Wedge products and exterior derivatives

Here is another exercise regarding wedge products, this time concerning identities for wedge products and exterior derivative.

EXERCISE. (a) Suppose that ω is either a 1-form or a 2 -form and f is a smooth function. Prove that $d(f \omega)=d f \wedge \omega+f d \omega$.
(b) Suppose that ω and θ are both 1-forms. Prove that $d(\omega \wedge \theta)=(d \omega) \wedge \theta-\omega \wedge d \theta$. (Note the minus sign.)

These formulas can be verified using the standard expansions of 1-forms and 2-forms like $P d x+Q d y+R d z$, the basic identities such as $d(P d x)=d P \wedge d x$ and $d f=f_{x} d x+f_{y} d y+f_{z} d z$, and the rearrangement identities of the form $d u \wedge d u=0, d v \wedge d u=-d u \wedge d v$.

