Wedge products and vector operations

The wedge product also has some important relationships to cross products and triple products of 3-dimensional vectors. Specifically, the following conclusions should be added to the theorem starting on page 42 of the class notes and continuing onto page 43 . The items are numbered to follow the conclusions already stated in the theorem.
(iv) Suppose that $p=2$ and $n=3$, and let \mathbf{F}, \mathbf{G} and \mathbf{H} be 3-dimensional vector fields. In the preceding notation we have $\omega_{\mathbf{F}} \wedge \omega_{\mathbf{G}}=\Omega_{\mathbf{F} \times \mathbf{G}}$.
(v) In the notation of the preceding item, we also have

$$
\omega_{\mathbf{F}} \wedge \omega_{\mathbf{G}} \wedge \omega_{\mathbf{H}}=[\mathbf{F}, \mathbf{G}, \mathbf{H}] \cdot d x \wedge d y \wedge d z
$$

The following exercise establishes some further results:
Let f be a real valued function on \mathbb{R}^{3} with continuous second partial derivatives, and let \mathbf{G} be a 3-dimensional vector field on \mathbb{R}^{3}. Let ω be the differential 1-form corresponding to \mathbf{G}.
(a) Express the differential 2 -form θ corresponding to the vector field $\nabla f \times \mathbf{G}$ in terms of f and ω.
(b) Given a differential 1-form $\omega=P d x+Q d y+R d z$ and a differential 2-form

$$
\theta=L d y \wedge d z+M d z \wedge d x+R d x \wedge d y
$$

the wedge product $\omega \wedge \theta$ is a differential 3-form which may be written as $h d x \wedge d y \wedge d z$ for some real valued function h. Express h in terms of the functions L, M, N, P, Q, R.

