Length minimizing property of great circles

For definiteness, we shall work with the standard unit sphere in R3 defined by the equation
z2 4+ y? + 22 = 1. A great circle on such a sphere is a circle whose center is equal to the center
of the sphere itself (in this case, the origin). A fundamental result in geometry states that the
shortest curve on a sphere joining two points is given by a piece of a great circle, and the goal
of this document is to provide a relatively elf-contained proof of this fact using the machinery
developed in Unit I1I of the course. At a few points it will be necessary to use material from more
advanced courses on functions of a real variable; these will be noted as they appear.

Definitions and preliminaries

If we are given a great circle on a sphere and it lies on a plane P, then either unit normal
vector b to P is perpendicular to P, and therefore one may parametrize such a curve by arc length
using a formula of the form

¥(0) — (cosf)a + (sinf) (b x a)

where a is a unit vector in the plane P

The unit sphere is an extremely symmetric object, and in particular, if u is an arbitrary point
of the sphere, then there is a smooth isometry ¢ from the sphere to itself sending the “North Pole”
point e3 to u. This isometry is given by ¢(v) = Av, where A is a 3 x 3 orthogonal matrix, and
the linearity properties of A imply that under this mapping great circles through the north pole
are sent to great circles through its image. Furthermore, the length of a piecewise smooth curve «
on the unit sphere will be equal to the length of its image ¢ °a. We shall use the existence of the
specified isometries to simplify our work as follows:

INITIAL REDUCTION. [t suffices to prove the length minimizing property for piecewise smooth
curves starting at the north pole.

This is true because the isometry sends piecewise smooth curves starting at the north pole to
piecewise smooth curves starting at the image point u, and the length of the image curve is equal
to the length of the original curve.m

The right choice of parametrization will also be very helpful, and it is given as follows:

X(r,0) = (rcos#, rsiné, M)

With respect to this parametrization the First Fundamental Form reduces to drdr + r2dfdé.
This expression is simple, but it has one logical difficulty; strictly speaking it does not work when
r=0.

At the beginning of Unit III we mentioned that one can often ignore such problems when
working with specific examples, and in fact this is possible here. There are two main reasons for
this. First of all, if we have a piecewise smooth curve v whose length we wish to compute using the
length formula and the curve is defined on the closed interval [a,b], then we may view the length
as an improper integral

b
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which is the limit of integration from a — € to b as ¢ — 0 [For the sake of completeness, here is
the proof: We know that the curve has a positive length and the partial integrals are less than
or equal to the entire length, and we also know that the integral from a — ¢ to b increases as ¢
decreases to zero, so that the improper integral actually has a limit, which is the least upper bound
of the partial integrals; continuity considerations then imply that the limit must be the length of
the curve].

The preceding observation is useful if we have a curve -y such that a is the only parameter value
such that y(¢) is equal to the north pole, for then we can use polar coordinates to parametrize the
curve on all of the half open interval (a,b]. Therefore we would like to know that we can restrict
attention to such curves. This requires two steps. The first is somewhat sophisticated but should
be intuitively clear; the proof will require a fairly deep understanding of continuity and the real
numbers as in a first real variables course.

PROPOSITION. If «y is a continuous curve from a closed interval [a,b] to R"™, then there is
is a unique parameter value a* < b such that y(a*) = y(a) and a* is mazimal with respect to this
property.

Sketch of proof. (SOMEWHAT ADVANCED) Let a* be the least upper bound of all points
t on the interval (a bounded set) such that y(¢) = y(a). The set in question is nonempty because
it contains a, and since it lies inside the original interval, we must have a* € [a,b]. If v(a*) = v(a),
then a* has all the required properties. There are two cases. If a* = a, then the conclusion is
trivially true. On the other hand, if a* > a, the the least upper bound property implies there is a
sequence of points ¢, < a* such that a* —¢,, > % and y(t,,) = v(a). It follows that a* = lim,, o, %,
and by the continuity of v we must then have

V(a*) = lim 5(t,) = lim y(e) = ~(a)

n—o0 n—ro0

as required.m
The next observation is more elementary.

PROPOSITION, If in the preceding result the curve vy is piecewise smooth and reqular, then the
length of v from a to b is greater than or equal to the length from a* to b, with equality if and only
if a = a*.

Before proving this, we show how it leads to our next simplification.

SECOND REDUCTION. [t suffices to prove the length minimizing property for piecewise smooth
curves vy starting at the north pole such that y(t) is equal to the north pole only when t is the left
hand end point.

This is true because if we have a curve that does not satisfy the given property and we restrict
to [a*,b], then the restricted curve is still of the right type and its length is strictly less than the
length of the original curve.s

Proof of Proposition. The integrand in the arc length formula is nonnegative by definition,
and it is positive except for at most finitely many points. Therefore if a* > a, then the restricted
integral will be strictly smaller than the original one.n

Statement of results and proof for short curves

Here is the first main result:



WEAK LENGTH MINIMIZING PROPERTY. Let~ be a piecewise smooth curve on the
sphere which joins the north pole to some other point, and assume that the length of v is minimal
among all such curves. Then the image of v lies on a great circle.

Since our parametrization for the sphere only covers points that are strictly to the north of the
equator, we need to begin by restricting attention to curves whose images lie in this subset. Such a
curve will be called a SHORT CURVE. More generally, we shall use this term to denote an arbitrary
curve starting at some point w on the sphere whose image is contained in the half space w-x > 0;
i.e., it lies on one side of the great circle defined by |x|? = 1 and plane through the origin defined
by x - w = 0 (the great circle for which w is a polar point). The isometries of a sphere defined by
orthogonal matrices send short curves starting at one point to short curves starting at its image.

Proof of weak length minimizing for short curves. By previous observations, we may
restrict attention to curves satisfying the condition in the second reduction stated above.

We may then write our short curve in polar coordinates as

v(t) = (r(t)cosb(t), r(t)sind(t), /1 —r(t)?)

where r and 6 are piecewise smooth functions and lim;,, 7(¢) = 0 (for small pieces of the curve
this is straightforward to do; it is less trivial for larger pieces and actually requires results in first
year graduate topology courses, so here we shall simply say it can be done). Suppose we define
a new curve [ by replacing the function 6(¢) with the constant #(b). This curve joins the same
two points, and we would like to compare the lengths L, and Lg. The previously derived formula
implies that

b
L, = / VI 1 2@ dt
and also that

b b
Ly = / JEVd = / | d .

Now the second integral is less than or equal to the first, and the image of the second curve lies
on the great circle containing the north pole and the point y(b) = 3(b). Therefore we know that
for each short curve joining two points there is a curve on a great circle joining two points whose
length is less than or equal to the original length. Suppose now that the original curve does not
lie on a great circle. This means that the function € is not constant, so its derivative is nonzero
somewhere. By continuity, it must be nowhere zero on a small interval [c, d], and over this interval
the length integral for v must be strictly larger than the length integral for 8. But this means than
one has a similar strict inequality for the integrals over the entire intervals as well.n

The preceding result shows that curves of minimum length lie on great circles; however, expe-
rience suggests that of all such curves, a minor great circle arc should have minimum length. Here
is a statement of the result.

STRONG LENGTH MINIMIZING PROPERTY FOR SHORT CURVES. Let be a
piecewise smooth curve on the sphere which joins the north pole to some other point, and assume
that the length of v is minimal among all such curves. Then 7y is a reparametrization of the minor
arc of a great circle.

Sketch of proof. First of all, the short curve hypothesis, the second reduction and continuity
imply that the image of the curve lies on that piece of the great circle above the equator; in other
words, it lies on a parametrized curve

(cosu - cos By, cosu - sin B, sinu)
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where

T ™
Thus a short curve which lies on such a great circle and satisfies the condition in the second
reduction will have this form where u = f(¢) is a piecewise smooth function such that f(a) = 0
and f(b) is strictly between 0 and 7/2. By the length formula, its length is equal to the integral
of |f’| over this interval; the latter is not continuous on the interval, but it only has finitely many
discontinuities and can be integrated fairly directly.

Suppose now that the curve in question has minimum length. One can now apply Exercise
2(a) in the Additional Exercises for Section 1.3 (see dgexercises2006.x) to conclude that f must
be positive everywhere that it is defined, and from this one concludes that the given curve is a
reparametrization of a great circle’s minor arc.m

Generalization to arbitrary curves

One key step in the process is the following decomposition property, which requires results
from real variables:

DECOMPOSITION INTO SHORT CURVES. Given a piecewise smooth curve vy on the

sphere defined on an interval [a,b], it is possible to partition the interval into subintervals at points
a = 1y <ty < -+ <ty = b

such that the restriction of v to each subinterval [t;_1,t;] is a short curve.

This is an immediate consequence of a property called uniform continuity; we shall not attempt
to explain the details here.n

We shall now indicate how one can use the decomposition to prove that an arbitrary curve of
minimal length must be a great circle. If v has minimal length, then for each ¢ the restriction of v
to the subinterval [t;_1,?;] must be a curve of minimal length joining its endpoints; if it were not,
then one could replace v over that interval by a shorter curve. This would yield a new curve #
over the entire interval joining the original two points, and its length would be strictly less than the
curve of minimal length. Thus the restricted curves must also have the minimal length property
and by the previous results for short curves each one must be a minor arc of a great circle. We
need to show these curves are all minor arcs on the same great circle.

The following elementary fact from spherical geometry will be helpful:

LEMMA. Ify and z are points on the sphere such that the distance between them is less than
V2, then both points lie on the same hemisphere determined by the great circle on the plane with
equation y + x = 0.

Proof. Algebraically, the conclusion translates into the inequality y - z > 0. The distance
condition may be restated as
ly — z] < V2

and if we square this, expand |y — z|> = (y — 2z) - (y — z) = |y|> — 2(y - 2) + |z|?, and recall that
ly| = |z| = 1, we obtain the inequality

2 —2y-z) < 0
which immediately translates into the desired inequality y -z > O.m
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We shall now proceed to show that the restrictions of v to [t;_1,t;] and [¢;,%;11] are consecutive
parts of the same great circle. By continuity there are points p and ¢ such that

tio1 < p < t; < q <tip1

such that all points in the images ([p,t;]) and ([t;, q]) have distances less than 1 from ~(t;). It
follows that all points in the image 7([p,q]) have distance less than 1 from (p) and hence the
restriction of 7 to [p, ¢] is a short curve.

Therefore the restriction of v to [p,q] must also be a reparametrization of a great circle. But
this means that the restrictions to -y to [t;_1,%;] and [¢;,¢;41] are reparametrizations of consecutive
parts of the same great circle as required. If we do this for each ¢ between 1 and M — 1, we see
that the short curves fit together to form a reparametrization of a great circle, and since this curve
is supposed to minimize length, the great circle must be a minor arc unless the image point ~y(b)
is the antipodal point (or negative) of y(a), in which case both great circle arcs joining the points
have equal (minimum) length.u

Generalizations to other surfaces

If 7 is a great circle curve on the standard unit sphere, then 7" is a negative multiple of v, and
thus for each parameter value ¢ the vector 7" (t) is perpendicular to the space of tangent vectors to
the surface at 7y(t). This property plays an important role in the study of curves on an arbitrary
surface with minimal length.

Definition. If ¥ is a surface with orientation N, then a smooth curve v in ¥ is a geodesic if for
each ¢ the second derivative 7" (t) is a multiple of N(7(?)).

We know that curves of least length in a plane are geodesics because their second derivatives
vanish, and the preceding discussion shows that curves of least length on a sphere are also geodesics.
However, there are also geodesics on a sphere that do not minimize length. In particular if p and
q are points on the sphere that are not antipodal, then the major arc of the great circle joining
these points is a geodesic but does not minimize distances.

The precise connection between geodesics and curves of least length is reflected by the following
basic fact: If ¥ is a surface and p € X, then there is some distance r > 0 such that every point x
on ¥ satisfying |x — p| < r can be joined to p by a unique geodesic, and the length of this geodesic
18 minimal among all piecewise smooth curves joining the given two points.

Further information on this may be found on pages 239240 of Lipschultz as well as in DO
CARMO and O’NEILL.

If we are given two points on a surface, it is not necessarily true that one can join them by a
curve of minimum length; for example, if we take the surface to be the zy-plane with the origin
removed, then the greatest lower bound on the lengths of curves joining (£1,0,0) is 2, but there
is no curve lying entirely in this surface that joins the two curves and has length equal to 2. On
the other hand, if one has a surface that is closed (under taking limits of sequences) and bounded,
then one can prove that there is always a curve of minimal length joining two points, and in fact
this curve is a geodesic. However, a proof of this fact is beyond the scope of this course.



