

This is a consequence of the fundamental existence theorem for systems of linear differential
equations. If the curve exists, then the Frenet-Serret formulas yield a system of nine first order
linear differential equations for the vector valued functions T, N, and B in the Frenet trihedron

T = kN
N' = — kT - 7B
B' = TN

and if one is given k and 7 the goal is to see whether this system of first order linear differential
equations can be solved for T, N, and B, at least on some smaller interval (—h, h). If one has such
a solution then the curve x can be retrieved using the elementary formula

x(s) = /0 T(u) du

where [s| < h (with the usual convention that [J = — fso if s < 0). A proof of the existence
of a solution to the system of differential equations is given on pages 309-311 in the Appendix to
Chapter 4 of DO CARMO.x

The preceding two results combine to yield the Fundamental Theorem of Local Curve
Theory:

Given k and T as in the statement of the Fxistence Theorem, an initial vector xo and an orthonormal
set of vectors (a, b, ¢) such that a x b = ¢, then there is a positive real number hy and a unique
(sufficiently differentiable) curve x such that the tangent vectors to x at all point have unit length,
the Frenet trihedron of x at 0 is given by the standard unit vectors

(T(0), N(©), B(0)) = (a b, c)

and the curvature and torsion functions are respectively given by the restrictions of k and T to

(=h1, h1)m
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In particular, this result implies that space curves are completely determined by their curvature
and torsion functions together with the Frenet trihedron at some initial value. The following special
case is a companion to our earlier characterization of lines as curves whose curvature is identically
Zero:

CHARACTERIZATION OF CIRCULAR ARCS. Letx be a curve satisfying the conditions
in the statement of the Frenet-Serret Formulas. Then the restriction of x to some small interval
(so — &, so + 96) is a circular arc if and only if the curvature is a positive constant and the torsion
is identically zero.

This follows immediately because we can always find a circular arc with given initial value
X0, initial Frenet trihedron (T, Ng, Bg) and constant curvature x > 0 (and also of course with
vanishing torsion); in fact, the equations for an osculating circle provide an explicit construction.m

A strengthened Fundamental Theorem for plane curves

Since plane curves may be viewed as space curves whose third coordinates are zero (and whose
torsion functions are zero), the Fundamental Theorem of Local Curve Theory also applies to plane
curves, and in fact the Fundamental Theorem amounts to saying that there is a unique curve with
a given (nonzero) curvature function k, initial value xo and initial unit tangent vector Ty; in this
case the principal normal Ny is completely determined by the. perpendicularity condition and the
Frenet-Serret Formulas.

In fact, there is actually a stronger version of the Fundamental Theorem in the planar case.
In order to state and prove the Fundamental Theorem for space curves we needed to assume the
curvature was positive so that the principal normal N could be defined. We have already noted that
one can define N for plane curves even if the curvature is equal to zero. Geometrically, a standard
way of doing this is to rotate the unit tangent T in the counterclockwise direction through an angle
of 7/2; in terms of equations this means that N = J(T), where J is the linear transformation

J("I"a y) = (y7 _"I") '

As noted in the previous section, if x is a regular smooth curve in R? parametrized by arc length
plus a constant, this means that if we define an associated signed curvature by the formula

k(s) = x"(s)-N(s) = x"(s)-[J(T)](s)

then |k(s)| = k(s).

For the sake of completeness, we shall formally state and prove the modified version of the
Frenet-Serret Formulas that holds in the 2-dimensional setting with IN defined as above.

PLANAR FRENET-SERRET FORMULAS. Letx be a reqular smooth curve parametrized
by arc length (hence |x'| = 1), assume that x has a continuous third derivative. Let T(s) and N(s)
and be the tangent and principal normal vectors for x at parameter value so. Then the following
equations describe the derivatives of T and N:

T/
N = — kT

kN

33



Proof. By definition the first equation is a direct consequence of the definition of signed curvature.
To derive the second equation, we take the identity N(s) = J('T(s) ) and differentiate it with respect
to s, obtaining

k(s) J?(T(s)) = —k(s)T(s)
where the last equation follows because J2 = —I.m

One can use the notion of signed curvature to state and prove the following version of the
fundamental theorem for plane curves:

FUNDAMENTAL THEOREM OF LOCAL PLANE CURVE THEORY. Given a suffi-
ciently differentiable function k on some interval (—c, ¢), an initial vector xo and an orthonormal
set of vectors (a, b) such that b = J(a), then there is an h € (0,¢) and a sufficiently differentiable
curve x defined on (—h,h) such that x(0) = xq, the tangent vectors to x at all point have unit
length, the tangent-normal pair of x at at 0 is given by the standard unit vectors

(T(O), N(O)) = (a,b)

and the curvature function is given by the restriction of k to (—h, h).m

The proof of this result is a fairly straightforward modification of the argument for space curves
and will not be worked out explicitly for that reason.

Local canonical forms

One application of the Frenet-Serret formulas is a description of a strong third order approxi-
mation to a curve in terms of curvature and torsion.

PROPOSITION. Let x be a reqular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1) such that x has a continuous fourth derivative and k(0) # 0, and let { T, N, B }
be the Frenet trihedron at parameter value s = 0. Then a strong third order approximation to x is

given by
s$2K2 s’k 83K/ 3kt
x(O)-I—(s— 3!>T+<T+3!>N+ B

Proof. We already know that x'(0) = T and x”(0) = x N. It suffices to compute x'”(0), and the
latter is given by ,
(kN) = N + kN’ = &N - s*T - k7B

where the last is derived using the Frenet-Serret Formulas.m

Here are two significant applications of the canonical form for the strong third order approxi-
mation. By the basic assumptions for the Frenet-Serret Formulas we have k > 0.

APPLICATION 1. In the setting above, if 7(0) > 0 then the point x(s) lies on the side of the
osculating plane defined by the inequality (y —x(0)) - B < 0, when s < 0 and s is sufficiently close
to 0, and x(s) lies on the side of the osculating plane defined by the inequality (y —x(0)) -B > 0
when s > 0 and s is sufficiently close to 0. Similarly, if 7(0) > 0 then the point x(s) lies on the
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side of the osculating plane defined by the inequality (y — x(0)) > 0, when s < 0, and x(s) lies on
the side of the osculating plane defined by the inequality (y — x(0)) < 0 when s > O.m

Derivation. We shall only do the case where 7 > 0 and s > 0. The arguments in the other
cases are basically the same, the main difference being that certain signs and inequality directions
must be changed.

Let g(s) = (x(s) —x(0) ) - B; then the canonical form implies an equation

9(s) = — + 0(s)

where |0(s)| < |s|* - M for some positive constant M. Tt follows that if |s| is small and positive then

we have

S3I$7'

3!
and the right hand side (hence also g(s)) is positive provided

- M-s*

g(s) >

KT
— .1
M

APPLICATION 2. In the setting above, if &' # 0 and s # 0 is sufficiently close to zero then
x(s) lies on the side of the rectifying plane defined by the inequality

(y—x(0)) N > 0 .m

Derivation. Let g(s) = (x(s) —x(0)) - N; then the canonical form implies an equation

2 3

gls) = (% + 33’;') + 6(s)

where |0(s)| < |s|* - M for some positive constant M. We might as well assume that M > 1. Tt
follows that if |s| is small and nonzero then we have

s’ |s|P]K|
> (28 O ELEDY s
o) = (55 - EEEL) —ary
and the right hand side (hence also g(s)) is positive provided

|s| < min i,—
k' 2M

Regular smooth curves in hyperspace

During the nineteenth century mathematicians and physicists encountered numerous questions
that had natural interpretations in terms of spaces of dimension greater than three (incidentally,
in physics this began long before the viewing of the universe as a 4-dimensional space-time in
relativity theory). In particular, coordinate geometry gave a powerful means of dealing with such
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objects by analogy. For example, Euclidean n-space for and arbitrary finite n is given by the
vector space R, lines, planes, and various sorts of hyperplanes can be defined and studied by
algebraic methods (although geometric intuition often plays a key role in formulating, proving, and
interpreting results!), and distances and angles can be defined using a simple generalization of the
standard dot product. Furthermore, objects like a 4-dimensional hypercube or a 3-dimensional
hypersphere can be described using familiar sorts of equations. For example, a typical hypercube
is given by all points x = (z1, 2, Z3,24) such that 0 < z; <1 for all 4, and a typical hypersphere
is given by all points x such that

2 2 2 2 2
‘X‘ :$1+.’L‘2+I3+$4:1.

A full investigation of differential geometry in Euclidean spaces of dimension > 4 is beyond the
scope of this course, but some comments about the differential geometry of curves in 4-space seem
worth mentioning.

One can define regular smooth curves, arc length and curvature for parametrized 4-dimensional
curves exactly as for curves in 3-dimensional space. In fact, there are generalizations of the Frenet-
Serret formula and the Fundamental Theorem of Local Curve Theory. One complicating factor
is that the 3-dimensional cross product does not generalize to higher dimensions in a particularly
neat fashion, but one can develop algebraic techniques to overcome this obstacle. In any case,
in four dimensions if a sufficiently differentiable regular smooth curve x is parametrized by arc
length plus a constant and has nonzero curvature and a nonzero secondary curvature (which is
similar to the torsion of a curve in 3-space), then for each parameter value s there is an ordered
orthonormal set of vectors F;(s), where 1 < i < 4, such that F; is the unit tangent vector and the
sequence of vector valued functions (the Frenet frame for the curve) satisfies the following system
of differential equations, where k, is curvature, ko is positive valued, and the functions k1, k2, K3,
all have sufficiently many derivatives:

F& = K1 F2

Fl2 = — k1 Fy + ko F3

Fg = —ko Fo + k3 Fy
Fil = —K3 F3

The Fundamental Theorem of Local Curve Theory in 4-dimensional space states that locally
there is a unique curve with prescribed higher curvature functions k1 > 0, k2 > 0 and k3, prescribed
initial value x(sg), and whose Frenet orthonormal frame satisfies F;(sg) = v; for some orthonor-
mal basis {vi, va, v3, v4 }. An online description and derivation of such formulas in arbitrary
dimensions is available at the site

http://www.math.technion.ac.il/ rbrooks/dgeol.7.ps

and a discussion of such formulas in complete generality (i.e., appropriate for a graduate level
course) appears on page 74 of Hicks, Notes on Differential Geometry.
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IT. Topics from Geometry and Multivariable Calculus

This unit covers three topics involving background material. The first is a discussion of differ-
ential forms. These objects play a major role in O’Neill’s treatment of the subject, and we shall
explain how one can pass back and forth between the classical vector formulations of concepts in
differential geometry and their restatements in terms of the more modern (and ultimately more
convenient) language of differential forms. Each approach appears frequently in the literature of the
subject, so an understanding of their relationship is always useful and sometimes absolutely nec-
essary. The second objective is to discuss some points regarding vector valued functions of several
variables, and especially those which will be needed for studying surfaces in Units III and IV. One
goal is to give concise and useful principles for working with such functions that closely resemble
well known results in elementary calculus (e.g., the linear approximation of functions near a point
using derivatives, the Chair Rule, differentiability criteria for inverse functions, change of variables
formulas in multiple integration). Finally, we shall use vector valued functions of several variables
to give an analytic definition of congruence for geometric figures, and we shall combine this with
the Frenet-Serret Formulas from Unit I to prove that two well behaved differentiable curves are
congruent if and only if their curvature and torsion functions are equal.

I1.1: Differential forms

(O’Neill, § 1.5-1.6)

During the 20"™t" century mathematicians and physicists discovered that many advanced top-
ics in differential geometry could be handled more efficiently, and in greater generality, if certain
concepts were reformulated from vector terminology into slightly different notation. The central ob-
jects in this setting are called differential forms or exterior forms. Among other things, differential
forms provide answers to many cases of the following basic question:

Given a geometrical formula involving cross products in R®, how can one generalize it to higher
dimensions?

A detailed answer to this question in terms of differential forms is beyond the scope of this course.
However, O’Neill works with differential forms frequently (but not exclusively), so it is worthwhile
to explain how one can pass between the language of vectors and differential forms.

BACKGROUND ON MULTIPLE INTEGRATION. The definition of differential forms is mo-
tivated by concepts involving double and triple integrals, so it will be necessary to discuss such
objects here. More precisely, we shall need material from a typical multivariable calculus course or
sequence through the main theorems from vector analysis. Files describing the background mate-
rial (with references to standard texts used in the Department’s courses) are included in the course
directory under the names background?2. . Here are some further online references for background
material:

http://tutorial.math.lamar.edu/Al1Browsers/2415/DoubleIntegrals.asp

http://www.math.hmc.edu/calculus/tutorials/multipleintegration/
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http://ndp.jct.ac.il/tutorials/Infitut2/node38.html
http://math.etsu.edu/MultiCalc/Chap4/intro.htm
http://www.maths.abdn.ac.uk/ igc/tch/ma2001/notes/node74.html
http://www.maths.soton.ac.uk/ cjh/mal56/handouts/integration.pdf

http://en.wikipedia.org/wiki/Multiple_integral

Topics from multiple integration will also figure in a few subsequent sections, including the
discussion of the Change of Variables Formula in Section I1.3 and the remarks on surface area in
Section IIL.5.

The basic objects

Everything can be done in R™ for all positive integers n, but we shall only need the cases
where n = 2 or 3 in this course, so at some points our statements and derivations may only apply
for these values of n.

Suppose that U is an open subset of R",where n = 2 or 3. If 0 < p < n, then a differential
p-form may be described as follows.

The case p = 1. A 1-form is basically an integrand for line integrals over curves in U.
Specifically, it has the form ) . f;dz;, where 1 < i < n and each f; is a function on U with
continuous partial derivatives.

The case p = 2. If n = 2, then a 2-form is basically an integrand for double integrals over
subsets of U. Specifically, it has the form f(x,y) dx dy, where f has continuous partial derivatives.
If n = 3, then a 2-form is basically an integrand for certain surface integrals over subsets of U (more
precisely, flux integrals of vector fields taken over oriented surfaces). Specifically, these integrands
have the form

Pdydz + Qdzdx + Rdxdy

where P,Q, R are functions with continuous partial derivatives. For technical reasons that need
not be discussed at this point, one inserts a wedge sign A between the second and third factors, so
that a monomial form is written H du A dv.

The case p = 3. This case only arises when n = 3, where a 3-form is basically an integrand
for triple integrals over subsets of U. Specifically, it has the form f(z,y, z) dz dy dz, where f has
continuous partial derivatives. As in the case p = 2, one interpolates wedges between the differential
symbols dz, dy and dz so that the form is written f(z,y, z)dz Ady A dz.

Comparisons with vector fields

There is an obvious 1-1 correspondence between 1-forms and smooth vector fields, which
we may biew as vector valued functions F from U to R™ such that each coordinate function
has continuous partial derivatives. Specifically, if the coordinates of F are (Pi,...,P,), then F
corresponds to the 1-form

wgp = Pidzi + --- + P,dz,

and conversely the right hand side determines a smooth vector field whose coordinates are the
coefficients of the differential symbols dz;.
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Of course, it is natural to ask why one might wish to make such a looking change of notation.
In particular, there should be some substantive advantage in doing so. One reason involves two
basic themes in multivariable calculus: (1) The gradient of a function. (2) Change of variables
formulas (e.g., among rectangular, polar, cylindrical or spherical coordinates). We shall think of a
change of variables as a generalization of the standard polar coordinate maps:

r = 7rcosb
y = rsinf

This takes open sets in the r 6 plane to open sets in the z y-plane. Comparing the formulas for a
function’s gradient in two such coordinate systems can be extremely awkward. However, if we look
at the exterior derivative

of
= — dx;
rather than the gradient, then one obtains a much more tractable change of variables formula:
of of of of
—d —dy +— ——d —-db
oz " T 3y Y ar T

If n = 3, there is a different but related 1-1 correspondence between 2-forms and vector fields,
in this case sending a vector field F with coordinate functions P, Q, R to the type of expression
displayed above.

PdyAndz + QdzANdx + Rdx Ndy

The V operator(s) and differential forms

The exterior derivative of a function is one case of a general construction of exterior derivatives
on differential forms, which sends every p-form w to a (p + 1)-form dw; this can be extended to
all nonnegative integers by agreeing that a 0-form is just a function and a p-form is zero if p > n.
The formal definition is a bit complicated, but for our purposes it suffices to know that exterior
differentiation is completely determined by the previous construction for df and following simple
properties:

(1) For all forms w we have d(dw) = 0.

(2) For all p forms w and X\ we have d(w + A\) = dw + d\.

(3) For all p-forms w and pure differential 1-forms dz; we have d(w A dz;) = dw A dz;.
(4)

4) For all pure differential 1-forms dz; and dz; we have dz; A dz; = —dz; A dz; (hence it
vanishes if ¢ = j).

Verification of these for n = 2 or 3 reduce to a sequence of routine computations.

When one passes from the vectof fields or scalar valued functions to differential forms, the V
operator(s) passes to exterior derivatives. Here is a formal statement of this correspondence.

THEOREM. Letp and n be as above. The the following conclusions hold:

(1) Suppose that p =1 and n =2, and F is the vector field with coordinate functions (P, Q).
If wr is the differential 1-form corresponding to F, then

B 0Q OP
dop = (£_8_y> dxdy .
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(13) Suppose that p =1 and n = 3, and F is the vector field with coordinate functions (P, Q).
If wr is the differential 1-form corresponding to F, then

dwF = QG

where Qg denotes the 2-form corresponding to G and G =V x F is the curl of F.
(131) Suppose that p =2 andn = 3, and F is the vector field with coordinate functions (P,Q, R).
If Qp is the differential 1-form corresponding to F, then
dQp = V- -Fdzxdydz

where V - F denotes the divergence of F'.
Verifying each of these is a routine computational exercise.m

APPLICATIONS TO INTEGRAL FORMULAS IN VECTOR ANALYSIS. The preceding compar-
ison between exterior differentiation and the V operator leads to the following unified statement
which includes the classical theorems of Green, Stokes and Gauss (also called the Divergence The-

orem):
/ w = / dw
Bdy(X) X

Here X is a region in R? or R3 or an oriented surface, and Bdy(X) denotes its boundary curve(s)
or surface(s).n

Proving this version of the theorems is beyond the scope of the course, but we have mentioned
it to suggest the potential usefulness of differential forms for expressing somewhat complicated
relationships in a relatively simple manner.

Connectedness
In many situations it is useful or necessary to assume that an open set has an additional

property called connectedness.

Definition. Let n = 2 or 3 (actually, everything works for all n > 2, but in this course we are
mainly interested in objects that exist in 2- or 3-dimensional space. An open subset U of R" will
be called a connected open domain if for each pair of points p and q in U there is a piecwise smooth
curve I' defined on [0, 1] and taking values entirely in U such that I'(0) = p and I'(1) = q.

Most examples of open sets in this course are either connected or split naturally into a finite
union of pairwise disjoint open subsets. Here are some examples:

Example 1. An open disk of radius » > 0 about a point p, consisting of all x such that
|x — p| < r is connected. If x and y belong to such a disk, then consider the line segment curve
v(t) = ty + (1 — t)x, where ¢t € [0,1]. This is an infinitely differentiable curve (its coordinate
functions are first degree polynomials), it joints x to y, and we have

@& <t + A=Yyl < tr+ (Q-tr = 7
so that y(t) lies in the open disk of radius r for all ¢ € [0, 1].
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Example 2. Let 7 be a number between 1 and n, and let H; be the set of all points in R"
whose I** coordinate satisfies z; # 0. Then H; splits into a union of the two sets Hz+ and H; of
points where z; is positive and negative respectively. Each of these is connected, and in fact two
points in H Z'" or H;” can be joined by the same sort of line segment curve as in Example 1. The
reason for this is that if the i*® coordinates of x and y are positive or negative, the corresponding
property holds for each point 7(¢).

Note, however, that H itself is not a connected open domain. Specifically, there is no curve
joining the unit vector e; to its negative. If such a curve did exist, then its i*" coordinate z; would
be a continuous function from [0, 1] to the reals such that z;(0) = —1 and 2;(1) = 1. By the
Intermediate Value Property for continuous functions on an interval, there would have to be some
parameter value u for which z;(u) = 0; but this would mean that y(u) could not belong to H;,
so we have a contradiction. The problem arises from our assumption that there was a continuous
curve in H; joining the two vectors in question, so no such curve can exist.m
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I1.2: Smooth mappings

(O'Neill, §§ 1.7, 3.2)

From a purely formal viewpoint, the generalization from real valued functions of several vari-
ables to vector valued functions is simple. An n-dimensional vector valued function is specified by
its n coordinates, each of which is a real valued function. As in the case of one variable functions,
a vector valued function is continuous if and only if each coordinate function is continuous.

One reason for interest in vector valued functions of several real variables is their interpretation
as geometric transformations, which map geometric figures in the domain of definition to geometric
figures in the target space of the function. For example, in linear algebra one has linear transfor-
mations given by homogeneous linear polynomials in the coordinates, and it is often interesting
or useful to understand how familiar geometric figures in R? or R3 are moved, bent or otherwise
distorted by a linear transformation. Examples are discussed in most linear algebra texts (for ex-
ample, see Section 2.4 of Fraleigh and Beauregard, Linear Algebra), and the following interactive
wev site allows the user to view the images of various quadrilaterals under linear transformations,
where the user has a wide range of choices for both geometric figure and the transformation:

http://merganser .math.gvsu.edu/david/linear/linear .html

The notion of a geometric mapping is also central to change of variables problems in multivariable
calculus. For example, it one wants to evaluate a double integral over a region A in the Cartesian
coordinate plane using polar coordinates, it is necessary to understand the geometric figure B in
the plane that maps to A under the vector valued function of two variables

Cart(r, ) = (r cos@,r sinf) .

Since many different sets of polar coordinates yield the same point in Cartesian coordinates, it is
generally appropriate to assume that B lies in some set for which Cartesian coordinates are unique
or almost always so. For example, one might take B to be the set of all points that map to A and
whose r and 6 coordinates satisfy 0 < r and 0 < 8 < 27. Some illustrations appear in the following
site; the collection of pictures in the first is particularly extensive and makes very effective use of
different colors.

http://loriweb.pair.com/8polarcoordl.html

omega.albany.edu:8008/calc3/double-integrals-dir/polar-coord-m2h.html

If a vector valued function of several variables is defined on a connected domain in some
R", then one can formulate a notion of partial derivatives using the coordinate functions and the
usual methods of multivariable calculus, but exactly as in that subject such partial derivatives can
behave somewhat erratically if they are not continuous. However, if these partial derivatives are
continuous, then one has the following critically important generalization of a basic result on real
valued functions of several variables:

LINEAR APPROXIMATION PROPERTY. Suppose that U is a connected domain in R"
and that f?U — R™ is a function with continuous first partial derivatives on U. Denote the
coordinate functions of f by fi, and for each x € U let Df(x) be the matriz whose i*™ row is given
by the gradient vector V f;(x). Then for all sufficiently small but nonzero vectors h € R™ we have

fx+h) = f(x) + [Df(x)]h + [h|6(h)
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where O(h) satisfies

}}1_1}1%) 6(h) = 0.

The matrix D f(x) is often called the derivative of f at x.

Sketch of proof. For scalar valued functions, a version of this result is established in multivariable
calculus; specifically, in our case this result says that the coordinate functions satisfy equations of
the form

filx+h) = fi(x) + Vfi(x)-h + |[h|6(;h)

where 6(h) satisfies

}11_1’1(1) 6;(h) = 0.
By construction, the rows of D f(x) are the gradient vectors of the coordinate functions at x, and
consequently the coordinates of [Df(x)|h are given by the expressions V f;(x) - h. The function
6(h) is defined so that it coordinates are the functions 6;(h), and the limit of 6 at 0 is 0 because
the limit of each 6; at 0 is O.m

The preceding result implies that a vector valued function of several variables with continuous
partial derivatives has a well behaved first degree approximation by a function of the form

g(x+h) = g(x) + Bh

for some m x n matrix B (namely, the derivative matrix).

WARNING. Frequently mathematicians and physicists use superscripts to denote coordinates.
Of course this conflicts with the usual usage of superscripts for exponents, so one must be aware that
superscripts may be used as indexing variables sometimes. Normally such usage can be detected
by the large number of superscripts that appear or their use in places where one would normally
not expect to see exponents.

Smoothness classes. As for functions of one variable, we say that a vector valued function of
several variables is smooth of class C” if its coordinate functions have continuous partial derivatives
of order < r (agreeing that C° means continuous) and that a function is smooth of class C* if its
coordinate functions have continuous partial derivatives of all orders.

The concept of derivative matrix for a vector valued function leads to a very neat formulation
of the Chain Rule:

VECTOR MULTIVARIABLE CHAIN RULE. LetU and V be connected domains in R™
and R™ respectively, let f : U — V be a map whose coordinate functions have continuous partial
derivatives at x, and let g : V — RP be a map whose coordinate functions have continuous partial
derivatives at f(x). Then the composite g° f defined by

9°fly = g(fly)

also has coordinates with continuous partial derivatives at X and
Dg° f](x) = D(g) (f(x)) °Df(x) .

Proof. This follows directly by applying the chain rule for scalar valued functions to the partial
derivatives of the coordinate functions for g° fm
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COROLLARY. In the preceding result, if f and g are smooth of class C", then the same condition
holds for their composite g° f.

Proof. First of all, if the result can be shown for r < oo the case r = oo will follow out because
C* is equivalent to C® for all s < co. Therefore we shall assume r < oo for the rest of the proof.

If h is a g-dimensional vector valued function of p variables of class C", then the derivative
matrix of h may be viewed as a p X g matrix valued function of p variables, or equivalently as a
pg-dimensional vector valued function of p variables, and this function is smooth of class C"~1. We
shall use this fact to prove the corollary by induction on r.

Suppose first that 7 = 1. Then the Chain Rule states that the entries of D [g° f](x) are
polynomials in the entries of D(g) (f(x)) and D f(x). Since Dg, Df and f are all continuous and a
composite of continuous functions is continuous, it follows that D [g° f] (x) is a continuous function
of x.

Suppose now that we know the result for s < r, where r > 2. Then exactly the same sort of
argument applies, with C"~! replacing “continuous” in the final sentence; this step is justified by
the induction hypothesis.m
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I1.3: Inverse and implicit function theorems

(O"Neill, § 1.7)

The following topics are often discussed very rapidly or not at all in multivariable calculus
courses, but we shall need them at many points in the discussion of surfaces. The texts for the
Department’s courses on single and multivariable calculus courses do not discuss the first result
at all for functions of several variables, and only special cases of the second result are treated in
one of these texts. However, statements and proofs of the results are contained in the text for the
Department’s advanced undergraduate course on real variables (Rudin, Principles of Mathematical
Analysis, Third Edition). A statement of the one result (the Inverse Function Theorem) also
appears on page 131 of Do CARMO.

We shall begin our discussion with the Implicit Function Theorem. The simplest form of this
result is generally discussed in the courses on differential calculus. In these courses one assumes
that some equation of the form F'(z,y) = 0 can be solved for y as a function of 2 and then attempts
to find the derivative y’. The standard formula for the latter is

i _ (&)
a

)
Oy
where of course this formula can be used only if the denominator is nonzero. In fact if we have a
point (a, b) such that F'(a,b) = 0 and the second partial of F" at (a,b) is not zero, then the simplest
case of the Implicit Function Theorem proves that one can indeed find a differentiable function

f(z) for all values of z sufficiently close to a such that f(a) = b and for all nearby values of = we
have

y=1Ff(z) < F(z,y)=0.
Here is a general version of this result:

IMPLICIT FUNCTION THEOREM. Let U and V be connected domains in R™ and R™
respecitvely, and let f : UxV — R™ be a smooth function such that for some p = (a, b) € UxV we
have f(a, b) = 0 and the partial derivative of f with respect to the last m coordinates is invertible.
Then there is an r > 0 and a smooth function

g:N:(p) >V

such that g(a) = b and for all u € Uy we have f(u,v) =0 if and only if v = g(u).=

EXPLANATIONS. (1) We view the cartesian product U x V as a subset of R"*™ under the
standard identification of the latter with R™ x R™.

(2) The partial derivative of f with respect to the last m coordinates is the derivative of the
function f*(v) = f(z,v), and smooth means smooth of class C" for some r such that 1 < r < co.

Although it is possible to prove simple cases of this result fairly directly, the usual way of
establishing the Implicit Function Theorem is to derive it as a consequence of another important
result known as the Inverse Function Theorem. We shall be using this result extensively throughout
the remainder of the course.

Once again it is instructive to recall the special case of this result that appears in single variable
calculus courses. For real valued functions on an interval, the Intermediate Value Property from
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elementary calculus implies that local inverses exist for functions that are strictly increasing or
strictly decreasing. Since the latter happens if the function has a derivative that is everywhere
positive or negative close to a given point, one can use the derivative to recognize very quickly
whether local inverses exist in many cases, and in these cases one can even compute the derivative
of the inverse function using the standard formula:

9=17 = g0 = f'(9(y))

Of course this formula requires that the derivative of f is not zero at the points under consideration.

If we are dealing with a function of n variables whose values are given by n-dimensional vectors,
one has the following far-reaching generalization in which the nonvanishing of the derivative is
replaced by the invertibility of the derivative matrix, or equivalently by the nonvanishing of the
Jacobian:

INVERSE FUNCTION THEOREM. Let U be a connected domain in R™, let a € U, and
let f:U — R™ be a C" map (where 1 < 1 < o0) such that Df(a) is invertible. Then there is a
connected domain W C U containing a such that the following hold:

(1) The restriction of f to W is 1 — 1 and its image is a connected domain V.

(13) There is a C" inverse map g from V to some connected domain Uy C U containing a such
that g(f(x)) =x on Uy.m

For the purposes of this course it will suffice to understand the statements of the Inverse and
Implicit Function Theorems, so we shall restrict attention to this point and refer the reader to
Rudin for detailed proofs; a similar treatment of this material appears in Unit IV of the following
set of notes for another course that are available online:

http://www.math.ucr.edu/~res/math205A/prelimtext. *

Finally, here are online references for the proofs of the Inverse and Implicit Function Theorems.
These are similar to the proofs in the previous online reference.

http://planetmath.org/encyclopedia/Proof0fInverseFunctionTheorem.html

http://planetmath.org/encyclopedia/Proof0f ImplicitFunctionTheorem.html
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Change of variables in multiple integrals

In multivariable calculus courses, one is interested in changes of variables arising from smooth
mappings that are 1-1 and onto with Jacobians that are nonzero “almost everywhere.” The stan-
dard polar, cylindrical and spherical coordinates are the most basic examples provided that one
restricts the angle parameters 6 and ¢ (in the spherical case) so there is no ambiguity; the Jacobian
condition is reflected by the fact that this quantity is nonzero for polar and cylindrical coordinates
if 7 # 0, and it is nonzero for spherical coordinates so long as p?sin¢ # 0. Further discussion
of this result in the general case appears on pages 333-336 of the background reference text by
Marsden, Tromba and Weinstein, and on pages 995-1001 of the background reference text by Lar-
son, Hostetler and Edwards. Exercises 37-40 on page 339 of the first reference and exercises 60-61
on page 1004 of the second are recommended as review. For the sake of completeness, here is a
statement of the basic formula that applies to all dimensions (not just 2 and 3).

CHANGE OF VARIABLES FORMULA. Let U andV be connected domains in R™, and let
f:U =V be a map with continuous partial derivatives that is 1 — 1 onto has a nonzero Jacobian
everywhere. Suppose that A and B are “nice” subsets of U and V respectively that correspond under
f, and let h be a continuous real valued function on V. Then we have

/Bh(v)dv - /Ah(f(u))\deth(u)|du -

As in the case of polar, cylindrical and spherical coordinates, the result still holds if the
Jacobian vanishes on a set of points that is not significant for computing integrals (in the previous
terminology, one needs that the Jacobian is nonzero “almost everywhere,” and this will happen if
the zero set of the Jacobian is defined by reasonable sets of equations).

One can weaken the continuity assumption on h even more drastically, but this requires a more
detailed insights into integrals than we need here.n

There is an extensive discussion of the proof of this result along with some illustrative examples
in Section IV.5 of the book Advanced Calculus of Several Variables, by C. H. Edwards, and a
mathematically complete proof appears on pages 252-253 of the previously cited book by Rudin.
As noted on page 252 of Rudin, this form of the change of variables theorem is too restrictive for
some applications, but in most of the usual applications one can modify the proof so that it extends
to somewhat more general situations; generally the necessary changes are relatively straightforward,
but carrying out all the details can be a lengthy process.

Remark on the absolute value signs. In view of the usual change of variables formulas for
ordinary integrals in single variable calculus, it might seem surprising that one must take the
absolute value of the Jacobian rather than the Jacobian itself. Some comments about the reasons
for this are given in the middle of page 252 in Rudin’s book. In fact, we dealt specifically with this
issue in Section 1.3, when we proved that arc length remains unchanged under reparametrization.
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I1.4 : Congruence of geometric objects

(O’Neill, §§ 3.1, 3.4-3.5)

The notion of congruence for geometrical figures plays a central role in classical synthetic
Euclidean geometry. For some time mathematicians — and users of mathematics — have generally
studied geometrical questions analytically using vectors and linear algebra (these often provide
neat and efficient ways of managing the usual coordinates in analytic geometry). A few simple
examples often appear in introductory treatments of vectors in calculus books or elsewhere, and in
fact one can state and prove everything in classical Euclidean geometry by such analytic means.
However, there are still numerous instances where it is useful to employ ideas from classical synthetic
geometry, and in particular this is true in connection with the Frenet-Serret Formulas from Unit
I. Therefore we shall formulate the analytic notion of congruence rigorously, and we shall use it to
state an important congruence principle for differentiable curves.

Isometries of R™

Definition. Let F: R® — R" be a mapping (with no assumptions about continuity or differ-
entiabiility). Then f is said to be an isometry of R" if it is a 1-1 correspondence from R" onto
itself such that

fx) = fl = Ix — vyl
for all x, y € R".

TWo subsets A, B C R" are said to be weakely congruent if there is an isometry f of R"
such that B is the image of A under the mapping f. If A and B are weakly congruent, then one
often writes A = B in the classical tradition.

Since inverses and composites of isometries are isometries (and the identity is an isometry), it
follows that weak congruence is an equivalence relation.

The first step is to prove the characterization of isometries of a finite-dimensional Euclidean
space that is often given in linear algebra textbooks. To simplify our notation, we shall use the
term finite-dimensional Fuclidean space to denote the vector spaces R™ with their standard inner
products.

PROPOSITION. IfE is a finite-dimensional Euclidean space and F is an isometry from E to
itself, then F may be expressed in the form F(x) = b+ A(x) where b € E is some fized vector and
A is an orthogonal linear tranformation of E (i.e., in matriz form we have that TA = A=! where
T A denotes the transpose of A).

Notes. 1t is an elementary exercise to verify that the composite of two isometries is an isometry
(and the inverse of an isometry is an isometry). If A is orthogonal, then it is elementary to prove
that F'(x) = b+ A(x) is an isometry, and in fact this is done in most if not all undergraduate linear
algebra texts. On the other hand, if A = I then the map above reduces to a translation of the
form F(x) = b+ x, and such maps are isometries because they satisfy the even stronger identity

F(x—y) = X —-Yy.

Therefore every map of the form F(x) = b + A(x), where b € E is some fixed vector and A is
an orthogonal linear tranformation of E, is an isometry of E. Therefore the proposition gives a
complete characterization of all isometries of E.
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Sketch of proof. This argument is often given in linear algebra texts, and if this is not done
then hints are frequently given in the exercises, so we shall merely indicate the basic steps.

First of all, the set of all isometries of E is a group (sometimes called the Galileo group of E). It
contains both the subgroups of orthogonal matrices and the subgroup of translations (G(x) = x+c¢
for some fixed vector ¢), which is isomorphic as an additive group to E with the vector addition
operation. Given b € E let Sy, be translation by b, so that A = S_p(g)°F is an isometry from E
to itself satisfying G(0) = 0. If we can show that G is linear, then it will follow that G is given by
an orthogonal matrix and the proof will be complete.

Since G is an isometry it follows that

Gx) -Gy)|* = |x—y|°

and since G(0) = 0 it also follows that g is length preserving. If we combine these special cases
with the general formula displayed above we conclude that (G(x),G(y)) = (x,y) for all x, y € E.
In particular, it follows that G sends orthonormal bases to orthonormal bases. Let {u1, --- ,u,}
be an orthonormal basis; then we have

and likewise we have
G(x) = Z (G(x),G(w;)) - G(u;) -

Since G preserves inner products we know that
(xu) = (Gx),G(w)) - G(u)

for all 4, and this implies that G is a linear transformation.m

Since an isometry is a mapping from R to itself, it is meaningful to ask about its continuity
or differentiability properties. The following result answers such questions simply and completely.

PROPOSITION. Let F:R"™ — R" be a mapping of the form F(x) =b + A(x), where b € R"
is some fized vector and A is an arbitrary square matriz. Then for all x € R™ we have DF(x) = A.

COROLLARY. LetV be open in R™, let g : V — R™ have a continuous derivative, and let A
be an n X n matriz; by an abuse of language, let A also denote the linear transformation from R™
to itself defined via left multiplication by A. Then we have D(A°g) = A°Dg.

Proofs. The statement in the proposition follows from the definition of the derivative as a matrix
whose entries are the partial derivatives of the coordinate functions. In this case the coordinate
functions are all first degree polynomials in n variables. The statement in the corollary follows from
the proposition and the Chain Rule.n

The concept of weak congruence is close, but not identical, to the idea that there is a dynamic
rigid motion taking one figure to another; the main difference is that weak congruence also allows
the possibility that one figure is a mirror image of the other. For our purposes it is enough to know
that if F' is an isometry then the orthogonal linear transformation DF' has determinant equal to
+1, and the intuitive concept of rigid motion corresponds to the case where the determinant is
equal to +1. Therefore we shall say that F is a rigid motion if this determinant is +1, and we shall
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say that two weakly congruent figures A and B are strongly congruent, or more simply congruent,
if there is a rigid motion taking one to the other.

Congruence and differentiable curves

We shall say that two continuous curves «, § : [a,b] — R™ are congruent if there is an isometry
F of R™ such that 8 = Fea. WE are interested in the relationship between the curvatures and
torsions of congruent curves.

PROPOSITION. Let ,3: [a,b] — R? be congruent differentiable curves whose tangent vectors
have constant length equal to 1 and whose curvatures are never zero. Then the curvature and torsion
functions for a and B are equal.

Proof. Let F be a rigid motion of R® such that § = F°q, express F in the usual form
F(x) =b+ A(x) where b € R3 and A is an orthogonal transformation, and suppose that « has k
continuous derivatives. By the Chain Rule we know that £ also has k continuous derivatives, and
in fact k) = Aeq(k),

Since |f'| = |&/| = 1, it follows that the curvatures are given by k., = || and k5 = |5"].
Since " = A°a/" and A is orthogonal, it follows that || = |&’|, and hence the curvatures of «
and S are equal.

We shall now show that the Frenet trihedra for the curves are related by
(Tﬂa Nﬂa Bﬂ) = (A(Ta)7 A(Na)a A(Ba)) -
The result for the unit tangent vector is just a restatement of the relationship 8/ = A°c/, and the
result for the principal unit normal follows because we have
1 1 1

_ "o A = Al =
Yo = T A T A

A(ﬁa”) — A(N).

We must next compare the binormals; this amounts to checking whether the following cross product
formula holds:

A(B.) = A(T.) x A(N,) = T. x Ng

We shall do this using the Recognition Formula from Section I.1. By that result, all we have to
check is that the triple product satisfies

[A(Ta)7 A(Na)a A(Ba)] = +41.

This triple product is just the determinant of the matrix whose columns are the three vectors. This
matrix in turn factors as a product of A and the matrix whose columns are the Frenet trihedron
for «, and by the multiplicative properties of determinants we then have

[A(T,), A(N,), AB,)] = detA-[T,, No, By] = (+1)-(+1) = +1

so that the Recognition Formula implies the cross product identity. This completes the verification
of the relationship between the Frenet trihedra.
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To complete the proof we need to show that the torsions satisfy 74 = 7,. By definition we have
75(s) = Bg'(s) - Njg(s). Since Bg = A(B,,), there is a corresponding identity involving derivatives,
and therefore by the preceding paragraph we have

T8(s) = A(Ba'(s))-A(Na(s)).

Since A is orthogonal, it preserves inner products, and consequently the right hand side is equal
to B,'(s) - N4(s), which by definition is just 7,(s). Combining these observations, we see that the
torsions of a and 8 are equal as claimed.m

Uniqueness up to congruence

We are now ready to prove that curvature and torsion often determine a differentiable curve
up to congruence.

UNIQUENESS UP TO CONGRUENCE. Let a and B be sufficiently differentiable curves in
R? defined on the same open interval J containing sy, and assume that their curvatures and torsions
satisfy ko = kg > 0 and 7, = 75. Then there is an isometry F of R® such that det DF(x) = +1
for allx and B = Fea.

Proof. Let (T,, N, B, ) be the Frenet trihedron for the curve z = « or 8 at parameter value sg.
If P and Q denote the matrices whose columns are given by {Ta, N, B, } and {Tﬂ, Ng, Bg }
respectively, then P and ) are orthogonal matrices with determinants equal to +1 (this follows
because the columns are orthonormal and the third is the cross product of the first two). Therefore
the matrix C = P Q™! is also orthogonal with determinant equal to +1. If we define F' by the
formula

fx) = Ckx) + (B(so) — also))

then v = Feq is a curve whose curvatures and torsions are equal to those of  and 8, and and its
Frenet trihedron at parameter value sq is equal to the corresponding trihedron for 8. By the local
uniqueness portion of the Fundamental Theorem of Local Curve Theory, it follows that there is an
open subinterval J' C J containing sq such that the restrictions of v = Fea and 8 to J' are equal.m

There is a similar result on uniqueness up to congruence for plane curves with a given curvature
function; as in the 2-dimensional versions of the result from Section 1.5, there is no torsion function
and it is not necessary to assume that the curvature is everywhere nonzero. The precise formulation
of this result and its proof are left to the reader.m
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