EXERCISES FOR MATHEMATICS 138A

WINTER 2004

The references denote sections of the text for the course:

M. P. do Carmo, Differential geometry of Curves and Surfaces, Prentice-Hall, Saddle River
NJ, 1976, ISBN 0-132-12589-7.

I. Classical Differential Geometry of Curves

I.1: Cross products

(do Carmo, § 1-4)
Additional exercise

1. Verify that the cross product of vectors in R3 satisfies the Jacobi identity:

ax(bxc) + bx(cxa) + cx(axb) = 0.

1.2 : Parametrized curves

(do Carmo, § 1-2)

do Carmo, § 1-2, p. 5: 1, 2
do Carmo, § 14, p. 15: 8

[Hints for p. 15#8:  Strictly speaking there are two cases depending upon whether
the lines in question intersect. Suppose that they do not intersect. In this case the
shortest distance between the lies is givey by a common perpendicular. Assume that the
parametrizations are chosen so that u and v lie on this common perpendicular. You may
assume the existence of a common perpendicular when working the problem.]

Additional exercises

1. Prove that a regular smooth curve lies on a straight line if and only if there is a point
that lies on all its tangent lines.
I.3: Arc length and reparametrization

(do Carmo, § 1-3)
do Carmo, § 1-3, pp. 8-11: 7



Additional exercises

1. (a) Given a > 0, consider the set of all continuously differentiable real valued functions
f on [0,1] such that f(0) = 0 and f(1) = a. Define L(f) by the formula L(f) = [’ [f'(¢)| dt .
Show that the minimum value of L(f) is a, and if equality holds then f’ is everywhere nonnegative.
[Hints: Since f' < |f’| a similar inequality holds for their definite integrals. This inequality of
integrals is strict if and only if f'(¢) < |f'(t)| for some ¢, which happens if and only if f'(¢) < 0 for
that choice of ¢.]

(b) Let p, 6 and ¢ denote the usual spherical coordinates, and suppose we have a curve on the
sphere of radius 1 about the origin with parametric equations of the form

x(t) = (cosO(t) cossin(t), sinf(t) sin ¢(t), cos ¢(t))

for continuously differentiable functions 6(¢) and ¢(t). Prove that the length of this curve is given
by the formula

b
[ e+ sinow) ¢ w2 a

where the curve is defined on [a, b].

(c) Show that among all regular smooth curves x that are defined on [0, 1], have images on the
unit spere, and connect the points (1,0,0) and (cosa,sina,0) for some a < 7, the curve of shortest
length is given by the great circle arc joining the endpoints, and that any other curve with this
length is a weak reparametrization of the great circle arc (i.e., if « is the standard great circle arc,
then any other curve § must have the form 3(t) = a( f(t)), where f is a function from [0,1] to
itself that is continuously differentiable and satisfies f’ > 0. [Hints: TO BE INSERTED. |

Note. The final part of the problem is a special case of the well known result that the shortest
curve on a sphere joining two points is given by the smaller of the arcs on the great circle through
the points; in fact, one can use this special case to prove the general statement. [A file containing
a detailed proof will probably be inserted into the course directory eventually.]

I.4: Curvature and torsion

(do Carmo, §§ 1-5, 1-6)

do Carmo, § 1-5, pp. 22-26: 11, 12cd
do Carmo, § 1-6, pp. 29-30: 3

Additional ezercises

1. Consider the problem of designing a set of railroad tracks that contains a pair of
parallel tracks along with a third going from the first to the second smoothly. Mathematically, the
parallel tracks themselves may be viewed as corresponding to the parallel lines y = 0 and y = 1
in the coordinate plane, and the track going from one to the other may be viewed as a regular
smooth curve that is the graph of a twice differentiable function f such that f(x) is zero if ¢ < 0,
f(z) =1if ¢t > 1, and on [0,1] the function f is given by a polynomial p(z). The existence of a
second derivative ensures that the slope of the tangent line would be a continuous function of x,
and in addition we want to assume that the curvature is also a continuous function of z. Finad
a polynomial p(z) of degree 5 such that all the required conditions are fulfilled. [Hint: If we are
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given a graph curve with parametric equatitons (¢, y(¢)), then the curvature at parameter value ¢

is given by the formula
ly"|
k(t) = ———=
YT e

and one step in the argument is to use this fact to compute p”’(0) and p”(1). In fact, the conditions
of the problem uniquely specify the values of p and its first and second derivatives at both 0 and
1. Why does this mean the only values to find are the coefficients of 23, z* and z57]

Extra credit. Graph the function f using calculator or computer graphics.

I.5: Frenet-Serret Formulas

(do Carmo, §§ 1-5, 1-6, 4-Appendix)
Additional exercises

1. Let x be a regular smooth curve with a continuous third derivative, and let (T, N, B)
be its Frenet trihedron. Prove that there is a vector W (the Darbouz vector) such that T' = W x T,
N’ =W x N, and B’ = W x B. What is the length of W?

2. If x is defined for ¢ > 0 by the formula

14+t 1—1¢2
X(t) = (ta +a >
t t

show that x is planar.

II. Closed Curves as Boundaries

II.1: Regions, limits and continuity

(do Carmo, 2-Appendix A, 5-Appendix)
Additional ezercise

Definition. A subset K of R"” is said to be convez if whenever x and y lie in K then the whole
line segment defined by the parametrized curve x + ¢t (y — x) for ¢t € [0,1] is contained in K. It
follows that a convex set is arcwise connected.

1. Show by example that an intersection of two connected domains in R? is not necessarily a
connected domain. [Hint: Let U be the annular region defined by the inequalities 1 < z2 + 4% < 9
and let V' be the horizontal strip defined by the inequality |y| < % Verify that U is arcwise
connected using the polar coordinate mapping, which yields a continuous 1-1 mapping from the
convex set (1,3) x [0,27) onto U. If U NV were connected then by a result in the Appendix to
Chapter 5 in do Carmo, it would also be arcwise connected. Suppose now that x is a curve joining

the points (£2.0). By the Intermediate Value Theorem there must be some parameter value ¢y
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such that the first coordinate of x(ty) is equal to zero. Why does this mean that x cannot lie
entirely inside U N V7]

II.2: Smooth mappings

(do Carmo, 2-Appendix B)
Additional exercises

1. Given an matrix A with real entries , let |A| denote the Euclidean length given by the
square root of the standard sum }, . |a;; 2. If P and Q are two matrices with real entries such
that the product P @ can be defined, prove that |[P Q| < |P|-|Q].

2. Let U be a convex connected domain in R™, and let f : U — R™ be a smooth C!
function.
(a) Prove that

1
)10 = [ (IDf et tly —x)]ly - x)) dt
0
for all x, y € U. [Hint: Explain why the integrand is the derivative of the function

fx+tly —x)

using the Chair Rule.]
(b) Suppose that the derivative matrix function D f satisfies |[Df| < M on U. Prove that

fy)—f(x)] < M- |y—x|
for all x, y € U.

Note. An inequality of this sort is called a Lipschitz condition.

I1.3 : Inverse and Implicit Function Theorems

(do Carmo, 2-Appendix A, 5—Appendix)
Additional exercises

1. Suppose that f : R — R is a C" function such that its derivative f’ is everywhere
positive and the limits of f(¢) as ¢ — + 0o are + oo respectively. Prove that f has a C" inverse
function.

2. Prove that F(z,y) = (e* +y, ¢ — y) defines a 1-1 onto C* map from R? to itself with

a C* inverse.

3. Prove that F(z,y) = (ze¥ + y, ze¥ — y) defines a 1-1 onto C* map from R? to itself
with a C* inverse.

4. (a) Using the change of variables formula, explain briefly why the area of a set in R? is
the same as the area of its image under a rigid motion of the form 7'(x) = Ax + b, where A is a

rotation matrix
cos@ —sinf
sinf cos®



(b) More generally, if we are given an arbitrary affine transformation as above, where the only
condition on A is invertibility, how is the area of a set F related to the area of its image T'(F)?

5. A smooth C™ mapping f from a connected domain U C R? into R? is said to be regularly
conformal at p = (ug, vo) € U if the Jacobian of f is positive and for all regular smooth curve pairs
x and y satisfying x(s9) = y(so) = p the angle between x'(sg) and y’(sg) is equal to the angle
between [f °x]'(sp) and [f°y] (so).

(a) Prove that the partial derivatives of the coordinate functions satisfy the Cauchy-Riemann

equations:
oh _ 0f f _ _9h
0z Oxy ’ 0z, 0z

[Hint: If A= Df(p), one needs to show that cos Z(Ax, Ay) = cos Z(x, y) for all nonzero vectore
x and y. Let a; and as denote the columns of A, and let J denote counterclockwise rotation through
/2. Why is ag = ¢ J(a;) for some constant ¢, and why does the determinant condition imply c is
positive? Explain why A(e; + e2) = a; + ap must be perpendicular to A(e; —e3) = a; — ay, and
use this to conclude that ¢ = 1.]

(b) There is a modified version of this relation that holds among the partial derivatives if the
Jacobian is negative. State it and explain why it is true. [Hint: Consider what happens if one
composes f with the reflection map S(z,y) = (z, —y).]

Note. Functions satisfying the Cauchy-Riemann equations are also known as complex analytic
functions, and they are the central objects studied in complex variables courses.

II.4: Global properties of plane curves

(do Carmo, §1-7)
do Carmo, § 1-7, pp. 47-50: 1, 3, 15
Additional exercises

1. The formula in the notes can be used to define a rotation index for an arbitrary regular
smooth curve in R? — {0}. Furthermore, if this curve ' is defined on [a,b] and ¢ is a point on
that closed interval, then one can define a function 6(¢) representing net angular displacement at

parameter value ¢ by the line integral
/ zdy — ydzx
re T2 +y?

where I'(¢) denotes the restriction of I' to the subinterval [a, t].

(a) Suppose that x is a smooth parametrization for ¢ with the usual property that x'(t) #
0 for all ¢ and supppose that 7o and 6, are polar coordinates for x(a); i.e.. we have x(a) =
(ro cos By, ro sinfy). Show that

x(t) = (rt 003(00 +6(t) ),Tt sin(90 + 9(t)) )

where ry = |x(t)|. [Hint: First prove this is true for curves that lie on one of the half planes defined
by the coordinate axes, then generalize as in the notes. Observe that if ¢; < t9, then 6(t2) — 0(¢1)
represents the net angular displacement from parameter value ¢; to parapmeter value t5.]

5



(b) Suppose that the curve I' is a closed curve with x(b) = x(a). Using (a), prove that
0(b) = 2nm for some integer n. This integer is called the winding number of the curve.

(c) What is the winding number of the curve with parametric equations given by x(t) =
(cosnt, sinnt), where n is an integer and the parameter values lie in [0, 27]7

2.  (a) Imitate the proof of the Turning Tangents Theorem to show that if I' is a smooth
simple closed curve in R? such that 0 lies in the inside region determined by I, then the net angular
displacement for the curve is equal to & 27.

(b) Suppose that T is a smooth simple closed curve in R? but 0 lies in the outside region
determined by I'. What is the net angular displacement for I' in this case? Explain your answer.
[Hint: IfY is the extension of a parametrization for " given by the Jordan-Schonflies Theorem

and W is the image of Y, then one can define a function 6 on W such that

~ 1
Vo(z,y) = 2+ ' (—y, x) .

You may use this without proving it, with extra credit if you wish to give a proof.]

I1I1. Surfaces in 3-Dimensional Space

II1.1: Mathematical descriptions of surfaces

(do Carmo, §§2-2, 2-3)
do Carmo, § 2-2, pp. 65-68: 16
Additional exercises

1. Write down equations defining the surfaces given by the following geometric conditions:

(a) The set of points that are equidistant from the point (0,0,4) and the zy-plane.

(b) The set of points that are equidistant from the point (0,2,0) and the plane defined by the
equation y = —2.

(c) The set of points that are equidistant from the points (0,0,0) and (1,0,0).

(d) The set of points for which the sum of the distances to (+1,0,0) is equal to 5.

2. Let a,b and c be linearly independent vectors in R3. Prove that there is a unique sphere
containing these three points and 0; i.e., show that the system of equations

x—a® = [x-b]* = [x-c = |x

has a unique solution x.

IT1.2 : Parametrizations of surfaces

(do Carmo, §§2-2, 2-3)
do Carmo, § 2-2, pp. 65-68: 7



Additional exercises

1. Let ¥ be a geometric regular smooth surface, let U be a connected domain in R3
containing ¥, and let g : U — R2 be a smooth 1-1 onto map such that the Jacobian of g is
nowhere zero (hence it has a global inverse), its image is a connected domain, and more generally
the image of any connected subdomain of U is also a connected domain. Prove that g(X) is also a
geometric regular smooth surface.

I11.3: Tangent planes

(do Carmo, §2-4)
do Carmo, § 2-4, pp. 88-92: 2, 4, 15 (assuming that the common point is the origin)
Additional exercises
0. Show that the tangent plane is the same at all points along a ruling of a cylinder.

Definition. A surface S is said to be globally convez at a point p if all points of S lie on
one of the half planes determined by this tangent plane at p (i.e., if the equation of the tangent
plane is a - x = b, then the points of the surface are completely contained in the set determined by
the inequality a - x < b or the reverse inequality a - x > b). A surface is said to be strictly globally
convex if in addition for each point p the intersection of S with the tangent plane consists only of
the point p.

The surface S is said to be locally convex or strictly locally convex at p if there is an open disk
D containing p such that S N D is globally convex or strictly globally convex.

1.%* Let S be the cylindrical surface given by the parametric equation(s) X(u,v) =
(u cosu, u sinu,v) for u € (w/2,97/2) and v € (—1,1). This is a cylinder generated by the
spiral curve in the plane given in polar coordinates by = 6. Prove that S is locally strictly convex
at each point but not globally convex at some point in S (for example, at (27,0,0) ). [Hints: One
can verify that S is a surface using the fact that it is the image of the surface with parametric
equation(s) (u,u,v) under the cylindrical coordinates map. Consider the spiral curve r = 6, and
show that locally all points of this curve lie on one side of the tangent line, Also show that there
are points of this curve which lie on both sides of the tangent line at at (27,0,0).]

2. Let X be a parametrized surface defined on a connected domain U, and let (a,b) € U.
Define a level function L(u,v) by L(u,v) = [X(u,v), X,(a,b), X,(a,b)] (the vector triple product).

(a) Explain why the surface is locally convex at p = X(a,b) if and only if L has a relative
maximum or minimum at (a,b) and why the surface is strictly locally convex there if and only if L
has a strict relative maximum or minimum.

(b) Why does the gradient of L vanish at (a,b)?

(c) If H(a,b) is the determinant

[Xu,u(a,b), Xy(a,b), X, (a,b)] [Xuw(a,b), Xu(a,b), Xy(a,b)]
[XU,U (CI,, b)a XU (a’a b)7 XU (a’7 b)] [XU,U (CI,, b)a Xu (CI,, b)a XU (CI,, b)]
explain why a surface is NOT locally convex at p if H(a,b) < 0. [Hint: Why does L have a
saddle point at (a,b)?]
(d) In the notation of the preceding part of the problem, show that the surface is strictly

locally convex at p if H(a,b) > 0. [Hint: Why does L have a strict local maximum or minimum?]
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(e) IfX is a graph parametrization of the form X(u,v) = (u,v, f(u,v) ), prove that H(a,b) is
a 2 x 2 determinant of a matrix whose entries are the corresponding second partial derivatives of
f at (a,b).

(f) Apply the preceding to show that if p > 2 then the graph of the function

2= (1 — |zP — |yP)/P

is strictly locally convex at all (z,y) such that |z|? + |y|” < 1. In particular, the case p = 2 merely
states that the usual sphere is strictly locally convex at each point (in fact, all these surfaces are
globally strictly convex, but we shall not attempt to prove this). [Hint: If r > 1, explain why the
derivative of |z|" is equal to 7 |z|"~!. There are three cases, depending upon whether z is positive,
negative or zero.]

NOTE. By interchanging the roles of the three coordinates in the preceding result one can in fact
show that the sets defined by the equations |z|P + |y|P + |2|P = 1 are all regular smooth surfaces
and are strictly locally convex at all points.

Eztra credit.  Graph the intersection of this surface with the xz-plane for p = 3 and 4 using
calculator or computer graphics. Try this also for larger values of p and describe the limit of these
surfaces as p — oo.

3. For each of the following quadric surfaces, determine the sets of points p where the
surface is locally convex and where it is strictly locally convex.

(a) The hyperboloid of two sheets defined by the equation z? — 22 — y? = 1, where the two
pieces are parametrized by X(u,v) = (sinhv cosu,sinhv sinu, + coshwv).

(b) The hyperboloid of one sheet defined by the equation 22 + y? — 2? = 1, parametrized by
X (u,v) = (coshv cosu, coshv sinu, sinhwv).

(c) The elliptic paraboloid defined by the equation z = z2 + y2.

(d) The hyperbolic paraboloid defined by the equation z = y? — z2.

I1I.4: The First Fundamental Form

(do Carmo, §2-5)
do Carmo, § 2-5, pp. 99-102: 1, 9
Additional exercises

1. Show that the first fundamental form on the surface of revlution

X(u,v) = (f(u)cosv, f(u)sinv, g(v))

is given by f2dvdv + ((f")2 + (¢')?) dtdt.

2.  If the first fundamental form on a paramatrized patch has the form du du + f(u,v) dv dv,
prove that the v-parameter curves cut off equal segments on all u-parameter curves (the former are
the curves where the v coordinate is held constant, and the latter are the curves for which the u
coordinate is held constant).



IT1.5: Surface area

(do Carmo, §§2-5, 2-8)
Additional exercises

1. Find the area of the corkscrew surface with parametrization X(r,8) = (r cos@, r sin6,0)
for1<r<2and0<60 <27

2. Find the area of the parametrized Mobius strip
X(u,v) = (cosu,sinu,0) + v- (cosu cos(u/2), sinu cos(u/2), sin(u/2))

where u € (0,27) and v € (—h,h) with 0 < h < 3. You may view the area as being given by an
integral over [0, 27] x [—h, h].

II1.6 : Curves as surface intersections

(do Carmo, §2-3)
Additional exercises

1. The twisted cubic with parametric equations (¢,t2,¢3) is the intersection of the cylindrical

surfaces defined by the equations z—x® = 0 and y— 2 = 0. What is the angle between the gradients

of these functions at the point (z,z?,z3)?

2. Show that the parametrized curve x() = (1 + cos8,sin#, 2 sin(#/2) ) is regular and lies
on the sphere of radius 2 about the origin and the cylinder (z — 1)? + 52 = 1. Also show that the
normal vectors to the two surfaces are linearly independent at the points of intersection.

IV. Oriented Surfaces

IV.1: Normal directions and Gauss maps

(do Carmo, §§2-6, 3-2)



IV.2: The Second Fundamental Form

(do Carmo, §§3-2, 3-3)
Additional exercises

1.  Suppose that ¥ is an oriented surface whose Second Fundamental Form is identically
zero. Show that (locally) ¥ is contained in some plane.

IV.3: Quadratic forms and adjoint transformations

(do Carmo, 3—Appendix)

IV.4: Normal, Gaussian and mean curvature

(do Carmo, §§3-2, 3-3)
do Carmo, § 3-2, pp. 151-153: 2, 4, 8a, 17
do Carmo, § 3-3, pp. 168-174: babc, 13
Additional exercises

1. Complete the computations of the Gaussian and mean curvatures for the hyperboloids
of one and two sheets, the ellpsoid, the hyperbolic and elliptic paraboloids, and the Mébius strip.

2.  (a) Suppose that p is a point on the (oriented) surface ¥ at a maximum distance from
the origin. Prove that the Gaussian curvature at p is positive.

(b) Suppose that p is a point on ¥ such that the function on ¥ whose z-coordinate assumes
a maximum value. Prove that the Gaussian curvature at p is nonnegative, and give an example
to show that it is not necessarily positive. [Hint: If M is the maximum value, then all points of
the surface lie on one closed side of the plane z = M. Why must this be the tangent plane to the
surface at p7]

3.  Suppose that p is a common point on two surfaces 3; and Y5 such that the normals
of the two surfaces at p are linearly independent. Let C be the curve through p given by the
intersection of 31 and ¥,. Prove that the curvature x at p for this curve satisfies

k2 sina = K% + ﬁg — 2K1 Ko COS

where k1 and ko are the normal curvatures of the surfaces in the direction of C at p and « is the
angle between the normals to the surfaces at p.

4. The Third Fundamental Form of an oriented surface is defined by

II(x,y) = (DN(p)l(x), DN(p)|(y),) -

Prove that III — 2 HIT+ K I =0 where H and K are the mean and Gaussian curvatures. [Hint:
If A is a diagonalizable matrix explain why A2 — trace(A) A + (det A) I = 0 and use the fact that
if T is a self adjoint linear transformation then (T'(x), T(y)) = (T?(x), y ).]

IV.5: Special classes of surfaces

(do Carmo, §3-5)
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