I. Classical Differential Geometry of Curves

We shall begin with a few words on background material from prerequisite courses. This course
explicitly assumes prior experience with the elements of linear algebra (including matrices, dot
products and determinants), the portions of multivariable calculus involving partial differentiation,
and some familiarity with the a few basic ideas from set theory such as unions and intersections.
For the sake of completeness, a file describing the background material (with references to standard
texts used in the Department’s courses) is included in the course directory and can be found in the
files called background.*, where * is one of the extensions dvi, ps, or pdf.

Differential geometry uses ideas from calculus and vector algebra to obtain geometrical infor-
mation about curves and surfaces. At many points it is necessary to work with topics from the
prerequisites in a more sophisticated manner, and it is also necessary to be more careful in our
logic to make sure that our formulas and conclusions are accurate. At numerous steps it might be
necessary to go back and review things from earlier courses, and in some cases it will be important
to understand things in more depth than one needs to get through ordinary calculus, multivari-
able calculus or matrix algebra. Frequently one of the benefits of a mathematics course is that it
sharpens one’s understanding and mastery of earlier material, and differential geometry certainly
provides many opportunities of this sort.

The origins of differential geometry

Straight lines and circles have been central objects in geometry ever since its beginnings.
During the fourth century B.C.E., Greek geometers began to study more general curves, starting
with the ellipse, hyperbola and parabola. In the following centuries they discovered a large number
of other curves and investigated the properties of such curves in considerable detail for a variety of
reasons. The development of analytic geometry and calculus, particularly during the seventeenth
and eighteenth centuries, yielded powerful techniques for analyzing curves and their properties. In
particular, these advances created a unified framework for understanding the work of the Greek
geometers and a setting for studying new classes of curves and problems beyond the reach of
classical Greek geometry. Interactions with physics played a major role in the mathematical study
of curves during that time, largely because curves provided a means for analyzing the motion of
physical objects. By the beginning of the nineteenth century, the differential geometry of curves
had begun to emerge as a subject in its own right.

This unit describes the classical nineteenth century theory of curves in the plane and 3-
dimensional space. Some further results from the twentieth century will be discussed in the next
unit.

References for examples

Here are some web links to sites with pictures and written discussions of many curves that
mathematicians have studied during the past 2500 years:

http://www-gap.dcs.st-and.ac.uk/~history/Curves/Curves.html
http://www.xahlee.org/SpecialPlaneCurves_dir/specialPlaneCurves.html
http://facstaff.bloomu.edu/skokoska/curves.pdf



I.1: Cross products

(do Carmo, § 1-4)

Courses in single variable or multivariable calculus usually define the cross product of two
vectors and describe some of its basic properties. Since this construction will be particularly
important to us and we shall use properties that are not always emphasized in calculus courses, we
shall begin with a more detailed treatment of this construction.

Note on orthogonal vectors

One way of attempting to describe the dimension of a vector space is to suggest that the
dimension represents the maximum number of mutually perpendicular directions. The following
elementary result provides a formal justification for this idea.

PROPOSITION. LetS = {a;, --- ,ax} be a set of nonzero vectors that are mutually perpen-
dicular. Then S is linearly independent.

Proof. Suppose that we have an equation of the form

n
E c,a; = 0
i=1

for some scalars ¢;. If 1 < j < k we then have

n n
0 = O-aj = (Zciai) -aj = Z(ciai-aj)
i=1

=1

and since the vectors in S are mutually perpendicular the latter reduces to cj|a;|?. Thus the original
equation implies that c;|a;|? = 0 for all j. Since each vector aj is nonzero it follows that |a;|? > 0
for all j which in turn implies ¢; = 0 for all j. Therefore S is linearly independent.m

Properties of cross products

Definition. If a = (a1, as,a3) and b = (b, b, b3) are vectors in R3 then their cross product or
vector product is defined to be

axb = (a2b3 — asba, asb; —aibs, a1bs — a2b1) .

If we define unit vectors in the traditional way as i = (1,0,0), j = (0,1,0), and k = (0,0,1), then
the right hand side may be written symbolically as a 3 x 3 deterinant:

i j k
a; a2 as
by ay as



The following are immediate consequences of the definition:

(1) axb = —-bxa

(2) (ca) xb = c(axb)

3) ax(b+c) = (axb) + (axc)

Other properties follow directly. For example, by (1) we have that a x a = —a X a, so that

2a x a = 0, which means that a x a = 0. Also, if ¢ = (¢1, ¢z, c3) then the triple product
[e,a,b] = c-(axDb)
is simply the determinant of the 3 x 3 matrix whose rows are ¢, a, b in that order, and therefore

we know that
the cross product a X b is perpendicular to both a and b.m

The basic properties of determinants yield the following additional identity involving dot and
cross products:

[c,a,b] = [a,b,c]
This follows because a determinant changes sign if two rows are switched, for the latter implies
[C, a, b] = _[aa c, b] = [a7 b7 C] -
The following property of cross products plays an extremely important role in this course.

PROPOSITION. Ifa and b are linearly independent, then a, b and a x b form a basis for R3.

Proof. First of all, we claim that if a and b are linearly independent, then a X b # 0. To see
this we begin by writing out |a x b|? explicitly:

laxbl|? = (azbz — azbs)? + (azby — a1b3)? + (a1by — azb;)?
Direct computation shows that the latter is equal to
(a2 + a3 + a2) (b3 + b3 +b3) — (a1b1 + asbs + a3b3)> = |a?|b*> — (a-b)?
In particular, if a and b are both nonzero then
|axb] = |a]|b||sind|

where 6 is the angle between a and b. Since the sine of this angle is zero if and only if the vectors
are linearly dependent, it follows that a X b £ 0 if a and b are linearly independent.

Suppose now that we have an equation of the form
zat+yb+z(axb) = 0

for suitable scalars x, y, 2. Taking dot products with a x b yields the equation z|a x b|? = 0, which
by the previous paragraph implies that z = 0. One can now use the linear independence of a and b
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to conclude that z and y must also be zero. Therefore the three vectors a, b and a x b are linearly
independent, and consequently they must form a basis for R3.m

In may situations it is useful to have formulas for more complicated expressions involving cross
products. For example, we have the following identity for computing threefold cross products.

“BAC—CAB” RULE. ax (b xc)=b(a-c)—c(a-b), or in more standard format the left
hand side is equal to (a-c)b — (a-b)ec.

Derivation. Suppose first that b and ¢ are linearly dependent. Then their cross product is zero,
and one is a scalar multiple of the other. If b = x ¢, then it is an elementary exercise to verify that
the right hand side of the desired identity is zero, and we already know the same is true of the left
hand side. If on the other hand ¢ = y b, then once again one finds that both sides of the desired
identity are zero.

Now suppose that b and ¢ are linearly independent, so that b x ¢ # 0. Note that a vector is
perpendicular to b X ¢ if and only if it is a linear combination of b and ¢. The ( <= ) implication
follows from the perpendicularity of b and ¢ to their cross product and the distributivity of the
dot product, while the reverse implication follows because every vector is a linear combination

zb+yc+z(bxc)
and this linear combinationn is perpendicular to the cross product if and only if z = 0; i.e., if and
only if the vector is a linear combination of b and c.
Since the vector b x (b X c) is perpendicular to b X ¢ we may write it in the form

b><(b><c) = zb+yc

for suitable scalars x and y. If we take dot products with b and ¢ we obtain the following equations:

0 = [bbbxc] = (b-(bx(bxc))) = b-(zb+yc) = z(b-b)+y(b-c)

—bxc?> = —[(bxec),b,c] = [b,(bxc),c] = [c,b,(bxc)] =
(c-(bx(bxc))) = ¢ (zb+yc) = z(b-c)+y(c-c)
If we solve these equations for £ and y we find that  =b - ¢ and y = —b - b. Therefore we have
bx(bxc) = (b-c)b—(b-b)c).

Similarly, we also have

cx(bxc) = (c-c)b—(b-c)c)).

Therefore, if we write a = pb 4+ gc + (b x ¢) we have
ax(bxc) = pbx(bxc) + gex(bxc) =

(pc-e)+a(c-e))b — (p(b-b)+q(b-c))c.
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Since b and ¢ are perpendicular to their cross product, the right hand side of the previous equation
isequal to (a-c)b—(a-b)cm

The formula, for a x (b X c) yields numerous other identities. Here is one that will be particularly
useful in this course.

PROPOSITION. Ifa, b, c and d are arbitrary vectors in R? then we have the following identity:

(axb)-(cxd) = (a-c)(b-d) — (a-d)(b-c)

Proof. By definition, the expression on the left hand side of the display is equal to the triple
product [(axb),c,d]. As noted above, the properties of determinants imply that the latter is equal
to [d, (a x b), c], which in turn is equal to

d-(ax(bxc)) = d-((a-c)b—(a-b)c)

and if we expand the final term we obtain the expression (a-c¢)(b-d) — (a-d)(b-c)=



1.2 : Parametrized curves

(do Carmo, § 1-2)

There is a great deal of overlap between the contents of this section and certain standard topics
in calculus courses. One major difference in this course is the need to work more systematically
with some fundamental but relatively complex theoretical points in calculus that can be overlooked
when working most ordinary and multivariable calculus problems. In particular this applies to the
definitions of limits and continuity, and accordingly we shall begin with some comments on this
background material.

Useful facts about limits

In ordinary and multivariable calculus courses it is generally possible to get by with only a
vague understanding of the concept of limit, but in this course a somewhat better understanding
is necessary. In particular, the following consequences of the definition arise repeatedly.

FACT 1. Let f be a function defined at all points of the interval (a — h,a + h) for some h > 0
except possibly at a, and suppose that

lim f(z) =b>0.

r—ra

Then there is a 6 > 0 such that § < h and f(xz) > 0 provided = € (a — §,a + ) and z # a.

FACT I1. In the situation described above, if the limit exists but is negative, then there is a
d > 0 such that 6 < h and f(z) > 0 provided = € (a — 6,a+ J) and = # a.

FACT III. FEach of the preceding statements remains true if 0 is replaced by an arbitrary real
number.

Derivation(s). We shall only do the first one; the other two proceed along similar lines. By
assumption b is a positive real number. Therefore the definition of limit implies there is some § > 0
such that |f(z) — b| < b provided provided z € (a — §,a + 0) and z # a. It then follows that

f@) = b+ (f@) —b) > b—f@-b > b-1b > 0

which is what we wanted to show.m
We shall also need the following statement about infinite limits:

FACT IV. Let f be a continuous function defined on some open interval containing 0 such that f is
strictly increasing and f(0) = 0. Then for each positive constant C there is a positive real number h
sufficiently close to zero such that z € (0, h) = 1/f(z) > C andz € (—h, 0) = 1/f(z) < -C.

Proof. Let ¢ be the positive number 1/C; by continuity we know that |f(z)| < € if x € (—h, h)
for a suitably small A > 0. Therefore z € (0, h) = 0< f(z) <eand z € (—=h,0) = —-e<
f(z) < 0. The desired inequalities follow by taking reciprocals in each case.s



What is a curve?

There are two different but related ways to think about curves in the plane or 3-dimensional
space. One can view a curve simply as a set of points, or one can view a curve more dynamically as
a description of the position of a moving object at a given time. In calculus courses one generally
adopts the second approach to define curves in terms of parametric equations; from this viewpoint
one retrieves the description of curves as sets of points by taking the set of all points traced out
by the moving object. For example, the line in R? defined by the equation y = mz is the set of
points traced out by the parametrized curve defined by z(t) = ¢t and y(¢) = m¢. Similarly, the unit
circle defined by the equation z2 4 42 = 1 is the set of points traced out by the parametrized curve
z(t) = cost, y(t) = sint. The set of all points expressible as x(t) for some ¢ € J will be called the
image of the parametrized curve (since it represents all point traced out by the curve this set is
sometimes called the trace of the curve, but we shall not use this term in order to avoid confusion
with the entirely different notion of the trace of a matrix). We shall follow the standard approach
of calculus books here unless stated otherwise.

A parametrized curve in the plane or 3-dimensional space may be viewed as a vector-valued
function - or x defined on some interval of the real line and taking values in V' = R? or R2. In this
course we usually want our curves to be continuous; this is equivalent to saying that each of the
coordinate functions is continuous. Given that this is a course in differential geometry it should
not be surprising that we also want our curves to have some decent differentiability properties. If x
is the vector function defining our curve and its coordinates are given by x;, where ¢ runs between
1 and 2 or 1 and 3 depending upon the dimension of V', then the derivative of x at a point ¢ is
defined using the coordinate functions:

x'(t) = (21(t), 25(t), z5(t))

Strictly speaking this is the definition in the 3-dimensional case, but the adaptation to the 2-
dimensional case is immediate — one can just suppress the third coordinate or view R? as the
subset of R? consisting of all points whose third coordinate is zero.

Definition. A curve x defined on an interval J and taking values in V = R? or R? is differentiable
if x'(t) exists for all t € J. The curve is said to be smooth if x’ is continuous, and it is said to be
a regular smooth curve if it is smooth and x'(¢) is nonzero for all ¢ € J. The curve will be said to
be smooth of class C™ for some integer r > 1 if x has an r*® order continuous derivative, and the
curve will be said to be smooth of class C* if it is infinitely differentiable (equivalently, C" for all
finite r).

The crucial property of regular smooth curves is that they have well defined tangent lines:

Definition. Let x be a regular smooth curve and let a be a point in the domain J of x.
The tangent line to x at the parameter value ¢ = a is the unique line passing through x(a) and
x(a) + x'(a). There is a natural associated parametrization of this line given by

T(u) =x(a) + ux'(a) .

One expects the tangent line to be the “best possible” linear approximation to a smooth curve.
The following result confirms this:

PROPOSITION. In the notation above, if u # 0 is small and a + u € J then we have
x(a+u) = x(u) + ux'(a) + uO(u)
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where lim,_,o ©(u) = 0. Furthermore, if p is any vector such that
x(a+u) = x(u) + up + uW(u)

where lim,_,o W (u) = 0, then p = x'(a).

Proof. Given a vector a we shall denote its i*® coordinate by a;.

Certainly there is no problem writing x(a + u) in the form x(u) + ux'(a) + ©©(u) for some
vector valued function ©; the substance of the first part of the proposition is that this function goes
to zero as u — 0. Limit identities for vector valued functions are equivalent to scalar limit identities
for every coordinate function of the vectors, so the proof of the first part of the proposition reduces
to checking that the coordinates 6; of © satisfy lim,_,o 0;(u) = 0 for all i. However, by construction
we have

zi(a+u) —z;(a
o) = BT )
and since x is differentiable at a the limit of the right hand side of this equation is zero. Therefore
we have where lim,,_,o ©(u) = 0.

Suppose now that the second equation in the statement of the proposition is valid. As in the
previous paragraph we have
zi(a +u) — zi(a)

wily) = - - pla)

but this time we know that lim,_,o w;(u) = 0 for all 7. The only way these equations can hold is if
pi(a) = zi(a) for all im

Piecewise smooth curves

There are many important geometrical curves that that are not smooth but can be decomposed
into smooth pieces. One of the simplest examples is the boundary of the square parametrized in
a counterclockwise sense. Specifically, take x to be defined on the interval [0,4] by the following
rules:

(a) (
(b) x(t
(0) (
(d) x(t) =

The formulas for (a) and (b) agree when ¢t = 1, and likewise the formulas for (b) and (c) agree
when ¢ = 2, and finally the formulas for (¢) and (d) agree when ¢t = 3; therefore these formulas
define a continuous curve. On each of the intervals [n,n + 1] for n = 0, 1,2, 3 the curve is a regular
smooth curve, but of course the tangent vectors coming from the left and the right at these values
are perpendicular to each other. Clearly there are many other examples of this sort, and they

include all broken line curves. The following definition includes both these types of curves and
regular smooth curves as special cases:

) (t,0)  forte0,1]
) = (1,t—1)forte[L,2
) (

(

2—t,1) fort € [2,3]
0,1—1t) for t € [3,4]

Definition. A continuous curve x defined on an interval [a,b] is said to be a regular piecewise
smooth curve if there is a partition of the interval given by points

a = po < p1 - < ppo1 <pp =0b



such that for each i the restriction x[i] of x to the subinterval [p;_1,p;] is a regular smooth curve.

For the boundary of the square parametrized in the counterclockwise sense, the partition is
given by
0 <1 < 2 < 3 < 4.

Calculus texts give many further examples of such curves, and the references cited at the
beginning of this unit also contain a wide assortment of examples. One important thing to note
is that at each of the partition points p; one has a left hand tangent vector x’(p;—) obtained from
x[i] and a right hand tangent vector x'(p;+) obtained from x[i + 1], but these two vectors are
not necessarily the same. In particular, they do not coincide at the partition points 1,2,3 for the
parametrized boundary curve for the square that was described above.

Taylor’s Formula for vector valued functions

We shall need an vector analog of the usual Taylor’s Theorem for polynomial approximations
of real valued functions on an interval.

VECTOR VALUED TAYLOR’S THEOREM. Letg be a vector valued function defined on
an interval (a —r,a+ 1) that has continuous derivatives of all orders less than or equal to n+1 on
that interval. Then for |h| < r we have

“h (a+h—t)"

g dt

Bath) = g@ + Y 5e¥@ + [
k=1 @
where g%) as usual denotes the k™ derivative of g.

Proof. Let R,(h) be the integral in the displayed equation. Then integration by parts implies

that B
Raca(h) = 7 g™(a) + Ra(h)

and the Fundamental Theorem of Calculus implies that
gla+h) = gla) + Ri(h).
Therefore if we set Ry = 0 we have
gla+h) = ga) + Z (Ri(h) — Re—1(h)) + Rn(h)
k=1
and if we use the formulas above to substitute for the terms Ry (h) — Rx_1(h) and R, (h) we obtain
the formula displayed above.n

The following consequence of Taylor’s Theorem will be particularly useful:

COROLLARY. Given g and the other notation as above, let P,(h) be the sum of
gla) + kz Eg( )(a) .
=1
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Then given 1o < 1 and |h| < r9 < r we have |g(a + h) — P,(h)| < C |h|"*!, for some positive
constant C.

Proof. The length of the difference vector in the previous sentence is given by

a+h _ n
/ (a’ +h t) g(n+1) (t) dt

n! <

[Rn(h)| =
a+h a _\n
iy - [ [ 2R

|| u™ h|n+1
(maxie—ai<r 87 (2)]) /0 e < M (‘n|-|-1)!

g(""'l)(t)‘ dt <

where M is a positive constant at least as large as the maximum value of |g("*1) (¢)| for |t —a| < ro.m
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I.3: Arc length and reparametrization

(do Carmo, § 1-3)

Given a parametrized smooth regular curve x defined on a closed interval [a, b], as in calculus
we define the arc length of x from ¢t = a to t = b to be the integral

b
L = /\x’(t)|dt.

Some motivation for this definition is discused in Exercise 8 on page 10 of do Carmo. More generally,
if @ <t < b then the length of the curve from parameter value a to parameter value ¢ is given by

s(t) = /{: % ()| du .

By the Fundamental Theorem of Calculus, the partial arc length function s is differentiable on [a, b]
and its derivative is equal to |x/(t)|. If we have a regular smooth curve, this function is continuous
and everywhere positive (hence s(t) is a strictly increasing function of t), and the image of this
function is equal to the closed interval [0, L].

Reparametrizations of curves

Given a parametrized curve x defined on an interval [a, b], it is easy to find other parametriza-
tions by simple changes of variables. For example, the curve y(¢) = x(¢ + a) resembles the original
curve in many respects: For example, both have the same tangent vectors and images, and the
only real difference is that y is defined on [0,b — a] rather than [a,b]. Less trivial changes of vari-
able can be extremely helpful in analyzing the image of a curve. For example, the parametrized
curve x(t) = (et — et et + e~t) has the same image as the the upper piece of the hyperbola
y? — 22 = 4 (i.e., the graph of y = v/4 + z2); as a graph, this curve can also be parametrized using
y(u) = (u, V4 + u?). These parametrizations are related by the change of variables u = 2sinht; in
other words, we have

x(t) = y(2sinht) .

Note that u varies from —oo to 400 as ¢t goes from —oo to +o00, and u'(t) = cosht > 0 for all ¢.

More generally, it is useful to consider reparametrizations of curves corresponding to functions
u(t) such that u'(¢) is never zero. Of course the sign of v’ determines whether u is strictly increasing
or decreasing, and it is useful to allow both possibilities. Suppose that we are given a differentiable
function u defined on [a, b] such that u' is never zero on [a,b]. Then the image ot u is some other
closed interval, say [c,d]; if u is increasing then u(a) = ¢ and u(b) = d, while if u is decreasing
then u(a) = d and u(b) = c. It follows that u has an inverse function ¢ defined on [c, d] and taking
values in [a,b]. Furthermore, the derivatives dt/du and du/dt are reciprocals of each other by the
standard formula for the derivative of an inverse function.

It is important to understand how reparametrization changes geometrical properties of a curve
such as tangent lines and arc lengths. The most basic thing to consider is the effect on tangent
vectors.
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PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let u :
[a,b] = [c,d] be a function with a continuous derivative that is nowhere zero, and let y(t) = x(u(t) ).
Then

This is an immediate consequence of the Chain Rule.s

COROLLARY. For each t € [a,b] the tangent line to y at parameter value t is the same as the
tangent line to x at u(t). Furthermore, the standard parametrizations are related by a linear change
of coordinates.

Proof. By definition, the tangent line to x at u(t) is the line joining x(u(t)) and x(u(t)) +
x'(u(t)). Similarly, the tangent line to y at ¢ is the line joining y () = x(u(t) ) and

y(®) +y' () =x(u(t)) + ') x'(u(t)) -

Since the line joining the distinct points (or vectors) a and a + b is the same as the line joining a
and a + c¢b if ¢ # 0, it follows that the two tangent lines are the same (take a = y(¢), b = x'(u)
and ¢ = u/(t)).

In fact, we have obtained standard linear parametrizations of this line given by f(z) =a+zb
and g(w) = a+ cwb. Tt follows that g(w) = f(cw).m

Arc length is another property of a curve that does not change under reparmetrization.

PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let u :
[a,b] = [c,d] be a function with a continuous derivative that is nowhere zero, and let y(t) = x(u(t) ).

Then
d b
/ I ()| dhu = / 1y ()] de

Proof. The standard change of variables formula for integrals implies that

d b
/|x’(u)|du:/ i (ult) ) |o/(6)] dt -

Some comments about this formula and the absolute value sign may be helpful. If u is increasing
then the sign is positive and we have u(a) = ¢ and u(b) = d, so |u'(t)| = u/(t); on the other hand if
u is decreasing, then the Fundamental Theorem of Calculus suggests that the integral on the left
hand side should be equal to

a
J
so that the formula above holds because v’ < 0 implies |u/| = —u'. In any case, the properties of

vector length imply that the integrand on the right hand side of the change of variables equation
is |u'(t) - x'(u)|, which by the previous proposition is equal to |y’(t)|.

()| - = = [ )] voa ~ [

x' (u(t) )‘ [ (8)] dt

If v is a regular smooth curve defined on [a, b], then the arc length function

s(t) = / v/ () du
12



often provides an extremely useful reparametrization because of the following result:

PROPOSITION. Letv be as above, and let x be the reparametrization defined by x(s) = v(u s) ),
where p is the inverse function to the arc length function X : [a,b] — [0,L]. Then |x( )| =1 for
all s.

Proof. By the Fundamental Theorem of Calculus we know that X' (¢) = |v/(¢)|. Therefore by the
Chain Rule we know that
X'(s) = p'(s)v'(uls))

and by the differentiation formula for inverse functions we know that

1 1

K = Sy T T = e

and if we substitute this into the expression given by the chain rule we see that

X'() = [TV (T6))] = sy V(T(9))] = 1.a

Arc length for more general curves

The geometric motivation for the definition of arc length is described in Exercises 8-0 on pages
10-11 of do Carmo; specifically, given a parametrized curve x defined on [a, b] one picks a finite set
of points t; such that

a = tp < t1 < - <ty =0b

and views the length of the inscribed broken line joining tg to t1, 1 to 3 etc. as an approximation
to the length of the curve. In favorable circumstances if one refines the finite set of points by
taking more and more of them and making them closer and closer together, the lengths of these
broken line curves will have a limiting value which is the arc length. Exercise 9(b) on page 11 of
do Carmo gives one example of a curve for which no arc length can be defined. During the time
since do Carmo’s book was published, a special class of such curves known as fractal curves has
received considerable attention. The parametric equations defining such curves all have the form
x(t) = lim,, o X, (t), where each x,, is a piecewise smooth regular curve and for each n one obtains
X, from x,_; by making some small but systematic changes. Some online references with more
information on such curves are given below.

http://mathworld.wolfram.com/Fractal.html
http://academy.wolfram.agnescott.edu/ lriddle/ifs/ksnow/lsnow/htm
http://en2.wikipedia.org/wiki/Koch_snowflake

http://en.wikipedia.org/wiki/Fractal_geometry
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I.4: Curvature and torsion

(do Carmo, §§1-5, 1-6)

Many calculus courses include a brief discussion of curvature, but the approaches vary and it
will be better to make a fresh start.

Definition. Let x be a regular smooth curve, and assume it is parametrized by arc length
plus a constant (i.e., |x'(s)| = 1 for all s). The curvature of x at parameter value s is equal to

k(s) = |x"(s)l-

The most immediate question about this definition is why it has anything to do with our
intuitive idea of curvature. The best way to answer this is to look at some examples.

Suppose that we are given a parametrized line with an equation of the form x(¢t) = a+tb
where |b| = 1. It then follows that x is parametrized by arc length by means of ¢, and clearly we
have x(t) = 0. This means that the curvature of the line is zero at all points, which is what we
expect.

Consider now an example that is genuinely curved; namely, the circle of radius r about the
origin. The arc length parametrization for this curve has the form

x(s) = (rcos(s/r), rsin(s/r) )
and one can check directly that its first two derivatives are given as follows:
x"(s) = (— sin(s/r), cos(s/r))
x(s) = (_cos(s/r) _sin(s/r) )

ro T
It follows that the curvature of the circle at all points is given by the reciprocal of the radius.m

The following simple property of the “acceleration” function x”(s) turns out to be quite im-
portant for our purposes:

PROPOSITION. The vectors x"(s) and x'(s) are perpendicular.

Proof. We know that |x(s)| is always equal to 1, and thus the same is true of its square, which
is just the dot product of x’(s) with itself. The product rule for differentiating dot products of two
functions then implies that

0 = Ciig(x'(s)-x'(s)) = 2(x'(s)-x"(s))

and therefore the two vectors are indeed perpendicular.m

Geometric interpretation of curvature

We begin with a very simple observation.
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PROPOSITION. If x(s) is a smooth curve (parametrized by arc length) whose curvature k(s)
is zero for all s, then x(s) is a straght line curve of the form x(s) = x(0) + sx’(0).

Proof. Since x(s) is the length of x”(s), if the curvature is always zero then the same is true for
x"(s). But this means that x'(s) is constant and hence equal to x’(0) for all s, and the latter in
turn implies that x(s) = x(0) + sx'(0).m

Given a smooth curve, the tangent line to the curve at a point ¢ may be viewed as a first order
linear approximation to the curve. The notion of curvature is related to a corresponding second
order approximation to the curve at parameter value ¢ by a line or circle. We begin by making this
notion precise:

Defintion. Let n be a positive integer. Given two curves a(¢) and b(¢) defined on an interval J
containing t, such that a(ty) = b(ty), we say that a and b are strong n'" order approzimations to
each other if there is an € > 0 such that |h| < ¢ and ¢ty + h € J imply

|b(to +h) — a(to+h)| < C|nr*Tt

for some constant C' > 0. The analytic condition on the order of approximation is often formulated
geometrically as the order of contact that two curves have with each other at a given point; as the
order of contact increases, so does the speed at which the curves approach each other. The most
basic visual examples here are the z-axis and the graphs of the curves " near the origin. Further
information relating geometric ideas of high order contact and Taylor polynomial approximations
is presented on pages 87-91 of the Schaum’s Outline Series book on differential geometry (M.
Lipschultz, Schaum’s Outlines — Differential Geometry, Schaum’s/McGraw-Hill, 1969, ISBN 0-
07-037985-8).

LEMMA. Suppose that the curves a(t) and b(t) are defined on an interval J containing to such
that a(ty) = b(ty), and assume also that a and b are strong n'™® order approzimations to each other
at to. Then for each reqular smooth reparametrization t(u) with to = t(ug) the curves a°t and bet
are strong n'® order approzimations to each other at ug.

Proof. Let Jy be the domain of the function ¢(u), and let Kj be a closed bounded subinterval
containing ug such that the latter is an endpoint of Ky if and only if it is an endpoint of Jy;. Denote
the maximum value of |¢/(u)| on this interval by M. Then by hypothesis and the Mean Value
Theorem we have

b(tuo + 1)) — altlug+ )| < Cliuo+h) —tu)"** < CM™ - [hr+

which proves the assertion of the lemma.n

In the terminology of n*® order approximations, if we are given a regular smooth curve x
then a strong first order approximation to it is given by the tangent line with the standard linear
parametrization

L(to + h) = x(to) + hx'(t) .

Furthermore, this line is the unique strong first order linear approximation to x.
Here is the main result on curvature and strong second order approximations.

THEOREM. Let x be a regular smooth curve defined on an interval J containing 0 such that
x' has a continuous second derivative and |x'| =1 (hence x is parametrized by arc length plus a
constant).
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(1) If the curvature of x at 0 is zero, then the tangent line is a strong second order approzimation
to x.

(13) Suppose that the curvature of x at 0 is nonzero, let N be the unit vector pointing in the
same direction as x"(0) (the latter is nonzero by the definition and nonvanishing of the curvature
at parameter value 0). If T is the circle through x(0) such that [1] its center is x(0) + (x(0)) !N,
[2] it lies in the plane containing this center and the tangent line to the curve at parameter value
zero, then T is a strong second order approzimation to Xx.

For the sake of completeness, we shall describe the unique plane containing a given line and
an external point explicitly as follows. If a, b and c are noncollinear points in R? then the plane
containing them consists of all x such that x — a is perpendicular to

(b — a) X (c — a)
which translates to the triple product equation
[(x—a), (b—a), (c-a) = 0.
Suppose now that b; and ¢; are points on the line containing b and ¢. Then we may write
by = ub + (1-u)c, ¢ = vb + (1—-v)c
for suitable real numbers u and v. The equations above immediately imply the following identities:

(by —a) = u(b —a) + (1-u)(c — a)

(¢t —a) = vb —a) + (1-v)(c — a).

These formulas and the basic properties of determinants imply
[(x—a).(b; —a), (c; —a)] =

[(x —a).u(b; —a), v(ci —a)] + [(x—a).(1-u)(bi—a), 1—v)(c: —a)] =
w(x —a), (b—a),(c—-a)] + (1-u)(1-v)[(x—a),(c—a),(b-a)] =
wd — 1—-u)(1—-v)0 = 0

and hence the equation
(x—a), (b—a), (c—a)] = 0

implies the corresponding equation if b and ¢ are replaced by two arbitrary points on the line
containing b and c.m

Proof of Proposition. Consider first the case where k(0) = 0. Then the tangent line to
the curve has equation L(s) = sx’(0) and the second order Taylor expansion for x has the form
x(s) = sx'(0) + 1s2x"(0) + s36(s) where 6(s) is bounded for s sufficiently close to zero. The
assumption x(0) = 0 implies that x”(0) = 0 and therefore we have x(s) — L(s) = s26(s) where
0(s) is bounded for s sufficiently close to zero. Therefore the tangent line is a strong second order
approximation to the curve if the curvature is equal to zero.
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Suppose now that x(0) # 0, and let N be the unit vector pointing in the same direction as

x"(0). Define z by the formula
1

r(0)
and consider the circle in the plane of z and the tangent line to x at parameter value s = 0 such

that the center is z and the radius is 1/k(0). If we set r equal to 1/k(0) and T = x’(0), then a
parametrization of this circle in terms of arc length is given by

z = x(0) +

I'(s) = z — rcos(s/r)N + rsin(s/r)T .

Using the standard power series expansions for the sine and cosine function and the identity z =
x(0) — r N, we may rewrite this in the form

52

I'(s) = x(0) + o

N + s3a(s)N + sT + s36(s)T

where a(s) and 3(s) are continuous functions and hence are bounded for s close to zero. On the
other hand, using the Taylor expansion of x(s) near s = 0 we may write x(s) in the form

2

x(0) + sx'(0) + %x”(O) + $SW(s)

where W (s) is bounded for s close to zero. But x’(0) = T and

so that T'(s) — x(s) has the form s®W(s) where W(s) is a bounded function of s. Therefore the
circle defined by T is a strong second order approximation to the original curve at the parameter
value s = (O.m

Notation. If the curvature of x is nonzero near parameter value s as in the proposition, then
the center of the strong second order circle approximation

is called the center of curvature of x at parameter value s. The circle itsef is called the osculating
circle to the curve at parameter value s (in Latin, osculare = to kiss).

Complementary result. A more detailed analysis of the situation shows that if x£(0) # 0 then
the circle given above is the unique circle that is a second order approximation to the original curve
at the given point.m

Computational techniques

Although the description of curvature in terms of arc length parametrizations is important for
theoretical purposes, it is usually not particularly helpful if one wants to compute the curvature of
a given curve at a given point. One major reason for this is that the arc length function s(¢) can
only be written down explicitly in a very restricted class of cases. In particular, if we consider the
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graph of the cubic polynomial y = z3 with parametrization (¢, 3) on some interval [0, a] then the
arc length parameter is given by the formula

s(t) = /Ot\/mdu

and results of P. Chebyshev from the nineteenth century show that there is no “nice” formula
for this function in terms of the usual functions one studies in first year calculus. Therefore it is
important to have formulas for curvature in terms of arbitrary parametrizations of a regular smooth
curve.

Remarks.

1. The statement about the antiderivative of /1 + 9z is stronger than simply saying that
no one has has been able to find a nice formula for the antiderivative. It as just as impossible to
find one as it is to find two positive whole numbers a and b such that /2 = a/b.

2. A detailed statement of Chebyshev’s result can be found on the web link

http://mathworld.wolfram.com/Integral .html

and further references are also given there.

The following formula appears in many calculus texts:

FIRST CURVATURE FORMULA Let x be a smooth regular curve, let s be the arc length
function, let k(t) = k(s(t)), and let T(t) be the unit tangent vector function obtained by multiplying
x'(t) by the reciprocal of its length. Then we have

T/ (2)]

Derivation. We have seen that T (s) is equal to x/(s), and therefore by the chain rule we have
T'(t) = S@T(s@t) = [ (@)x"(s).

Taking lengths of the vectors on both sides of this equation we see that
IT'@®)] = K@ X'(s)] = X&) k@)

which is equivalent to the formula for k(¢) displayed above.m
Here is another formula for curvature that is often found in calculus textbooks.

SECOND CURVATURE FORMULA Let x be a smooth reqular curve, let s be the arc length
function, let T(t) be the unit length tangent vector function, and let k(t) = k(s(t)). Then we have

[x'() x x"(1)]

S MOk

Derivation. As in the derivation of the First Curvature Formula we have x’ = s'T. Therefore
the Leibniz product rule for differentiating the product of a scalar function and a vector function
yields

xl/ — SHT + S,TI .
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Since T x T = 0 the latter implies
x'xx" = (") (TxT’).

Since |T| = 1 it follows that T - T’ = 0; i.e., the vectors T and T’ are orthogonal. This in turn
implies that |T x T'| is equal to |T|-|T’| so that

Xoxx'| = SRITxT] = R = (T = T
(at the next to last step we again use the identity |T| = 1). It follows that

x/(8) x x"(t)
20k

T|

and the Second Curvature Formula follows by substitution of this expression into the First Curva-
ture Formula.m

Osculating planes

Thus far we have discussed lines and circles that are good approximations to a curve. Given a
curve in 3-dimensional space one can also ask whether there is some plane that comes as close as
possible to containing the given curve. Of course, for curves that lie entirely in a single plane, the
definition should yield this plane.

Given a continuous curve x(t), and a plane II, one way of making this notion precise is to
consider the function A(¢) giving the distance from x(¢) to II. If the point x(¢o) lies on II, then
A(tp) = 0 and one test of how close the curve comes to lying in the plane is to determine the extent
to which the zero function is an n*® order approximation to A(t) for various choices of n. In fact, if
k(to) # 0 then there is a unique plane such that the zero function is a second order approximation
to A(t), and this plane is called the osculating plane to x at parameter value ¢t = ty. Formally, we
proceed as follows:

Definition. Let x(s) be a regular smooth curve parametrized by arc length (so that |x'| = 1),
and assume that k(sg) # 0. Let a = x(0), let T = x'(sp), and let N be the unit vector pointing in
the same direction as x"’(sg). The osculating plane to the curve at parameter value sg is the unique
plane containing the three noncollinear vectors a, a + T, and a + N.

It follows that the equation defining the osculating plane may be written in the form

[(y—a), T,N] = 0.

We can now state the result on the order of contact between curves and their osculating planes.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length (hence |x'| = 1),
assume that x has a continuous third derivative, and assume also that k(sg) # 0. Let II be the
osculating plane of x at parameter value sg, and let A(s) denote the distance between x(s) and II.
Then the osculating plane is the unique plane through x(sg) such that the zero function is a second
order approzimation to the distance function A(s) at sg.

Proof. Let a = x(sg), let T = x'(sg), let N be the unit vector pointing in the same direction
as x"'(sg), and let B be the cross product T x N. Then the oscularing plane is the unique plane
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containing a, a + T, and a + N, and the distance between a point y and the osculating plane is
the absolute value of the function D (y) = (y —a) - B. The second order Taylor approximation to
x(s) with respect to sg is then given by the formula

(s — s0)% k(s0)

5 ‘N + (s—s50)°W(s)

x(s)=a + (s—s9)-T +

where W (s) is bounded for s sufficiently close to sg. Therefore since B is perpendicular to T and
N we have ~
D (x(s)) = (s—s%)°W(s)-B

where W(s) - B is bounded for s sufficiently close to so. Therefore the given curve has order of
contact at least two with respect to its osculating plane.

Suppose now that we are given some other plane through a; then one has a normal vector V
to the plane of the form B+ p T + ¢ N where p and ¢ are not both zero. The distance between x(s)
and plane through a with normal vector V will then be the absolute value of a nonzero multiple of

the function
((x(s) - a)-v)

which is equal to

(s — 80)% K(s0)

g(s —s0) = (s—s0) (T-V) + 9 (N-V) + (3_80)3 (W(s)V) .
We then have (5 s0)
?3—80;)3 " (s —p30)2 + (s_qSO) + (W(s)-V)

where the third term on the right is bounded. But since at least one of p and ¢ is nonzero, it follows
that the entire sum is not a bounded function of s if s is close to sg. Therefore the curve cannot
have order of contact at least two with any other plane through a.m

Torsion

Curvature may be viewed as reflecting the rate at which a curve moves off its tangent line.
The notion of torsion will reflect the rate at which a curve moves off its osculating plane. In order
to define this quantity we first need to give some definitions that play an important role in the
theory of curves.

Definitions. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x’| = 1), assume that x has a continuous third derivative, and assume also that x # 0
near the parameter value so. The principal unit normal vector at parameter value s is N(s) =
|x"(s)]7! x"(s). We have already encountered a special case of this vector in the study of curvatures
and osculating planes, and if T(s) = x'(s) denotes the unit tangent vector then we know that
{T(s), N(s) } is a set of perpendicular vectors with unit length (an orthonormal set).

If x is a space curve (i.e., its image lies in 3-space), the binormal vector at parameter value s
is defined to be B(s) = T(s) x N(s). It then follows that { T(s), N(s), B(s)} is an orthonormal
basis for R3, and it is called the Frenet trihedron (or frame) at parameter value s.

One can frequently define a Frenet trihedron at a parameter value sy even if the curvature
vanishes at sg, but there are examples where it is not possible to do so. In particular, consider the
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curve given by x(t) = (¢, 0, exp(—1/t2)) if t > 0 and x(t) = (¢, exp(—1/¢2)0) if t > 0. If we set
x(t) = 0, then x will be infinitely differentiable because for each k > 0 we have

lim & (-1/*) = 0
0 e -

(this is true by repeated application of L’Hospital’s Rule) and in fact the curvature is also nonzero
if t # 0 and t? # 2/3. Therefore one can define a principal unit normal vector N(¢) when ¢ # 0
but, say, |t| < % However, if ¢ > 0 this vector lies in the zz-plane while if ¢ < 0 it lies in the
zy-plane, and if one could define a continuous unit normal at ¢ = 0 it would have to lie in both of
these planes. Now the unit tangent at ¢ = 0 is the unit vector e;, and there are no unit vectors that
are perpendicular to e; that lie in both the zy- and zz-planes. Therefore there is no way to define
a continuous extension of N to all values of ¢. On the other hand, Problem 4.15 on pages 75-76
of Schaum’s Outline Series on Differential Geometry provides a way to define principal normals in
some situations when the curvature vanishes at a given parameter value.n

The following online notes contain further information on defining a parametrized family of
moving orthonormal frames associated to a regular smooth curve:

http://ada.math.uga.edu/teaching/math4250/Html/Bishop.htm

One can retrieve the Frenet trihedron from an arbitrary regular smooth reparametrization with
a continuous second derivative.

LEMMA. In the setting above, suppose that we are given an arbitrary reparametrization with
continuous second derivative, and let s(t) denote the arc length function. Then the Frenet trihedron
at parameter value to is given by the unit vectors pointing in the same directions as T(t), T'(t),
and their cross product. Furthermore, if one considers the reoriented curve y with parametrization
y(t) = x(—t), then the effect on the Frenet trihedron is that the first two unit vectors are sent to
their negatives and the third remains unchanged.

Proof. It follows immediately from the Chain Rule that the unit tangent T remains unchanged
under a standard reparametrization with s’ > 0. Furthermore, the derivation of the formulas for
curvature under reparametrization show that T'(t) is a positive multiple of x”(s). this proves
the assertion regarding the principal normals. Finally, if we are given two ordered sets of vectors
{a, b} and {c, d} such that ¢ and d are positive multiples of a and b respectively, then ¢ x d is
a positive multiple of a x b, and this implies the statement regarding the binormals.

If one reverses orientations by the reparametrization ¢t — —%, then the Chain Rule implies
that T and its derivative are sent to their negatives, and this proves the statement about the first
two vectors in the trihedron. The statement about the third vector follows from these and the cross
product identity a x b = (—a) x (—b).=

We are finally ready to define torsion.
Definition. In the setting above the torsion of the curve is given by 7(s) = B'(s) - N(s).

This is not quite the same as the definition in do Carmo, so we shall show that our formulation
is equivalent.

LEMMA. The torsion of the curve is given by the formula B'(s) = 7(s) N(s).

Proof. If we can show that the left hand side is a multiple of N(s), then the formula will follow
by taking dot products of both sides of the equation with N(s) (note that the dot product of the
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latter with itself is equal to 1). To show that the left hand side side is a multiple of N(s), it suffices
to show that it is perpendicular to T(s) and B(s). The second of these follows because

d d dB
0= 20 = BB - 2B-<E)
and the first follows because
aB d dN dN
— = —(T'xN) = N x N T x — = T —_—
ds ds( xN) (kDN x )+( xds) X(ds)

which implies that the left hand side is perpendicular to T.u

We had mentioned that the torsion of a curve is related to the rate at which a curve moves
away from its osculating plane. Here is a more precise statement about the relationship:

PROPOSITION. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1), assume that x has a continuous third derivative, and assume also that k(sg) # 0.
Let II be the osculating plane of x at parameter value sg. Then the image of x is contained in 11
for all s sufficiently close to sg if and only if the torsion vanishes for these parameter values.

Proof. Suppose first that the curve is entirely contained in the osculating plane for s close to sg.
The osculating plane at sg is defined by the equation

[(y—a),To, NO] =0

where a = x(sg) and Ty and Ny represent the unit tangent and principal normal vectors at
parameter value so. If we set y = x(s) and simplify this expression, we see that the curve x
satisfies the equation

X(S) . BO = a- BO

where By = Ty x Ny. If we differentiate both sides with respect to s we obtain the equation
x'(s) - Bg = 0. Differentiating once again we see that x"/(s) - Bg = 0. Since x'(s) = T(s) and N(s)
is a positive multiple of x”(s) for s close to sy (specifically at least close enough so that r(s) is
never zero), then By is perpendicular to both T(s) and N(s). Therefore B(s) must be equal to
+ By. By continuity we must have that B(s) = By for all s close to so (Here are the details: Look
at the function B(s) - By on some small interval containing sg; its value is +1, and its value at
sp is +1 — if its value somewhere else on the interval were —1, then by the Intermediate Value
Theorem there would be someplace on the interval where its value would be zero, and we know this
is impossible). Thus B(s) is constant, and by the preceding formulas this means that its torsion
must be equal to zero.

Conversely, suppose that the torsion is identically zero. Then by alternate description of torsion
in the lemma we know that B'(s) = 0, So that B(s) = Bj. We then have the string of equations

0 = TB() :XI'BO = %(XB(])

which in turn implies that x - Bg is a constant. Therefore the curve x lies entirely in the unique
plane containing x(so) with normal direction By.m

22



Other planes associated to a curve

In addition to the osculating plane, there are two other associated planes through a point on
the curve x at parameter value sy that are mentioned frequently in the literature. As above we
assume that the curve is a regular smooth curve with a continuous third derivative i arc length
parametrization, and nonzero curvature at parameter value sg.

Definitions. In the above setting the normal plane is the unique plane containing x(s),
x(s0) + N(sp), and x(s¢) + B(sg), and the rectifying plane is the unique plane containing x(sg),
x(sg) + T(sp), and x(sg) + B(sg). These three mutually perpendicular planes meet at the point
x(80) in the same way that the usual zy-, yz-, and zz-planes meet at the origin.

Oriented curvature for plane curves

For an arbitrary regular curve in 3-space one does not necessarily have normal directions when
the curvature is zero, but for plane curves there is a unique normal direction up to sign. Specifically,
if x is a regular smooth plane curve parametrized by arc length and B is a unit normal vector to a
plane II containing the image of x, then one has an associated oriented principal normal direction
at parameter value given by the cross product formula

—~

N (s) = Bxx/(s)

and by construction II is the unique plane passing through x(s), x(s) + x'(s), and x(s) = /I\T(s)
There are two choices of B (the two unit normals for 7 are negatives of each other) and thus there
are two choices for T\T\(s) such that each is the negative of the other. One can then define a signed
curvature associated to the oriented principal normal N given by the formula

An obvious question is to ask what happens if k(sg) = 0 (which also equals k(s) in this case)
and the sign of k(s) is negative for s < so and positive for s > so. A basic example of this
sort is given by the graph of f(r) = z3 near x = 0, whose standard parametrization is given by
x(t) = (t, t3). In this situation the graph lies in the lower half plane y < 0 for ¢ < 0 and in the in
the upper half plane y > 0 for ¢ > 0, and the curve switches from being concave upward for ¢ < 0
to concave downward (generally called convez beyond first year calculus courses). More generally,
one usually says that f has a point of inflection in such cases. The following result shows that more
general plane curves behave similarly provided the curvature has a nonvanishing derivative:

PROPOSITION. Letx be a regular plane smooth curve parametrized by arc length plus a constant
(hence |x'| = 1), assume that x has a continuous fourth derivative, let N define a family of oriented

principal normals for x, and assume that that k(so) = 0 but k'(so) > 0. Then x(s) is contained in
the half plane

—~

N (s0) - (3 — x(s50)) < 0
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for s sufficiently close to so satisfying s < so, and x(s) is contained in the half plane

—

N (so) - (y —x(s0)) > 0

for s sufficiently close to sy satisfying s > sg.

A similar result holds if £'(s¢) < 0, and the necessary modifications of the statement and proof
for that case are left to the reader as an exercise.

Proof. To simplify the computations we shall choose coordinate systems such that x(s¢) = 0 and
the plane is the standard coordinate plane through the origin with chosed unit normal vector es.
It will also be convenient to denote the unit vector x’(s) by T(s). We shall need to work with a
third order approximation to the curve, which means that we are going to need some information
about x"'(sp). Therefore the first step will be to establish the following formula:

—

E'(so) = x""(s0) - N (so)

To see this, note that

(x”'(s) : N(s)) n (x"(s) - ﬁ’(s)) - (x'"(s) - N(s)) n (N(s) N (s))

and the second summand in the right hand expression vanishes because |I\T\|2 is always equal to 1
(this is the same argument which implies that the unit tangent vector function is perpendicular to
its derivative).

Turning to the proof of the main result, the preceding paragraph and earlier consideration
show that the curve x is given near sy by the formula

k(s) (52_ 30)2 T\I\(SO) + (s — 50)3 X”/(SO) + (s— 80)4 0(s)

x(s) = (s—s9)T(so) + 3!

where 0(s) is bounded for s suffieicntly close to zero. To simplify notation further we shall write
As = s — sg.

If we take the dot product of the preceding equation with /I\T(so) we obtain the formula, in

which y(s) is the dot product of 6(s) and /N\(so), so that y(s) is also bounded for s sufficiently
close to sg:

(x()- N(s0) = F00 (Ae)? 1 y(s) (2"

If s is nonzero but sufficiently close to zero then the sign of the right hand side is equal to the sign
of As because

(7) the sign of the first term is equal to the sign of As,
(17) if we let M be a positive upper bound for |y(s)| and further restrict As so that

k' (s0)
68

|As| <

then the absolute value of the second term in the dot product formula will be less than
the absolute value of the first term.
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It follows that the sign of the dot product

is the same as the sign of the inital term

K'(s0)

30 (As)?

which in turn is equal to the sign of As. Since the dot product has the same sign as As for s # 0 and
s sufficiently small, it follows that x(s) lies on the half plane defined by the inequality y- N (sp) < 0

—

if s < sp and x(s) lies on the half plane defined by the inequality y - N (s¢) > 0 if s > sp.m

In fact, the center of the osculating circle also switches sides when one goes from values of s
that are less than sg to values of s that are greater than so. However, the proof takes considerably
more work.

COMPLEMENT. In the setting above, let z(s) denote the center of the osculating circle to x at
parameter value at parameter value s # sy close to s (this ezists because the curvature is nonzero
at such points). Then z(s) is contained in the half plane

—~

N (s0) - (y — x(s0)) < 0

for s sufficiently close to sy satisfying s < sqg, and z(s) is contained in the half plane

—

N (s0) - (y —x(s0)) >0
for s sufficiently close to sg satisfying s > sg.

Proof. We need to establish similar inequalities to those derived above if x(s) is replaced by
z(s); note that the latter is not defined for parameter value sy because the formula involves the
reciprocal of the curvature and the latter is zero at sg.

The center of the osculating circle at parameter value s # sy was defined to be x + k!N,
where N is the ordinary principal normal; we claim that the latter is equal to x + E~IN. By
definition we have e

x' = kN = kN

and since Kk = +k is nonzero we know that x?> = k2. Dividing the displayed equation by this
common quantity yields the desired formula

“IN = EIN .

Therefore the proof reduces to showing that the sign of

(x(s) + k(l—s) T\I‘(s)) - N (s0)

is equal to the sign of As.

Using the formula for x(s) near sy that was derived before, we may rewrite the preceding
expression as
_ K(so) 3 4 I 5 ~N
h(s) = —5 (Bs)" +y(s) (As)" + < N(s) - N(so) -
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We need to show that h(s) has the same sign as k(s) and its reciprocal, and this will happen if

() = ho) s = e APy (A9 + s N - (Rl — R (o)

is bounded for s # sq sufficiently close to zero. To see, this, suppose that |¢(s)] < A for some
A > 0. If we then choose § > 0 so that |k(s)| < 1/A for for |As| < § but As # 0, if will follow that

As > 0 = h(s) = ﬁ—l—(h(s)—ﬁ) > A+ (-4 > 0

and similarly with all inequalities reversed and A switched with —A if As < 0.

In order to prove that £(s) is bounded, it suffices to prove that each of the three summands
is bounded for, say, |As| < r. The absolute value of the first is bounded by k’(sq) r3/6 and the
absolute value of the second is bounded by Br* where B is a positive upper bound for |y(s)|. By
the Cauchy-Schwarz inequality the absolute value of the third is bounded from above by

— —~

N(s) — N(so)
|k (s)|

and using the Mean Value Theorem we may estimate the numerator and denominator of this
expression separately as follows:

(2) /N\(s) — /N\(so) < P - |As|, where P is the maximum value of |/1\T,\ on [sg — 1, S + 7.

(17) k(s) = k'(S1) As for some S; between sy and s, so if we choose 7 so small that &' > 0 on
[so — T, so + 7], then |k(s)| > Q As, where @ > 0 is the minimum of £’ on that interval.

It then follows that the quotient P/Q is an upper bound for the absolute value of the third term in
the formula for /(s), and therefore the latter itself is bounded. This completes the proof that z(s)
lies on the half plane described in the statement of the result.m
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I.5: Frenet-Serret Formulas

(do Carmo, §§1-5, 1-6, 4-Appendix)

In ordinary and multivariable calculus courses, a great deal of emphasis is often placed upon
working specific examples, and as indicated in the discussion preceding Section I.1 of these notes
there is a wide assortment of interesting curves that can be studied using the methods of the
preceding sections. However, the course notes up to this point have not included the sorts of worked
out examples that one sees in a calculus book. A quick look at the exercises in do Carmo shows
that the latter does include a few examples, but far fewer than one might expect in comparison to
standard calculus texts. We have reached a point in this course where the reasons for this should
be discussed.

We already touched upon one reason when we described computational techniques for finding
the curvature of a curve. Even in simple cases, it can be extremely difficult — if not impossible —
to write things out explicitly using pencil and paper along with the techniques and results that are
taught in multivariable calculus courses. For example, we noted that arc length reparametrizations
often involve functions that ordinary calculus cannot handle in a straightforward manner. And the
situation gets even worse when one considers certain types of curves that arise naturally in classical
physics, most notably those arising when one attempts to describe the motions of a gravitational
system involving three heavenly bodies. In these cases it is not even possible to give explicit
formulas for the motion of the curves themselves, without even thinking about the added difficulty
of describing quantities like curvature and torsion. During the time since the appearance of do
Carmo’s book, spectacular advances in computer technology have provided powerful new tools for
studying examples. The following book is an excellent reference for studying curves and surfaces
using the software package Mathematica:

A. Gray. Modern Differential Geometry of Curves and Surfaces. (Studies in Advanced
Mathematics.) CRC Press, Boca Raton, FL etc., 1993. ISBN: 0-8493-7872-9.

The emphasis in this course will be on qualitative aspects of the differential geometry of curves
and surfaces in contrast to the quantitative emphasis that one sees in ordinary and multivariable
calculus. In particular, we are interested in the following basic sort of question:

Reconstructing curves from partial data. 7o what extent can one use geometric invariants
of a curve such as curvature and torsion to retrieve the original curve?

Both curvature and torsion are defined so that they do not change if one replaces a curve by
its image under some rigid motion of R? or R3, so clearly the best we can hope for is to retrieve
a curve up to some transformation by a rigid motion. The main results of this section show that
curvature and torsion suffice to recover the original curve in a wide range of “reasonable” cases.

The crucial input needed to prove such results comes from the Frenet-Serret Formulas, which
describe the derivatives of the three fundamental unit vectors in the Frenet trihedron associated to
a regular smooth curve.

FRENET-SERRET FORMULAS. Letx be a reqular smooth curve parametrized by arc length
(hence |x'| = 1), assume that x has a continuous third derivative, and assume also that k(so) # 0.
Let T(s), N(s) and B(s) be the tangent, principal normal and binormal vectors in the Frenet
trihedron for x at parameter value sg. Then the following equations describe the derivatives of the
vectors in the Frenet trihedron:
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T = kN
N' = — kT - 7B
B' = TN

Proof. We have already noted that the first and third equations are direct consequences of the
definition of curvature and torsion. To derive the second equation, we take the identity N = B x T
and differentiate it with respect to s:

N'(s) = B'(s)xT(s) + B(s) xT'(s) =

r(s) (N(s) x T(s)) +  (B(s) x N(s))

Since T, N and B are mutually perpendicular unit vectors such that B = T x N, as usual the
“BAC-CAB?” rule for threefold cross products implies that N x T = —B and B x N = —T. If
we make these substitions into the displayed equations we obtain the second of the Frenet-Serret
Formulas.m

The signifiance of the Frenet-Serret formulas is that they allow one to describe a curve in terms
of its curvature and torsion in an essentially complete manner.

LOCAL UNIQUENESS FOR CURVES. Suppose that we are given two reqular smooth curves
x andy defined on the same interval containing sg, where both curves are parametrized by arc length,
both have continuous third derivatives and everywhere nonzero curvatures, and their curvature and
torsion functions of both curves are equal. Then there is a rigid motion ® of 3-dimensional space
such that y = ®ox.

A rigid motion of R? or R3 is a 1-1 and onto mapping ¢ such that
|®(b) — ®(a)] = [b — a|
for all vectors b and a. In linear algebra it is shown that every such rigid motion has the form
®(x) = Ax+c

where ¢ is some fixed vector and A is an orthogonal matrix (i.e., its rows and columns are or-
thonormal sets — actually, the rows are orthonormal if and only if the columns are, but we do not
need this right now).

Proof. Let e;, es and e3 be the standard unit vectors. We shall only consider the simplified
situation where x(sg) = y(0) = 0 and the Frenet trihedra for x and y at parameter value s are
given by e, es and e; (one can always use a rigid motion to move the original curves into such
positions, and the motion will not change the curvature or torsion of either curve — this is not
really difficult to prove but it is a bit tedious and distracting).

Let { Tx(s), Nx(s), Bx(s)} and { Ty (s), Ny(s), By(s)} be the Frenet trihedra for x and y
respectively, and let

g(s) = |Tx(s) = Ty(s)]* + [Ni(s) =Ny (s)]* + [Bx(s) = By(s)” .

By the Frenet-Serret Formulas we then have that ¢’ is equal to
2 ( ((Tx=Ty)- (T =Ty) ) +((Nx =Ny)- (N, =Ny) ) + ((B«—By)- (B, - B})) ) -
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2<(H (Tx—Ty)-(Nx—Ny)) + (T (Bx—By)-(Nx—Ny)> -

(k (Nx=N) - (T = Ty) ) = (T<Nx—Ny)-<Bx—By))>.

It is an elementary but clearly messy exercise in algebra to simplify the right hand side of the
preceding equation, and the expression in question turns out to be zero. Therefore the function g
must be a constant, and since our assumptions imply g(sg) = 0, it follows that g(s) = 0 for all s.
The latter in turn implies that each summand

2 2 2
|Tx—Ty| a‘Nx—Ny| 7|Bx—By|

must be zero and hence that the Frenet trihedra for x and y must be the same. The first Frenet-
Serret Formula then implies x’ = y’, and since the two curves both go through the origin at
parameter value sq it follows that x and y must be identical.m

There is in fact a converse to the preceding result.

FUNDAMENTAL EXISTENCE THEOREM OF LOCAL CURVE THEORY. Given
sufficiently differentiable functions k and T on some interval (—c, ¢) such that k > 0, there is an
h € (0,¢) and a sufficiently differentiable curve x defined on (0,h) such that x(0) = 0, the tangent
vectors to x at all point have unit length, the Frenet trihedron of x at 0 is given by the standard

unit vectors (T(O), N(0), B(O)) = (el, e, ez)

and the curvature and torsion functions are given by the restrictions of k and T respectively.m

This is a consequence of the fundamental existence theorem for systems of linear differential
equations. If the curve exists, then the Frenet-Serret formulas yield a system of nine first order
linear differential equations for the vector valued functions T, N, and B in the Frenet trihedron

T = s N
N' = — kT - 7B
B' = TN

and if one is given k and 7 the goal is to see whether this system of first order linear differential
equations can be solved for T, N, and B, at least on some smaller interval (—h, h). If one has such
a solution then the curve x can be retrieved using the elementary formula

x(s) = /0 T () du

where |s| < h (with the usual convention that [j = — fso if s < 0). A proof of the existence
of a solution to the system of differential equations is given on pages 309-311 in the Appendix to
Chapter 4 of do Carmo.n

The preceding two results combine to yield the Fundamental Theorem of Local Curve
Theory:

Given k and T as in the statement of the Fxistence Theorem, an initial vector xo and an orthonormal
set of vectors (a, b, ¢) such that a x b = ¢, then there is a positive real number hy and a unique
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(sufficiently differentiable) curve x such that the tangent vectors to x at all point have unit length,
the Frenet trihedron of x at 0 is given by the standard unit vectors

(T(0), N(©), B(0)) = (ab,c)

and the curvature and torsion functions are respectively given by the restrictions of k and T to

(=h1, h1)m

In particular, this result implies that space curves are completely determined by their curvature
and torsion functions together with the Frenet trihedron at some initial value. The following special
case is a companion to our earlier characterization of lines as curves whose curvature is identically
7€ro:

CHARACTERIZATION OF CIRCULAR ARCS. Letx be a curve satisfying the conditions
in the statement of the Frenet-Serret Formulas. Then the restriction of x to some small interval
(so — 6, so + d) is a circular arc if and only if the curvature is a positive constant and the torsion
1s 1dentically zero.

This follows immediately because we can always find a circular arc with given initial value
Xp, initial Frenet trihedron (TO, No, BO) and constant curvature k > 0 (and also of course with
vanishing torsion); in fact, the equations for an osculating circle provide an explicit construction.m

A strengthened Fundamental Theorem for plane curves

Since plane curves may be viewed as space curves whose third coordinates are zero (and whose
torsion functions are zero), the Fundamental Theorem of Local Curve Theory also applies to plane
curves, and in fact the Fundamental Theorem amounts to saying that there is a unique curve with
a given (nonzero) curvature function k, initial value xo and initial unit tangent vector Tp; in this
case the principal normal Ny is completely determined by the. perpendicularity condition and the
Frenet-Serret Formulas.

In fact, there is actually a stronger version of the Fundamental Theorem in the planar case.
In order to state and prove the Fundamental Theorem for space curves we needed to assume the
curvature was positive so that the principal normal N could be defined. We have already noted that
one can define N for plane curves even if the curvature is equal to zero. Geometrically, a standard
way of doing this is to rotate the unit tangent T in the counterclockwise direction through an angle
of 7/2; in terms of equations this means that N = J(T), where J is the linear transformation

J(:I:’ y) = (y7 —:E) .

As noted in the previous section, if x is a regular smooth curve in R? parametrized by arc length
plus a constant, this means that if we define an associated signed curvature by the formula

k(s) = x"(s)-N(s) = x"(s)-[J(T)](s)

then |k(s)| = k(s).

For the sake of completeness, we shall formally state and prove the modified version of the
Frenet-Serret Formulas that holds in the 2-dimensional setting with N defined as above.
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PLANAR FRENET-SERRET FORMULAS. Letx be a reqular smooth curve parametrized
by arc length (hence |x'| = 1), assume that x has a continuous third derivative. Let T(s) and N(s)
and be the tangent and principal normal vectors for x at parameter value sg. Then the following
equations describe the derivatives of T and N:

T/
N = — kT

kN

Proof. By definition the first equation is a direct consequence of the definition of signed curvature.
To derive the second equation, we take the identity N(s) = J('T(s) ) and differentiate it with respect
to s, obtaining

k(s) J?(T(s)) = —k(s)T(s)
where the last equation follows because J2 = —I.m

One can use the notion of signed curvature to state and prove the following version of the
fundamental theorem for plane curves:

FUNDAMENTAL THEOREM OF LOCAL PLANE CURVE THEORY. Given a suffi-
ciently differentiable function k on some interval (—c, ¢), an initial vector xo and an orthonormal
set of vectors (a, b) such that b = J(a), then there is an h € (0,¢) and a sufficiently differentiable
curve x defined on (—h,h) such that x(0) = xq, the tangent vectors to x at all point have unit
length, the tangent-normal pair of x at at 0 is given by the standard unit vectors

(ﬂ%N@):(&M

and the curvature function is given by the restriction of k to (—h, h).m

The proof of this result is a fairly straightforward modification of the argument for space curves
and will not be worked out explicitly for that reason.

Local canonical forms

One application of the Frenet-Serret formulas is a description of a strong third order approxi-
mation to a curve in terms of curvature and torsion.

PROPOSITION. Let x be a reqular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1) such that x has a continuous fourth derivative and k(0) # 0, and let { T, N, B}
be the Frenet trihedron at parameter value s = 0. Then a strong third order approximation to x is

given by
$2K? s’k sk 3kt
ﬂm+(#-m>T+<?+§>N+ 5B

Proof. We already know that x'(0) = T and x”(0) = x N. It suffices to compute x”’(0), and the
latter is given by
(K)N)’ = KN 4+ kN’ = N - kT - k7B
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where the last is derived using the Frenet-Serret Formulas.m

Two significant applications of the canonical form for the strong third order approximation
appear on pages 28-29 of do Carmo. The proofs are elementary and contained on these pages of
the text.

APPLICATION 1. In the setting above, if 7(0) > 0 then the point x(s) lies on the side
of the osculating plane defined by the inequality (y —x(0)) - B < 0, when s < 0 and s is suf-
ficiently close to 0, and x(s) lies on the side of the osculating plane defined by the inequality
(y —x(0)) - B > 0 when s > 0 and s is sufficiently close to 0. Similarly, if 7(0) > 0 then the
point x(s) lies on the side of the osculating plane defined by the inequality (y — x(0)) > 0, when
s < 0, and x(s) lies on the side of the osculating plane defined by the inequality (y — x(0)) <
pointx(s)liesontheothersideoftheosculatingplane(.m

APPLICATION 2. In the setting above, if s # 0 is sufficiently close to zero then x(s) lies on
the side of the rectifying plane defined by the inequality

(y —x(0)) N>0 =

Regular smooth curves in hyperspace

During the nineteenth century mathematicians and physicists encountered numerous questions
that had natural interpretations in terms of spaces of dimension greater than three (incidentally,
in physics this began long before the viewing of the universe as a 4-dimensional space-time in
relativity theory). In particular, coordinate geometry gave a powerful means of dealing with such
objects by analogy. For example, Euclidean n-space for and arbitrary finite n is given by the
vector space R", lines, planes, and various sorts of hyperplanes can be defined and studied by
algebraic methods (although geometric intuition often plays a key role in formulating, proving, and
interpreting results!), and distances and angles can be defined using a simple generalization of the
standard dot product. Furthermore, objects like a 4-dimensional hypercube or a 3-dimensional
hypersphere can be described using familiar sorts of equations. For example, a typical hypercube
is given by all points x = (z1, T2, 3, z4) such that 0 < z; < 1 for all ¢, and a typical hypersphere
is given by all points x such that

P = oo

+ 23 + 23 = 1.

A full investigation of differential geometry in Euclidean spaces of dimension > 4 is beyond the
scope of this course, but some comments about the differential geometry of curves in 4-space seem
worth mentioning.

One can define regular smooth curves, arc length and curvature for parametrized 4-dimensional
curves exactly as for curves in 3-dimensional space. In fact, there are generalizations of the Frenet-
Serret formula and the Fundamental Theorem of Local Curve Theory. One complicating factor
is that the 3-dimensional cross product does not generalize to higher dimensions in a particularly
neat fashion, but one can develop algebraic techniques to overcome this obstacle. In any case,
in four dimensions if a sufficiently differentiable regular smooth curve x is parametrized by arc
length plus a constant and has nonzero curvature and a nonzero secondary curvature (which is
similar to the torsion of a curve in 3-space), then for each parameter value s there is an ordered
orthonormal set of vectors F;(s), where 1 < i < 4, such that F; is the unit tangent vector and the
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sequence of vector valued functions (the Frenet frame for the curve) satisfies the following system
of differential equations, where k; is curvature, ko is positive valued, and the functions k1, k2, K3,
all have sufficiently many derivatives:

Fa == K1 F2

FI2 = — K1 Fl + K2 F3

Fg = —ko Fy + k3Fy4
Fi; = —K3 F3

The Fundamental Theorem of Local Curve Theory in 4-dimensional space states that locally
there is a unique curve with prescribed higher curvature functions x; > 0, k2 > 0 and k3, prescribed
initial value x(sg), and whose Frenet orthonormal frame satisfies F;(sq) = v; for some orthonor-
mal basis {vi, va, v3, v4 }. An online description and derivation of such formulas in arbitrary
dimensions is available at the site

http://www.math.technion.ac.il/ rbrooks/dgeol.7.ps

and a discussion of such formulas in complete generality (i.e., appropriate for a graduate level
course) appears on page 74 of Hicks, Notes on Differential Geometry.
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I1. Closed Curves as Boundaries

Nineteenth century techniques provided powerful means for analyzing curves quantitatively and
locally. However, by the end of the nineteenth century mathematicians and users of mathematics
encountered several questions of a more qualitative nature for closed curves, amy of which involve
the relation between local properties and the behavior of the entire curve.. The difference between
local and global properties is characterized very well on the first paragraph of page 34 of Stoker,
Differential Geometry: A global property is one that cannot be studied by only examining the
curve near each point or parameter value. In most cases, the study of global properties requires
mathematical tools beyond the methods from differential calculus that dominated the first unit of
the course, and frequently these come in one way or another from topology (compare the statement
in the first paragraph of Section 1-7 on page 30 of do Carmo).

Let us agree that a regular smooth closed curve of class C" (where 1 < r < o) is a regular
smooth curve x : [a,b] — R™, where n = 2 or 3, such that for each k¥ < r the k*® derivatives at
a and b are equal (if 7 = oo the inequality should be k < 7). Such a curve is said to be a simple
closed curve if x(t1) # x(t2) for t; # t2 unless t; = a and t5 = b or vice versa; in other words, it
never goes through the same point twice except at the endpoints.

Here is an example of a global property that is “intuitively obvious” but definitely not easy
to prove from scratch. For plane curves, examples strongly suggest that the following statement is
true:

JORDAN CURVE THEOREM. Let C be the image of a reqular smooth closed curve in R2.
Then the points of the plane not in C' are contained in one of two regions A and B such that

(1) if two points are either in A or in B, then there is a regular smooth curve joining them
which lies entirely in A or B respectively,

(73) there is a suitably large disk about the origin that contains one of the regions (the inside
region) and the curve itself, but there is no such disk that contains the other one (the inside region),

(231) if one point lies in A and the other lies in B, then every regular smooth curve joining the
two points must also pass through a point of C.

The best way to understand the meaning of this result is to sit down and draw all sorts of
closed curves in the plane. Each of them looks as if it has an inside region and an outside region,
just like a circle. For a circle it is easy to describe the inside and outside explicitly; one is the set
of all point whose distance from the center less than the radius, and the other is the set of point
whose distance from the center is greater than the radius. In other relatively simple cases one can
similarly describe the inside and outside regions using explicit inequalities (the reader is invited
to try this with some basic examples and also to do so for piecewise smooth closed curves such as
triangles), but in general it is hopeless to search for such descriptions. An excellent example in this
connection is given online at the site

http://ccins.camosun.bc.ca/~jbritton/fishmaze.pdf

which also indicates the relative difficulty of determining whether two points not on the curve
lie in the same or different regions. Clearly one needs additional means to attack such questions
successfully.

Although the validity of the Jordan Curve Theorem was surely believed by many mathemati-
cians and users of the subject for a long time and proofs in wide ranges of special cases were well
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understood, attempts to give a mathematically rigorous proof of a general result along these lines
did not begin until quite late in the nineteenth century, and the first complete proof was given by
O. Veblen during the first decade of the twentieth century. In fact, he proved the result under the
weaker hypothesis that the simple closed curve is merely continuous. A subsequent result of A.
Schonflies yielded much stronger conclusions, including a fairly explicit description of the inside
region associated to the simple closed curve. One objective of this section is to review and augment
the concepts and results from multivariable calculus that are needed to formulate one version of the
Schonflies Theorem. Another is to consider some applications of the Jordan Curve and Schonflies
Theorems to studying the global properties of smooth regular closed curves.

The Jordan Curve Theorem is proved in many topology textbooks. Proofs for smooth curves
using ideas from differential geometry are given in Section 5-7 of the text and Section 16 of the
classic differential geometry text by J. J. Stoker (Differential Geometry, etc.). The Schonflies
Theorem is somewhat more difficult to locate in textbooks; we shall discuss one proof of this result
in the files schoenflies.* that are stored in the course directory, but this proof requires material
from the texts for the Department’s graduate level courses in topology and complex analysis. A
concise but very informative summary of the history of the Jordan Curve Theorem, the Schonflies
Theorem and their analogs in higher dimensions is available online at the site

http://math.ohio-state.edu/ fiedorow/math655/Jordan.html
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II.1: Regions, limits and continuity

(do Carmo, 2-Appendix A, 5-Appendix)

In the discussion of the Jordan Curve Theorem we mentioned the concept of a region without
saying exactly what we meant. The first order of business is to make this precise.

When working with continuous functions of a single real variable, there are only a few reason-
able choices for the sets on which most functions in elementary calculus are defined. Namely, for
most purposes the right sets to consider are intervals of some sort, the main choices being whether
the intervals have left or right hand endpoints or are bounded or unbounded either to the left or
to the right. For continuous functions of two or more variables, the situation is far more compli-
cated even if we restrict ourselves to sets defined by reasonable inequalities (note that intervals are
defined by one or more inequalities, each of which may or may not be strict). Further discussion
and an example appear on pages 838-839 of Calculus (Seventh Edition), by Larson, Hostetler and
Edwards, and Exercises 17-28 on page 846 of that book provide further examples for consideration.

In two or more dimensions, boundary sets can be extremely difficult to analyze. This contrasts
sharply with the 1-dimensional situation, where the boundary generally consists of finitely many
points. Most of the special plane curves described in the links at the beginning of Unit I are
boundaries (or pieces from the boundaries) of fairly decent regions, but one can also go further and
view most of the fractal curves from the references in Section 1.3 as boundaries of regions that are
not all that terrible. Mathematicians want and need to understand just how bad boundaries can be,
and during the past 80 years they have developed a large array of methods for constructing regions
whose boundaries are extremely wild. The subject of fractal geometry deals with some special
types of irregular boundaries that are “not too wild” in an appropriate sense. If one goes from
two dimensions to three, the variety of bizarre possibilities increases dramatically (the previously
mentioned site on the Jordan Curve Theorem has some particularly striking pictures). For these
reasons it is frequently convenient to focus on the interior (non-boundary) points of regions, and
formally one does this as follows:

Definition. Let n = 2 or 3 (actually, everything works for all n > 2, but in this course we are
mainly interested in objects that exist in 2- or 3-dimensional space. A subset U of R™ will be called
a connected open domain provided

(1) for each p € U there is an r > 0 such that the open disk or ball or neighborhood
centered at p with radius equal to r

N,() = {aeR"

Iq—p|<r}

is entirely contained in U,

(17) for each pair of points p and q in U there is a piecwise smooth curve I' defined on [0, 1]
and taking values entirely in U such that I'(0) = p and I'(1) = q.

Most of the subsets of R™ that are defined by finitely many strict polynomial inequalities of the
form p;(y) < a; satisfy (i), and either they satisfy (i7) or else they can be split into pairwise disjoint
pieces such that (7i) holds on each of the pieces; one can also take the functions p; to be standard
well-behaved functions that also involve exponentials, logarithms and trigonometric functions. Of
course, these sets include a vast number of central examples in multivariable calculus.
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It is only necessary to make a few minor adjustments in order to work with limits and continuity
on connected open domains. Once again the basic idea is that a function f is defined for all points
sufficiently close to a pont a in some regions except perhaps at a itself. Since we are dealing with
an open domain U this amounts to saying that there is some r > 0 such that the function is defined
on the deleted neighborhood

N.(a) — {a} = {xeR"

0<|x—a|<r}.

One may then say that
lim f(x) = b

X—a

if and only if
for every € > 0 there is a 6 > 0 such that x # a and |x — a| < ¢ imply |f(x) — b| < e.

Continuity at a then means that

lim f(x) = f(a)

xX—a

exactly as in the (opaque to the beginner) definitions from first year calculus.

Further discussion, including examples, pictures and exercises for review, may be found in
Section 12.2 of Calculus (Seventh Edition), by Larson, Hostetler and Edwards, and pages 115-124 of
Basic Multivariable Calculus, by Marsden, Tromba and Weinstein (full bibliographical information
on these books appears in the online files background. * mentioned at the beginning of these notes.

Limits and continuity for vector valued functions will also play an important role in this course.
The quickest way to address this point is to say that a vector valued function has a limit if and
only if each of its coordinate functions does, and in this case the limit of the vector valued function
is the vector whose coordinates are the limits of the coordinate functions.

VECTOR LIMIT FORMULA. Let F be a vector valued function defined on a deleted neigh-
borhood of a, let f; denote the i*" coordinate function of F, and suppose that

lim fi(z) = b

X—a

holds for all i. As usual let e; denote the it" unit vector in R™. Then we have
n
il_lgFl(.’E) = z; bi e; .m
1=

This has an important consequence:

CONTINUITY AND COORDINATE FUNCTIONS. In the notation as above, assume
that all functions are also defined at a. Then F is continuous at a if and only if for each i, the
coordinate function f; is continuous at a.m
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Alternative approach

Here is another way of looking at limits that is an even more direct generalization of ideas
from single variable calculus. Given a sequence {xj of vectors in R"™ we can define the limit of
the sequence to be the vector whose i coordinate is the limit of the numerical sequence { P;(x}) }
where P; denotes the operation of taking the " coordinate of a vector. We then have the following

characterization:

LIMITS AND SEQUENCES. LetF be a vector valued function defined on a deleted neighbor-
hood of a. Then

limF(x) = b

X—a
if and only if for each sequence of vectors { xy, in the deleted neighborhood of a whose limit is a we
have

lim F(xx) = b .=

k— o0

There is a similar statement for continuity; writing down the precise statement of the result is
left to the reader.m
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I1.2: Smooth mappings

(do Carmo, 2-Appendix B)

From a purely formal viewpoint, the generalization from real valued functions of several vari-
ables to vector valued functions is simple. An n-dimensional vector valued function is specified by
its n coordinates, each of which is a real valued function. As in the case of one variable functions,
a vector valued function is continuous if and only if each coordinate function is continuous.

One reason for interest in vector valued functions of several real variables is their interpretation
as geometric transformations, which map geometric figures in the domain of definition to geometric
figures in the target space of the function. For example, in linear algebra one has linear transfor-
mations given by homogeneous linear polynomials in the coordinates, and it is often interesting
or useful to understand how familiar geometric figures in R? or R3 are moved, bent or otherwise
distorted by a linear transformation. Examples are discussed in most linear algebra texts (for ex-
ample, see Section 2.4 of Fraleigh and Beauregard, Linear Algebra), and the following interactive
wev site allows the user to view the images of various quadrilaterals under linear transformations,
where the user has a wide range of choices for both geometric figure and the transformation:

http://merganser .math.gvsu.edu/david/linear/linear .html

The notion of a geometric mapping is also central to change of variables problems in multivariable
calculus. For example, it one wants to evaluate a double integral over a region A in the Cartesian
coordinate plane using polar coordinates, it is necessary to understand the geometric figure B in
the plane that maps to A under the vector valued function of two variables

Cart(r, ) = (r cos@,r sinf) .

Since many different sets of polar coordinates yield the same point in Cartesian coordinates, it is
generally appropriate to assume that B lies in some set for which Cartesian coordinates are unique
or almost always so. For example, one might take B to be the set of all points that map to A and
whose r and 6 coordinates satisfy 0 < r and 0 < 8 < 27. Some illustrations appear in the following
site; the collection of pictures in the first is particularly extensive and makes very effective use of
different colors.

http://loriweb.pair.com/8polarcoordl.html

omega.albany.edu:8008/calc3/double-integrals-dir/polar-coord-m2h.html

If a vector valued function of several variables is defined on a connected domain in some
R", then one can formulate a notion of partial derivatives using the coordinate functions and the
usual methods of multivariable calculus, but exactly as in that subject such partial derivatives can
behave somewhat erratically if they are not continuous. However, if these partial derivatives are
continuous, then one has the following critically important generalization of a basic result on real
valued functions of several variables:

LINEAR APPROXIMATION PROPERTY. Suppose that U is a connected domain in R"
and that f?U — R™ is a function with continuous first partial derivatives on U. Denote the
coordinate functions of f by fi, and for each x € U let Df(x) be the matriz whose i™ row is given
by the gradient vector V f;(x). Then for all sufficiently small but nonzero vectors h € R™ we have

fx+h) = f(x) + [Df(x)]h + [h|6(h)
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where O(h) satisfies

}}1_1}1%) 6(h) = 0.

The matrix D f(x) is often called the derivative of f at x.

Sketch of proof. For scalar valued functions, a version of this result is established in multivariable
calculus; specifically, in our case this result says that the coordinate functions satisfy equations of
the form

filx+h) = fi(x) + Vfi(x)-h + [h|6(;h)

where 0(h) satisfies

&1_1’1(1) 6;(h) = 0.
By construction, the rows of D f(x) are the gradient vectors of the coordinate functions at x, and
consequently the coordinates of [Df(x)|h are given by the expressions V f;(x) - h. The function
6(h) is defined so that it coordinates are the functions 6;(h), and the limit of 6 at 0 is 0 because
the limit of each 6; at 0 is O.m

The preceding result implies that a vector valued function of several variables with continuous
partial derivatives has a well behaved first degree approximation by a function of the form

g(x+h) = g(x) + Bh

for some m x n matrix B (namely, the derivative matrix).

WARNING. Frequently mathematicians and physicists use superscripts to denote coordinates.
Of course this conflicts with the usual usage of superscripts for exponents, so one must be aware that
superscripts may be used as indexing variables sometimes. Normally such usage can be detected
by the large number of superscripts that appear or their use in places where one would normally
not expect to see exponents.

Smoothness classes. As for functions of one variable, we say that a vector valued function of
several variables is smooth of class C” if its coordinate functions have continuous partial derivatives
of order < r (agreeing that C° means continuous) and that a function is smooth of class C* if its
coordinate functions have continuous partial derivatives of all orders.

The concept of derivative matrix for a vector valued function leads to a very neat formulation
of the Chain Rule:

VECTOR MULTIVARIABLE CHAIN RULE. LetU and V be connected domains in R™
and R™ respectively, let f : U — V be a map whose coordinate functions have continuous partial
derivatives at x, and let g : V — RP be a map whose coordinate functions have continuous partial
derivatives at f(x). Then the composite g° f defined by

9°fly = g(fly)

also has coordinates with continuous partial derivatives at X and
Dg° f](x) = D(g) (f(x)) °Df(x) .

Proof. This follows directly by applying the chain rule for scalar valued functions to the partial
derivatives of the coordinate functions for g° fm
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COROLLARY. In the preceding result, if f and g are smooth of class C", then the same condition
holds for their composite g° f.

Proof. First of all, if the result can be shown for » < oo the case r = oo will follow out because
C® is equivalent to C® for all s < co. Therefore we shall assume r < oo for the rest of the proof.

If h is a g-dimensional vector valued function of p variables of class C", then the derivative
matrix of h may be viewed as a p X ¢ matrix valued function of p variables, or equivalently as a
pg-dimensional vector valued function of p variables, and this function is smooth of class C"~1. We
shall use this fact to prove the corollary by induction on r.

Suppose first that 7 = 1. Then the Chain Rule states that the entries of D [g° f](x) are
polynomials in the entries of D(g) (f(x)) and D f(x). Since Dg, Df and f are all continuous and a
composite of continuous functions is continuous, it follows that D [ge f] (x) is a continuous function
of x.

Suppose now that we know the result for s < r, where » > 2. Then exactly the same sort of
argument applies, with C"~! replacing “continuous” in the final sentence; this step is justified by
the induction hypothesis.a

The Jordan-Schonflies Theorem

We now have the concepts and notation necessary to state this basic result:

JORDAN-SCHONFLIES THEOREM Let x be a regular smooth simple closed curve in the
plane of class C" where r is SUFFICIENTLY LARGE, and let ' be the image of x. Assume for the
sake of definiteness that the domain of definition for x is the interval [0, 2xw|. Then the following
conclusions hold:

(i) The complementary set R? — T consists of two connected domains, ezxactly one of which is
bounded. Furthermore, every point of I' is a boundary point for each of these regions.

(#4) There is a small positive number € for which there is a 1 —1 C™ map y from the open disk
N14c(0) in the plane into R? such that Dy is always invertible, the map y sends N1(0) to the
bounded connected domain in R?—T, and the map y extends x in the sense that y(cost,sint) = x(t)
for all t € [0, 27].

All of the standard theorems on the global properties of plane curves involve this result to
some extent. However, as noted before, the proof of this result requires concepts and methods
that are far beyond the scope of this course, and the the files schoenflies.* explain how one can
prove this result using material in standard graduate level textbooks and one other reference that
is relatively accessible. For the purposes of this course it is important to understand the statement
of the result, but no knowledge of the details of the proof will be needed.n

The proof outlined in the files schoenflies.x* actually yields a somewhat stronger conclusion.

COMPLEMENT. [In the setting of the previous result, suppose that the bounded connected
domain Inside(T) in R? — T contains 0. Then one can choose y so that it is either the identity

map or the reflection S(u,v) = (u,—v) on some disk of radius §, where 6 > 0 is chosen so that
Nos(0) C Inside(T).n

It is natural to ask if there is some way of determining whether y is given by the identity or
the reflection S for points close to 0. One test for this is to compute the sign of the Jacobian of y at
some point; since the Jacobian is nonzero everywhere (the derivative is always invertible), it turns

41



out that it is either positive everywhere or negative everywhere because a continuous function on a
connected domain like N14.(0) has the Intermediate Value Property: If the function takes values a
and b, then it also takes every value that lies between a and b. Since the Jacobians of the identity
and S at O are equal to +1 and —1 respectively, it follows that y is given by the identity near 0 if
the Jacobian is somewhere (hence everywhere) positive, and y is given by the reflection S near 0
if the Jacobian is somewhere (hence everywhere) negative.

If one wants a criterion for the behavior of y that is determined entirely by x, here is one way
of doing so. Choose a parameter value ¢t* such that the function r(¢) = |x(¢)| takes its maximum
value at t*. It is an elementary exercise to show that x'(¢*) is perpendicular to x(¢*), which will
be nonzero (the only way that 0 could be the maximum value for » would be if the curve were
the constant curve whose position at every parameter value is 0, but we know that the tangent
vector is actually nonzero for all choices of t). If J(u,v) = (v, —u) is the standard counterclockwise
rotation through 7/2, this means that

J(x(t*)) = ecx/(t*)

where ¢ = £ 1 and ¢ > 0, and it turns out that the sign ¢ is equal to the sign of the Jacobian of y
at (cost*,sint*), which as we noted before is the sign of the Jacobian everywhere.

Boundary crossing formula

If we are given a simple regular smooth closed curve I' in the plane, then trial and error suggests
that we can determine whether or not two points in R2 — T lie in the same connected domain by
drawing a suitable regular smooth curve A in the plane joining the two points and counting the
number of points where A meets I'; if the number of crossings is even, then the two points should
be in the same connected domain, while if the number of crossings is odd then they should be in
different connected domains. The need for some suitability constraint is clear from very elementary
considerations; in particular, if we consider a tangent line to a circle and take one point from the
tangent line on each of the two rays determined by the point of tangency, then these two points
lie in the exterior but the line segment joining them meets the circle in one points. In order to
avoid such situations, we need to assume that the curve A crosses I' transversely at all points of
intersection; formally, this means that if A(t1) = I'(¢2) then the tangent vectors A’(t1) and IV(¢2)
are linearly independent.

This intuitive idea can be made mathematically precise using the Jordan-Schonflies Theorem.

TRANSVERSE CROSSING CRITERION. Let I be a reqular smooth simple closed curve
in R2, let u and v be points in the complement of T, let A be a reqular smooth curve joining u to
v, and assume that the curves I' and A meet in finitely many points such that each represents a
transverse crossing. Then u and v lie in the same connected domain associated to R%2 — T if the

number of crossings is even, and they lie in opposite connected domains if the number of crossings
s odd.

Note. The number of crossings is given by the number of parameter values ¢ for A such that
A(t) lies on T'; thus if A meets I' at the same point for two separate values of ¢ we have two distinct
crossings to consider rather than only one.

Proof. The proof proceeds by induction on the number n of crossings. Suppose that n = 0. Then
both end points of the curve must lie in the same connected domain in R? — T, for if they belonged
to different domains then the curve would meet I' somewhere.
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Suppose now that we know the result for curves with (n — 1) crossings, and suppose that A
has n crossing points. Write these crossing points in order as follows:

a < t; -0 < tpr < t, < b

Choose c¢ such that ¢ € [t,—1,t,]. Then the restriction of A to [a,c| has (n — 1) crossings so the
induction hypothesis implies that its endpoints lie in the same connected domain if (n — 1) is even
and in different domains if (n — 1) is odd. By the case n = 0 we also know that for every t € (c,1,)
the point A(t) lies in the same connected domain as A(c), and for every t € (t,,b) the point A(t)
lies in the same connected domain as A(b). In order to complete the inductive step, we need to
show that the points of the first type lie in a different connected domain than the one containing
the points of the second type.

Let @ be the inverse function to the mapping y which gives a well behaved extension of I' to
the disk of radius 1 + € and exists by the Jordan-Schonflies Theorem. Since A(t,) lies on T, by
continuity there is a small constant A > 0 such that the restriction of A to (¢, — h,t, +h) lies in the
image of y; let A; be the curve in the standard disk of radius 1 + ¢ about the origin that is given
by the composite of the restriction of A to (¢, — h,t, + h) with the inverse transformation ®. The
claim in the last sentence of the preceding paragraph will follow if we can show that A;(t — %h)
and Aq(t+ % h) lie on opposite sides of the standard unit circle defined by the equation z2 +y? =1
(recall that this is the image of I" under ®). The latter in turn will hold if we can show that the
derivative of |A|? at t, is nonzero (this means that the distance from the origin is either decreasing
or increasing at t,, and we know that |A1(¢,)| = 1 because A meets I' at this parameter value).

Let w denote the tangent vector to I' at the point A(¢,). By the assumption on transverse
crossings we know that A’(¢,,) and w form a basis for R%. Since ® is a smooth inverse to the smooth
function y, where the derivative of the latter is always invertible, it follows that the derivative of
® is also invertible. This implies that A(¢,) and the tangent vector to the unit circle at the
intersection point also form a basis for R?. Now the tangent vector to the unit circle is a scalar
multiple of J(A;(t,) ), where J is the usual counterclockwise rotation through 7/2, and the linear
independence of A{(t,) and J(A;(t,)) is equivalent to the nonvanishing of the dot product of
A} (t,) and A;(t,). Since the derivative of |A;|? is equal to

2 (A1(t) - A1(2))
it follows that this derivative is nonzero at ¢ = t¢,,, and by the preceding remarks this shows that

the points of A at parameter values t,, + % h lie in different connected domains in R%2 —T'. As noted
before, this completes the proof of the inductive step.m
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I1.3: Inverse and implicit function theorems

(do Carmo, 2-Appendix B)

The following topics are often discussed very rapidly or not at all in multivariable calculus
courses, but we shall need them at many points in the discussion of surfaces. The texts for the
Department’s courses on single and multivariable calculus courses (Larson-Hostetler-Edwards and
Marsden-Tromba-Weinstein) do not discuss the first result at all for functions of several variables,
and only special cases of the second result are treated in Marsden-Tromba-Weinstein. However,
statements and proofs of the results are contained in the text for the Department’s advanced under-
graduate course on real variables (Rudin, Principles of Mathematical Analysis, Third Edition). A
statement of the one result (the Inverse Function Theorem) also appears on page 131 of do Carmo.

BACKGROUND ON MULTIPLE INTEGRATION. Since everyone registered for this course has
already taken a course that covered multiple integration and this material is really needed in order
to discuss several topics in differential geometry properly, we shall assume familiarity with such
material henceforth. The latter will include most material from a typical multivariable calculus
course or sequence through at least some of the main theorems from vector analysis; Green’s The-
orem and the basic principle for recognizing gradient vector fields in two dimensions (see page 465
of the text by Marsden-Tromba-Weinstein) will definitely be needed, but the Divergence Theorem
and Stokes’ Theorem probably will not. Files describing the background material (with references
to standard texts used in the Department’s courses) is included in the course directory under the
names background?2. x.

We begin the discussion of material with the Implicit Function Theorem. The simplest form
of this result is generally discussed in the courses on differential calculus. In these courses one
assumes that some equation of the form F(x,y) = 0 can be solved for y as a function of z and then
attempts to find the derivative 3y'. The standard formula for the latter is

_ (&)
do (o)

where of course this formula can be used only if the denominator is nonzero. In fact if we have a
point (a, b) such that F'(a,b) = 0 and the second partial of F' at (a,b) is not zero, then the simplest
case of the Implicit Function Theorem proves that one can indeed find a differentiable function
f(z) for all values of z sufficiently close to a such that f(a) = b and for all nearby values of = we
have

Q|
g5

i _

|
&5

y=/f(z) & Flz,y)=0.
Here is a general version of this result:

IMPLICIT FUNCTION THEOREM. Let U and V be connected domains in R™ and R™
respecitvely, and let f : UxV — R™ be a smooth function such that for some p = (a, b) € UxV we
have f(a, b) =0 and the partial derivative of f with respect to the last m coordinates is invertible.
Then there is an v > 0 and a smooth function

g: Nr(p) -V
such that g(a) = b and for all u € Uy we have f(u,v) =0 if and only if v = g(u).=
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Explanations.

(1) We view the cartesian product U XV as a subset of R”*™ under the standard identification
of the latter with R™ x R™.

(2) The partial derivative of f with respect to the last m coordinates is the derivative of the
function f*(v) = f(z,v), and smooth means smooth of class C" for some r such that 1 < r < co.

Although it is possible to prove simple cases of this result fairly directly, the usual way of
establishing the Implicit Function Theorem is to derive it as a consequence of another important
result known as the Inverse Function Theorem. We shall be using this result extensively throughout
the remainder of the course.

Once again it is instructive to recall the special case of this result that appears in single variable
calculus courses. For real valued functions on an interval, the Intermediate Value Property from
elementary calculus implies that local inverses exist for functions that are strictly increasing or
strictly decreasing. Since the latter happens if the function has a derivative that is everywhere
positive or negative close to a given point, one can use the derivative to recognize very quickly
whether local inverses exist in many cases, and in these cases one can even compute the derivative
of the inverse function using the standard formula:

9=17 = g = f'(9(y))

Of course this formula requires that the derivative of f is not zero at the points under consideration.

If we are dealing with a function of n variables whose values are given by n-dimensional vectors,
one has the following far-reaching generalization in which the nonvanishing of the derivative is
replaced by the invertibility of the derivative matrix, or equivalently by the nonvanishing of the
Jacobian:

INVERSE FUNCTION THEOREM. Let U be a connected domain in R™, let a € U, and
let f:U — R™ be a C" map (where 1 < r < o0) such that Df(a) is invertible. Then there is a
connected domain W C U containing a such that the following hold:

(1) The restriction of f to W is 1 — 1 and its image is a connected domain V.

(74) There is a C" inverse map g from V to some connected domain Uy C U containing a such
that g(f(x)) =x on Uy.m

For the purposes of this course it will suffice to understand the statements of the Inverse and
Implicit Function Theorems, so we shall restrict attention to this point and refer the reader to
Rudin for detailed proofs; a similar treatment of this material appears in Unit IV of the following
set of notes for another course that are available online:

http://www.math.ucr.edu/~res/math205A/prelimtext. *

Finally, here are online references for the proofs of the Inverse and Implicit Function Theorems.
These are similar to the proofs in the previous online reference.

http://planetmath.org/encyclopedia/Proof0fInverseFunctionTheorem.html

http://planetmath.org/encyclopedia/Proof0fImplicitFunctionTheorem.html
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Change of variables in multiple integrals

In multivariable calculus courses, one is interested in changes of variables arising from smooth
mappings that are 1-1 and onto with Jacobians that are nonzero “almost everywhere.” The stan-
dard polar, cylindrical and spherical coordinates are the most basic examples provided that one
restricts the angle parameters 6 and ¢ (in the spherical case) so there is no ambiguity; the Jacobian
condition is reflected by the fact that this quantity is nonzero for polar and cylindrical coordinates
if 7 # 0, and it is nonzero for spherical coordinates so long as p?sin¢ # 0. Further discussion
of this result in the general case appears on pages 333-336 of the background reference text by
Marsden, Tromba and Weinstein, and on pages 995-1001 of the background reference text by Lar-
son, Hostetler and Edwards. Exercises 37-40 on page 339 of the first reference and exercises 60-61
on page 1004 of the second are recommended as review. For the sake of completeness, here is a
statement of the basic formula that applies to all dimensions (not just 2 and 3).

CHANGE OF VARIABLES FORMULA. Let U andV be connected domains in R™, and let
f:U =V be a map with continuous partial derivatives that is 1 — 1 onto has a nonzero Jacobian
everywhere. Suppose that A and B are “nice” subsets of U and V respectively that correspond under
f, and let h be a continuous real valued function on V. Then we have

/Bh(v)dv - /Ah(f(u))\deth(u)|du -

As in the case of polar, cylindrical and spherical coordinates, the result still holds if the
Jacobian vanishes on a set of points that is not significant for computing integrals (in the previous
terminology, one needs that the Jacobian is nonzero “almost everywhere,” and this will happen if
the zero set of the Jacobian is defined by reasonable sets of equations).

One can weaken the continuity assumption on h even more drastically, but this requires a more
detailed insights into integrals than we need here.n

There is an extensive discussion of the proof of this result along with some illustrative examples
in Section IV.5 of the book Advanced Calculus of Several Variables, by C. H. Edwards, and a
mathematically complete proof appears on pages 252-253 of the previously cited book by Rudin.
As noted on page 252 of Rudin, this form of the change of variables theorem is too restrictive for
some applications, but in most of the usual applications one can modify the proof so that it extends
to somewhat more general situations; generally the necessary changes are relatively straightforward,
but carrying out all the details can be a lengthy process.

Remark on the absolute value signs. In view of the usual change of variables formulas for
ordinary integrals in single variable calculus, it might seem surprising that one must take the
absolute value of the Jacobian rather than the Jacobian itself. Some comments about the reasons
for this are given in the middle of page 252 in Rudin’s book. In fact, we dealt specifically with this
issue in Section 1.3, when we proved that arc length remains unchanged under reparametrization.
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II.4: Global properities of plane curves

(do Carmo, §§1-7, 5-7)

In these notes we shall only consider two global results explicitly, giving more details than
do Carmo for one and a different perspective on another. Most global results involve integals in
one way or another, and this is one reason for the choices made here. Numerous other important
global results on curves (including Mukhopadhyaya’s Four Vertex Theorem, the Cauchy-Crofton
Theorem, Fenchel’s Theorem and the Fary-Milnor Theorem) are discused in Sections 1-7 and 5-7
of do Carmo. The following online notes also cover some of these topics with some additional details
and motivation.

http://ada.math.uga.edu/teaching/math4250/Html/Four-vertex.htm

http://ada.math.uga.edu/teaching/math4250/Html/IntegralGeom.htm

The Isoperimetric Problem

As noted in do Carmo, the Isoperimetric Problem is one of the oldest questions about the
global properties of plane curves, going all the way back to classical Greek geometry in some form.
The basic question is to find the the maximum area that can be enclosed by a simple closed curve in
the plane with a given length. If one looks at various examples, it becomes apparent that maximum
area is realized for circles and not for any other curves. The result itself was first demonstrated
rigorously by K. Weierstrass in the nineteenth century using fairly complicated analytical methods,
and subsequent research led to simplified proofs of a more geometrical nature.

ISOPERIMETRIC INEQUALITY. LetC be a regular smooth simple closed curve in the plane
of length L, and let A be the area of the union of C with its inside region (the bounded connected
domain in the plane determined by the complement of C). Then L? — 4w A <0, and equality holds
if and only if C is a circle.

As noted on page 35 of do Carmo, this result also holds if the smoothness hypothesis is
weakened to piecewise smoothness.

Proof. The first step is a reduction to the special case where C' lies in a vertical strip of the form
|z| < r, it meets each of the boundary lines z = + r at some points, and it lies in the region exterior
to the standard circle defined by the equation z2 + y? = 2. To see this, follow the idea in the
picture on page 34 of do Carmo and let P and @ be the maximum values for the first coordinate
of x(t), so that the maximum and minimum first coordinates of points on the curve are P and @
respectively. It follows that the curve is contained in the vertical strip defined by the inequalities
@@ < z < P and no strip that is properly contained in the latter. Since the simple closed curve is
bounded, there is a lower bound B on its second coordinate, and one can find a circle I" that lies
in the half plane defined by the inequality y < B — 1 and is tangent to the vertical lines defined by
the equations x = @ and z = P. If z; be the center of ' and T'(v) = v — z¢, denotes translation by
—z¢, then the image of " under T is just the standard circle described above, where 2r = P — Q).
Since arc length and area do not change under the translation 7', the theorem will be true for
the original curve C if it is true for its translate T'(C); because of this, we shall assume for the
remainder of the proof that we are working in the special case.
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Choose a parametrization x(s) = (u(s),v(s)) of C by arc length so that x(0) = x(L) has first
coordinate r and x(s1) has first coordinate —r for suitably chosen s;.

We have very little a priori information about the connected domain that a regular simple
smooth closed curve C' bounds, but fortunately Green’s Theorem provides several line integral
formulas for the area of this region:

1
A = —/ ydr = /wdy = —/ xdy — ydz
c c 2 Jo

We want to apply these formulas both to the original curve C' and to the circle I'. However, we
must be a bit careful about how we apply the formula to I' because we need a somewhat exotic
parametrization of the latter that is related to the parametrization of C. Specifically, if consider
the parametrization of I' over [0, L] of the form w(s) = (X (s), Y(s)) such that X(s) = u(s) (i.e.,
the same coordinate as in the parametrization of x) and

Y(s) = £vr?—(u(s))

where the sign is positive if s € [0, s1] and negative if s € [s1, L]; both sign choices yield the same
value at s; because u(s;) = —r implies Y (s1) = £0 = 0. This is not a regular smooth parametriza-
tion, but nevertheless we can still use standard change of variables formulas from ordinary calculus
to conclude that the area enclosed by T', which is of course equal to 72, is still given by the line
integral — [.ydz.

The areas bounded by C and ' are A and 772 respectively, and therefore the previously
mentioned consequences of Green’s theorem and the preceding paragraph show that the sums of
these areas is equal to

At omr? = /Ca:dy —/Fyd:c - /OL w(s) v (s) ds — /OL ¥ (s) '(s) ds .

A standard integral estimate yields the inequality

/0 (u(s)'(s) — Y(s)u'(s) ds < / lu(s) v'(s) — Y(s)u!(s)] ds

and since the integrand of the right hand expression satisfies

[u(s) v'(s) = Y(s)u' ()] < Vu(s)? +Y ()2 /(w/(s))? + (v/(5))

by the Schwarz inequality, we may use the facts that

o= |w) = Vul(s)? +Y(s)? L= K@) = V()2 + ()2

to conclude that the original integral is < r L.

We now need to use a result known as the inequality of arithmetic and geometric means, which
states that for all nonnegative real numbers p and g we have

VP < 1%
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with equality if and only if p = ¢; in fact, there is an inequality of this sort if we have a set of n
nonnegative real numbers for an integer n > 2, but when n = 2 the inequality is a straightforward

consequence of the inequality
2
WVp—va)" = 0

which reduces to an equation if and only if p = ¢q. If we apply this to the discussion in the preceding
paragraphs, we obtain the inequalities

rL >A + 7r2>2VAnr?

and the inequality L2 > 47 A follows immediately from this.

We now need to think about what happens if equality holds; i.e., we have L? = 47 A. Since
we know that the inequality of the means becomes an equality if and only if the two variables are
equal, it follows that we must have A = w72, which in turn implies that L = 27 r. Furthermore, if
equality holds then the special case of the Schwarz inequality given by

[u(s)v'(s) — Y(s)u'(s)] < Vu(s)? +Y ()2 /(w/(s))? + (v/(5))

must be an equation for all choices of s. The resulting equation implies

u(s)u'(s) + Y(s)v'(s) = 0

which in turn implies that x'(s) = (u'(s), v'(s) ) is a scalar multiple of (—Y'(s), u(s) ). Since the first
is a unit vector and the second has length r, it follows that u(s) = erv'(s) and Y (s) = —eru/(s),
where e = + 1.

The next step is to prove a similar equation where the first and second coordinates are reversed.
Roughly speaking, this follows by interchanging the roles of the first and second coordinates. We
shall not go through the entire argument here, but instead we shall mention some key points in the
argument. We can find a pair of horizontal lines y = P’ and y = Q' such that C is tangent to each
line and is contained in the horizontal strip defined by the inequalities Q' < y < P’. Now choose
r’ such that 27/ = P’ — Q’. As before, we next replace C' by some translate C# such that C# is
tangent to the horizontal lines y = £/, it lies in the strip defined by the inequality |y| < 7/, and
it is reasonably far away from the circle centered at the origin with radius /. The parametrization
(U, V) for C# is related to the parametrization (u,v) for C by the equations U = u+a, V = v+b for
suitable real numbers a and b. The arguments above then show that A = 7(r’)2 and L = 277/, and
it follows immediately that » = /. Proceeding further, we obtain the equation |V (s)| = 7' |[u/(s)|,
and since r = r’ this implies the desired equation |V (s)| = r |[u'(s)|. It then follows that

\/u(s)z-l-(v(s)-I-b)2 = u(s)2+V(s)2 = rv(s)24+u(s)? = r-1 = r

and hence C is contained in the circle defined by the equation z2 + (y + b)? = r2.

Finally, we need to check that every point of this circle lies on C. Consider first the points
of the form (£, b) We know that the first coordinates of u are equal to =7 when s = 0 and s;.
Suppose now that we are given some point on the circle whose first coordinate s* lies in the open
interval (—r,7). Since the first coordinate of x is +r when s = 0 or L and —r when s = s1, by the
Intermediate Value Theorem we know that there are parameter values wg € (0, s1) and w;y € (s1, L)
such that the first coordinates of x(wp) and x(w;) and are equal to s*. Since x is a simple closed
curve, these parameter values must correspond to two separate points on the circle whose first
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coordinate is s*. Since there are exactly two points on the circle with this first coordinate, it
follows that C' must contain both of these points; since s* was arbitrary, it follows that C must
contain every point in the circle.s

Clurves of constant width. At one step in the proof appearing in do Carmo, it is noted that in
some sense a curve with maximum area has constant width; specifically, given any direction vector
in the plane, one can find two parallel lines in that direction so that the curve is entirely contained
in the closed region determined by these lines and the points between them, and in fact the curve
is tangent to each of these lines at some points. The only smooth curves with constant width are
circles, but if one looks more generally at piecewise smooth curves there are many examples (for
example, the curved triangles that the State of California puts on its highway signs that give the
numbers of state highways). Here are some online references with pictures of such figures; one
of the pictures is a moving demonstration of how such a curve is used to construct the so-called
Wankel automobile engine:

http://mathworld.wolfram.com/CurveofConstant Width.html
http://mathworld.wolfram.com/ReuleauxTriangle.html
http://www.keveney.com/Wankel.html
http://www.maa.org/mathland/mathland 10__21.html
http://www.cut-the-knot.org/do_you_know/cwidth.shtml
http://mathworld.wolfram.com/ReuleauxPolygon.html
http://www.cut-the-knot.org/Curriculum/Geometry/CWStar.shtml

http://pauillac.inria.fr/algo/csolve/rx.pdf

The Hopf Theorem of Turning Tangents

We shall approach this result from a slightly different perspective than the one given in do
Carmo. Both proofs involve the notion of net angular displacement for a curve. Although the
result is first stated on page 37 in Section 1-7 of do Carmo, the proof is not given until Section 5-7
because it depends upon some constructions from Section 5—6.B. This construction is important,
but it takes some effort to justify it and therefore we shall give another proof of the Theorem on
Turning Tangents that uses the Jordan-Schonflies Theorem and Green’s Theorem.

The net angular displacement measures the extent to which a curve winds around the origin
in a counterclockwise sense (hence the winding is clockwise if this quantity is negative); in order to
discuss this concept, it is necessary to assume that the curve never passes through the origin. If we
are given a continuous curve z defined on the interval [a, b] and taking values in R? — {0}, then this
number can be defined in two steps, first in special cases and then in general, as follows: Suppose
first that the image of z lies in an open half plane in R? defined by one of the inequalities u; > 0 or
u; < 0 where 4 = 1 or 2 and u;, is one of the cartesian coordinates of a point in R2. In these cases
polar coordinates define a smooth C*® maps P from strips of the form (0, +o0) x (K, K +7) C R2
(where K is an integral multiple of 7/2 that depends upon the specific half plane) onto the given
half plane; note that there are infinitely many choices of K for each half plane, and every pair of
choices differs by an integral multiple of 27. Over the strips described above, the polar coordinate
map P(r, #) is 1-1 and onto, and it has a smooth inverse; in particular, the second coordinate
of P~! is a function such that tanf = us Juy if the half plane is bounded by the first coordinate
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axis and cot @ = uq/ug if it is bounded by the second coordinate axis. In either case, it is natural
to define the net angular displacement of y to be the difference between the second coordinates
of P~(y(b)) and P~!(y(a)). We have already noted that there are different possible choices for
P, and there are corresponding possibilities for its inverse, but the second coordinates for different
choices of the inverse function differ by a constant (namely, an integral multiple of 27) and therefore
the difference in values does not depend upon the particular choice of P. Similarly, if a curve lies in
two distinct half planes of a given type (one with respect to the first coordinate axis and another
with respect to the second), then the same considerations show that the net angular displacement
does not depend upon the choice of half plane.

For a general curve y whose image does not lie in one of these half planes, one can define
the net angular displacement as follows: A fundamental property of continuous functions called
uniform continuity implies that we can find a § > 0 such that if jw; — wo| < J then at least one
of the half planes from the previous paragraph contains both y(w;) and y(ws). A proof of this
fact for smooth curves is described in one of the exercises for this section. Therefore, if we take a
partition II of [a, b] into subintervals whose endpoints are given by consecutive points in the chain

a = tg < t < - < ty = b

and each difference t; — t;_1 is less than ¢, then the curves y; formed by restricting y to the
subintervals [t;_1, ¢;] will all have images that lie in one of the given half planes, and a natural
candidate for the net angular displacement of y would be to take the sums of the net angular
displacements for the curves y;.

In order to do this, we need to check two things. First, we need to show that at least one such
partition exists. This is relatively easy; all we have to do is choose N such that

A = )

and take t; = a +1¢ A, so that each of the NV subintervals has length A < §. Knowing that suitable
partitions exist, the second issue is to verify that this sum does not depend upon the choice of
partition. Checking this second condition in general is somewhat nontrivial. A proof for arbitrary
continuous curves is given in another of the exercises for this section, but in the smooth case one
can deal with the problem using line integrals and the following observation,

INTEGRAL FORMULA, FIRST VERSION. Let C be a regular smooth curve parametrized
by y, and assume that C lies in one of the four half planes described above. Then the net angular
displacement of C is given by the line integral

/ zdy — ydx
c TrHy*

Proof. Since the polar coordinate map P has a smooth inverse function, we may express y in
polar coordinates:

y(#) = P(r(), 6@))

If we substitute this into the standard formula for computing line integrals we see that the integral

is equal to
b
/ o' (t) dt
5
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which of course is equal to 8(b) — 0(a).m

INTEGRAL FORMULA, SECOND VERSION. Let C be a reqular smooth curve which is
parametrized by y, and assume that C lies in R? — {0}. Then the net angular displacement of C
is given by the same line integral as above.

Proof. This follows from the integral formula for the special case in the first version along with
the standard “concatenation identity”

N
F-dy = / F-dy
/c ; l0)

where C(7) denotes the restriction of C to the subinterval [t;_1, ¢;].m

For each parameter value ¢ one can also define the net angular displacement «(t) up to param-
eter value ¢ by applying the integral formula to the curve I'(¢) given by the restriction of I' to the
subinterval [a,t]. The previous integral formulas then yield the following description of a(t) as an
ordinary definite integral:

— y(u) 2’ (u)) du
z(u)? +y(u)? '

We can now state and prove Hopf’s Theorem:

THEOREM OF TURNING TANGENTS. Let x be a regular, sufficiently differentiable,
simple closed curve in R? and let v(t) = x/(t), so that the image of v lies in R? — {0}. Then the
net angular displacement of v is + 2.

Some motivation and illustrations for this result appear on pages 36-37 of do Carmo.

Proof. If two curves differ by a translation, then their derivative functions are equal and therefore
their net angular displacements will be equal. Therefore if z is a point which lies in the ‘inside
region” associated to the curve (more formally, the connected domain in its complement which
is bounded), then the theorem will be true for x if and only if it is true for the translated curve
x* = x — z. Since 0 belongs to the inside region for the translated curve, it follows that the proof
reduces to the case where 0 is contained in the inside region associated to the curve.

As in the Jordan-Schonflies Theorem, it is convenient to assume that the curve is parametrized
over [0, 2 7]; this can always be achieved by a change of coordinates. The Jordan-Schonflies Theorem
then implies the existence of a small positive number ¢ for which there is a 1 — 1 C" map

Y :Ni..(0) = R?

such that DY is always invertible, the map Y sends N;(0) to the bounded connected domain in
R? — T, the map Y extends x in the sense that Y (cost,sint) = x(¢) for all ¢ € [0, 2], and Y is
either the identity map or the reflection S(u,v) = (u, —v) on some disk of radius §, where § > 0 is
chosen so that No5(0) C Inside(T).

The significance of Y is that it yields a continuous family of closed smooth curves
g-(t) = Y(r cost, r sint)

with each defined on [0, 27], such that g; = x and g5 is a standard parametrization of a circle of
radius J in either the counterclockwise or clockwise sense, depending on the sign of the Jacobian
of Y at the origin. Each of these curves is regular because

Y oY
g (t) = =Y(rcost,rsint) = — ——rsint + ——r cost

ot ou ov
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and the last expression is nonzero because (i) the invertibility of DY implies that the partial
derivatives of Y with respect to u and v are linearly independent, (i%) at least one of the coefficients
r cost and r sint is nonzero.

For each value of r in [d, 1] it is meaningful to discuss the net angular displacement of g/.. At
first it may seem that this only complicates the situation by shifting attention from one curve to
an infinite family of curves, but the key insight in the proof is that the exact opposite is true. As
preliminary evidence for this, consider the net angular displacement for gj. The latter is given by
a relatively standard parametrization (—d sint, =4 cost), and if T'(d) is the closed curve defined
by gj, it is a standard exercise in line integrals to check that the net angular displacement for this

curve is equal to
dy — yd
Ts) Tty

The crucial idea is to show that one obtains exactly the same value for ALL curves in the family
g,., and this will be shown by a combination of geometric and analytic observations.

Write the smooth vector valued function Y (r cost,  sint) in coordinate form as

(p(r,1), a(r,1))

and let pa, g2, p22 and g 2 represent first and second partial derivatives with respect to the second
variable. Then the function

t
Pz(Ta U) q2 2(7”, U) - Q2(T,U)P2 2(7"7 U)
t) = 2 2 d
art) = [ pA(ru) T gi(ru) u

gives the net angular displacement for g/ up to parameter value ¢, and «(r,2w) is just the net
angular displacement for g/. Since everything inside the integral is continuous, we know that
a(r,t) is a continuous function of 7 and ¢. Furthermore, we already know that a(d,27) = £ 27 and
the objective is to find (1, 27). We shall do this by showing that the function a(r, 27) is constant.

By definition, the angle between g/ (0) and g/.(¢) is given by «(r,¢) up to an integral multiple
of 2. Since g/.(0) = g,.(2), it follows that for each r the value of the continuous function

a(r, 2m)

n(r) = 27

is an integer. By continuity there is a positive constant h(r) so that if s € (r — h(r), r+ h(r) ) then
|n(s) —n(r)| < 1, and since two distinct integers differ by at least +1 it follows that n(s) must be
equal to n(r) in these cases; in other words, n is locally constant.

To see that n is globally constant, we need the following important fact about a continuous
function f on a closed interval [a,b]: For each value ¢ = f(v) realized by the function, there is
a maximum value of X € [a,b] for which f(X) = c¢. Applying this to n and n(d), we obtain a
maximum value M such that n(M) = n(d). If M = 1 then we are done. On the other hand,
if M < 1 then by the preceding paragraph we know that we can find some L > M such that
n(L) = n(M), and this means that M cannot be strictly less than 1.m
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I11. Surfaces in 3-dimensional space

In Unit I we discussed two approaches to studying a curve, either by viewing it as a set of points
in the plane or 3-dimensional space, or in terms of a parametrization. Similar considerations apply
to surfaces in R2. Intuititvely speaking, a surface should be a subset that resembles a portion of
the plane near every point, and this will be the case if we have a suitable description of the surface
by parametric equations defined on some connected domain in R2. However, as noted in do Carmo
there is a significant difference. In the case of curves, it is often best simply to think of the curve
in terms of the vector valued function given by a parametrization. On the other hand, for surfaces
there is more of a balance between them as subsets of 3-dimensional space and objects given by
their parametrizing functions.

One of the ultimate goals of this course is an analog of the Fundamental Theorem of Local
Curve Theory, which states that many regular smooth curves in R3 are completely determined
near a point by their curvatures and torsions. The corresponding result for surfaces may be viewed
as a statement that a surface in R3 is determined by a pair of 2 x 2 matrix valued functions
known as the first and second fundamental forms; in fact, both of these forms take values in the
set of symmetric 2 X 2 matrices, and the possibilities for the first fundamental form are even more
significantly restricted. This unit develops many of the basic concepts that are needed to study the
differential geometry of surfaces, including the formulation and to prove a fundamental theorem
for local surface theory. As in the case of curves, much of this is a generalization of material from
standard multivariable calculus courses.

III.1: Mathematical descriptions of surfaces

(do Carmo, §§2-2, 2-3)

Some of the most basic examples of curves in R? are given by the graphs of differentiable
functions, and they can be described either as the set of points (z,y) where y = f(z) or else by
means of the parametrization r(t) = (¢, f(¢) ). Likewise, some of the most basic examples of surfaces
in R3 are given by the graphs of differentiable functions, and they can be described either as the set
of points (z,y, z) where z = f(z,y) or else by means of a parametrization S(u,v) = (u, v, f(u,v)).

If F' is a function of two variables defined near (a, b) so that F(a,b) = 0 but the second partial
derivative at (a,b) is nonzero, then the Implicit Function Theorem implies that locally one can
solve the equation F(z,y) = 0 for y in terms of z, and it follows that locally the set F/(z,y) =0
is the image of a parametrized curve. More generally, if we know that VF(z,y) # 0 whenever
F(z,y) = 0, then at each point we can locally solve for one coordinate in terms of the other,
and using these solutions one can generally find a parametrization of the level set defined by the
equation F'(z,y) = 0 which makes the latter into a regular smooth curve, at least if the level set
consists of only one connected piece (this happens for the circle defined by z? + 42 = 1 but not for
the hyperbola y? — 22 = 1).

Similarly, if F' is a function of three variables such that VF(z,y,z) # 0 whenever F(z,y) = 0,
then at each point we can locally solve for one coordinate in terms of the other two, so we have
local parametrizations at each point. However, it is far more difficult to put together a global
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parametrization even if the level set defined by F'(z,y,2) = 0 consists only of one connected piece.
Perhaps the most basic example of this occurs for the unit sphere S?, which corresponds to the
equation z2 + y2 + 22 = 1. It is easy to check the gradient condition for this example, and it is
also easy to see write down explicit solutions for one variable in terms of the other two. However,
it is not easy to write down a parametrization in elementary terms. The obvious parametrizations
that one gets at different points cannot be pieced together as easily as one can piece together
parametrizations for curves. In the case of curves, it is enough to match things up at boundary
points of the intervals on which the partial parametrizations are defined , but the boundary sets
for the two dimensional planar regions cannot be dealt with so easily. Another point to consider is
that the parametrization of S? by spherical coordinates

(0, ¢) = (cosd sing, sinf sin¢, cos ¢)

is somewhat less regular than the corresponding parametrization of the unit circle as (cos 6, sin )
because it sends the infinite set of all parameter pairs with ¢ = 0 to the north pole, and it also
sends the infinite set of all parameter pairs with ¢ = 7 to the south pole. Just as we want
parametrizations for curves that are regular in the sense that their derivatives are zero, we shall
also want parametrizations for surfaces that are regular in the sense that every directional derivative
at every point is nonzero. These considerations suggest that we need more flexibility with surface
parametrizations than we had for curve parametrizations. All of this will be made mathematically
precise in the next section.
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IT1.2 : Parametrizations of surfaces

(do Carmo, §§2-2, 2-3)

The first objective is to define a regular smooth surface parametrization. This definition is
very close to the definition of a regular smooth parametrization for a curve.

Definition. A regular smooth surface parametrization of class r > 1 is a smooth C" map x from
a connected domain U in R? to R? such that the 2 x 3 matrix Dx(u,v) has maximum rank (which
equals 2) for all (u,v) € U.

The condition on the matrix is equivalent to the nonvanishing of the cross product of the
partial derivative vectors

ox ox
_ X —_
ou ov
at all points of U, and in fact this is the form of the condition that is most often used in the

classical differential geometry of surfaces. Another consequence of the matrix condition is that the
directional derivatives of x in all directions and at all points are nonzero.

The following result is not always mentioned in differential geometry texts, but it will be helpful
for our purposes.

NORMAL THICKENING PRINCIPLE. Letx be a regular smooth surface parametrization

of class  as above, let
ox 0x

y(Sat) = %(S,t) X %(Sat)
for (s,t) € U, and let ®(s,t,w) = x(s.t) + wy(s.t) for (s.t) € U and w € (—h,h) for some small
h > 0. Then for each (s.t) there is an € > 0 (depending on (s.t) ) such that the following conclusions
hold on the disk

D = {(z,y,2) ER® | (z—s) >+ (y—t)2+22 < £} :

(1) The restriction of ® to W is 1 — 1 and its image is a connected domain V.
(i%) There is a C" inverse map ¥ from V to some connected domain Uy C U containing (s.t,0)
such that ¥(®(x,y,2)) = (z,y,2) on Uy.m

The map ® may be viewed as a thickening of x such that the vertical line segments (sg, o, w)
— where the first two variables are held constant — are mapped to curves that are in some sense
perpendicular (or normal) to the surface at the point x(sg, %)

Proof. By the Inverse Function Theorem it suffices to show that D®(s,t,0) is invertible for all
(s.t) € U, or equivalently that the Jacobian of ® at these points is always nonzero.

Let x,, and x,, denote the partial derivatives of x with respect to the first and second variables
respectively. Then the Jacobian of @ at (s,t,0) is equal to the value of the vector triple product

[Xu, Xy, Xy X xv]

at (s,t). But the triple product is equal to |x, X X, |?; as noted above, since Dx has rank 2 its
columns — which are x,, and x, — are linearly independent, so that the cross product x, X x,
is nonzero for all (s,t) € U, and therefore its length is positive for all such points. Therefore the
Jacobian of @ is positive at all points (s, ¢,0) such that (s,t) € U.m
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EXAMPLE. Consider the parametric surface describing a part of the sphere by the spherical
coordinate map ¥ described above where both # and ¢ are assumed to lie in (—m, 7). The image of
this function is the set of all points on S? except for the great circle arc through (—1,1,0) joining
the north and south poles. Direct calculation then shows that ¥, x 3, is equal to sin ¢-3. Therefore
the normal extension is given by the formula

®0,9,w) = (1+wsing)-X(6,¢) .

Note that this function maps the entire surface given by the graph w = —1/sin# into 0, and
therefore the normal extension is not globally 1-1. Furthermore, the Jacobian at points on the
curve must vanish because the second partial derivative of ® at such points is equal to zero (note
that the second partial is equal to (1 + w sinf) - 3).

In this example one still knows that there is some h > 0 such that @ is 1-1 and has nonvanishing
Jacobian for all (s,¢,w) such |w| < h and (s,t) € U. However, it is also possible to construct
examples for which one cannot find a positive constant h that works for every point in U. The best
one can do in general is find a positive valued continuous function h(s,t) such that ® is 1-1 and
has nonvanishing Jacobian for all (s,t,w) such |w| < h(s,t) and (s,t) € U.

We now proceed to define a concept of surface that is equivalent to the definition in do Carmo.

Definition. A geometric reqular smooth surface ¥ is a subset of R3 such that for each p € &
there is a smooth 1-1 map 1 defined on some open disk centered at 0 in R3 such that the following
hold:

(7) The map v sends 0 to p, its Jacobian is nowhere zero, and its image W is an open connected
domain containing p.

(#3) If r is the radius of the disk on which v is defined, then the set W N ¥ is the set of all
points of the form 4 (u,v,0) where u? + v2 < r2.

CONSEQUENCE 1. IfX denotes the restriction of 1 to the set of points whose third coordinate
1s zero, then X is a reqular smooth parametrization for XNW.

Proof. Let D be the open disk, let Dy be the corresponding disk in R? consisting of all points
in D whose third coordinate is equal to zero, and let 5 denote the inclusion of Dy in D. Then by
the Chain Rule we have that DX (u,v) = D¢(u,v,0)- Dj(u,v). Now Dj is simply the 3 X 2 matrix
whose columns are the first two unit vectors, and accordingly it has rank 2, and by hypothesis we
know that Di(u,v,0) has rank 3. Therefore the composite, which is DX(u,v), must have rank 2.m

We shall sometimes say that the maps satisfying (i) and (i7) are thickened regular smooth
parametrizations near p.

It is natural to ask why we do not simply define a geometric regular smooth surface to be the
image of a smooth 1-1 regular parametrization. The reason for the more complicated definition is
to eliminate some “bad” examples that are described at the end of this section.

CONSEQUENCE 2. If Y is a above and U is a connected domain such that XN U is not
empty, then the latter is also a geometric reqular smooth surface. Conversely, if ¥ C R2 and for
each p € X there is an open disk Vi, centered at p such that X NV, is a geometric regular smooth
surface, then X itself is a geometric reqular smooth surface.

Proof. We begin by verifying the first inclusion. Let p be a point in the intersection, let ¢ be
the map given in the definition above, and let D be the disk on which v is defined. The continuity
of 9 implies that there is some smaller disk D’ C D centered at the origin such that the image of
D' is contained in U. If we define 9’ to be the restriction of 9 to U, then this restriction satisfies
the condition of property (77) in the definition.
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For the second conclusion, if 4 is a map satisfying all the required conditions with respect to
> N Vp, then it also satisfies these conditions with respect to ¥ itself. Since every point p on the
surface lies in a suitable connected domain Vj,, it follows that property (i¢) in the definition of a
geometric regular smooth surface is satisfied at every point.m

The basic examples

Before proceeding further we should check that most or all the objects informally described
as surfaces are indeed surfaces in the sense of our definition. There are several separate cases to
consider.

GRAPHS OF SMOOTH FUNCTIONS. Suppose that we are given a function f that is defined
on a connected domain U C R? and has continuous partial derivatives at every point. Then the
graph of f is given by the standard regular smooth parametrization

g(z,y) = ('Taya f(a:,y))

and we claim that Dg always has rank 2 (or equivalently that the cross product of the first and
second partial derivatives of g is nonzero at all points). Direct computation shows that

1 0
0 1
of of
oz Oy

and it follows that the cross product of the columns has a third coordinate which is equal to +1.
This cross product will be used repeatedly throughout the remainder of the course, so we shall
write it down explicitly:

_of
oz
98 08 _ | _or
dr Oy oy
1

The preceding shows that we have a 1-1 regular smooth parametrization for the graph of f.
We also need to show that property (i7) in the definition of a geometric regular smooth surface is
satisfied. The first step in doing so is to define a 3-dimensional thickening of the parametrization
map that is similar to the normal extension discussed previously. Specifically, if W is the connected
domain on which f is defined, then we thicken if to a map F defined on W xR by the simple formula

F(u,v,t) = (u,v,t+ f(u,v)) .
It follows immediately that F is a smooth map with a smooth inverse given by
G(ua U,t) = (u, v, t— f(u,'u) )

and that the graph of f is the image of W x {0}. Suppose now that p is a point on the graph of
f and that p = (u, v, f(u,v)) for suitable v and v. Let q denote the vector (u,v), and suppose
that r > 0 is chosen so that the open 2-dimensional disk of radius r centered at q lies in W. If D
represents the 3-dimensional disk of radius r centered at 0 then the necessary map 1 for the point
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p is given by 9(x) = F(x + q); the right hand side is always defined because x + q always lies in
W xR when x € D.n

In the preceding discussion, we have described graphs in which x and y are the independent
variables and z is the dependent variables. Needless to say, one can permute the roles of the three
coordinates to consider graphs where each coordinate becomes the dependent variable, and similar
considerations show that such subsets are surfaces.s

Notation. Parametrizations of surfaces as graphs of smooth functions are often called Monge
parametrizations in the literature.

LEVEL SETS OF REGULAR VALUES OF SMOOTH FUNCTIONS. These can be viewed as
generalizations of graphs, and they also include the usual quadric surfaces in R2, at least if one
removes a relatively small number of “bad” point that are generally described as singularities;
perhaps the simplest example involves the cone defined by the equation z2 + 32 — 22 = 0, whose
vertex at 0 is clearly an exceptional point.

Suppose that we are given a smooth function f defined on a connected domain U C R3, and
let C be a constant. We generally expect that the level set defined by the equation f(z,y,z) = C
(where (z,y,2) is assumed to lie in U) should define a surface. Perhaps the most fundamental
examples of this sort are planes that have equations of the form

Ax + By + Cz = D
where not all of A, B, C are zero) and spheres defined by equations of the form
( , B, P y eq
(x—a)®> + (y—0)? + (z—¢)? = r?

(where > 0). The best way to avoid pathologies is to require that C' be a regular value in the
sense that the gradient V f(z,y, z) is not equal to 0 if f(z,y,z) = C. In both of the cases described
above one can check this out directly. For the plane, the gradient is equal to (A, B,C) and this
vector is nonzero because we assumed that at least one of the three coefficients was nonzero. In
the case of the sphere, the gradient of f at an arbitrary point (z,y, z) is equal to

2(:1:—a,y—b,z—c)

and therefore vanishes only at the point (a, b, ¢) which does not lie on the sphere (we assumed that
r > 0).

We now explain why such level sets are geometric regular surfaces in the sense described above;
if we modify our original function by subtracting off the constant C, we obtain a new function such
that the gradient is nonzero where the value of the function is zero, so there is no real loss of
generality in assuming that C = 0. Suppose that p = (a,b,¢) is a point for which f(a,b,c) = 0.
Since we know that Vf(a,b,c) # 0, at least one partial derivative of f at (a,b,c) is nonzero. If,
say, the third partial is nonzero,, then the Implicit Function Theorem implies that there is a small
connected domain of the form V x W containing p — where V is a connected domain in R?
containing (a,b) and W is an open interval in R containing ¢ — and a smooth implicit function g
defined on W such that the intersection of the zero set of f with V x W is equal to the graph of g.
We can then use the standard parametrization of a graph as the regular smooth parametrization
that is required at the point p. If one of the other partial derivatives at (a,b,c) is zero — say the
one with respect to the 7" variable — then the the same considerations show that locally the zero
set is given by the graph of a function expressing the i*® coordinate as a function of the other two.
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One can check that this also works for the other basic types of quadric surfaces in the list
below, where all exceptional points are noted.

e Ellipsoids of the form
2 2 2

x Y z
where a, b, ¢ # 0. As in the case of the sphere, the gradient of the function on the left
hand side vanishes only at 0 and the latter does not belong to the level set described

above.

a

e Hyperboloids of the form

2

[\

2
y
+ g -

@M| 8
0M| N

where a, b, ¢ # 0. As in the previous case, the gradient of the function on the left hand
side vanishes only at 0 and the latter does not belong to the level set described above.
e Cones of the form
22 y? )
ﬁ + b_2 — Z =0
where a, b # 0 and we restrict to the open connected domain of points that are not equal
to 0. As in the previous cases, the gradient of the function on the left hand side vanishes

only at 0 and the latter has been excluded.
e Elliptic and hyperbolic paraboloids of the form

V)
N

+

QM| 8
TS

where a, b # 0. In these cases the gradient of the function on the left hand side never
vanishes.

e Circular, elliptic and hyperbolic cylinders of the form

where a, b # 0. In these previous case, the gradient of the function on the left hand side
vanishes only at points where z = y = 0, and no point of the form (0,0, z) belongs to one
of the level sets described above.

e Parabolic cylinders of the form

where a # 0. In these cases the gradient of the function on the left hand side never
vanishes.

This list is not quite exhaustive, but the only types of nondegenerate quadrics that are missing
are given by two planes that either intersect in a line (the hyperbolic cylinder equation with the
right hand side set equal to 0 rather than 1) and pairs of parallel lines defined by an equation of
the form z2 = a? > 0. In the first case one must exclude the entire z-axis, but in the second case
it is not necessary to exclude any points at all.
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CYLINDRICAL SURFACES. We have already discussed some standard examples of cylindrical
surfaces. Generalizations of these examples turn out to play an important role in many aspects
of geometry, so it is worthwhile to explain how some of them can be parametrized. The simples
examples of cylindrical surfaces arise when one takes a curve in R? defined by y = f(z) and
considers the set of all points (z,y,2) € R® such that y = f(z). If J is the interval upon which f is
defined, then this surface is the subset of J X R X R consisting of all points satisfying the equation
y— f(z) = 0, so this set will be a geometric surface because the gradient of y — f(x) is the nonzero
vector (—f'(z), 1, 0). In this case one also has a simple explicit parametrization

x(u,v) = (ua f(u)’ U)

that maps J x R to the surface in a 1-1 onto fashion.

In the preceding example, one uses lines that are perpendicular to the zy-plane, but one can
also form such surfaces using a family of mutually parallel lines such that these lines are neither
parallel to nor contained in the zy-plane. The corresponding smooth parametrization in such cases
is given by the formula

Z](tas) = (ta f(t)a 0) + s- (G,, b, C)

where ¢ # 0.

SURFACES OF REVOLUTION. Several of the quadric surfaces described above can be viewed
as surfaces of revolution about a coordinate axis, and more general surfaces of revolution also play
an important role in geometry. Therefore we shall consider the two basic types of examples that one
encounters in single variable calculus courses. Given a curve y = f(z) as above such that f(z) >0
for all z, then we can construct a corresponding surface of revolution in R3 about the z-axis. Such
a surface is defined by an equation of the form 32 + 22 = f(z)? on the set J x R x R, where J is
an open interval on which f is defined, and an explicit 1-1 global parametrization is given by

S(t,0) = (¢, f(t) cos®, f(t), sind) .

Verification that this description yields a geometric surface is left to the reader as an exercise.

Similarly, if we are given a curve y = f(z) as above that is defined on an interval for which
x is always positive, then we can also construct a corresponding surface of revolution in R?® about
the y-axis. In this case an explicit 1-1 global parametrization is given by

(t,0) = (tcosb, f(t), tsind) .

Alternatively, one can view a surface of revolution about the y-axis as given by the equation
y = f(Vz2+ 22); if f is defined on the interval (a,b) where a > 0, then the domain of definition
for the corresponding function of x and z is the annulus defined by the inequalities

a® < °+22 < v

We shall give a slight generalization of this which shows that the torus given by rotating a circle
such as (z — 1)2 + y2 = 1 about the y-axis is a surface in the sense of these notes. Suppose we are
given a simple closed curve x in R? which can also be described as the set of solutions to F(u,v) = 0
where VF(a,b) # 0 at all points such that F(a,b) = 0, and suppose that the first coordinates of
all solutions to F(u,v) = 0 are greater than some positive number a. A parametrization of the
resulting surface of revolution is given by

X(t, 0) = (u(t) cosd, v(t), u(t) sind)
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and if we set G(z,y,2z) = F(Vz? + 22, y), then the surface of revolution consists of all points such
that G(x,y,2z) = 0. In order to verify that this defines a surface in our sense, we need to show
that the gradient of GG is nonzero at all points of the zero set of G. Here is a sketch of the proof:
At each point (u,v) such that F(u,v) we know that either the first partial F}(u,v) or the second
partial F5(u,v) is nonzero. Suppose now that G(z,y,z) = 0 and let v = V22 + 22 and v = y. If
the second partial of F' is nonzero at (u,v), then the second partial of G is also nonzero at (z,y, z).
If the first partial of F' is nonzero at (u,v) and z # 0, then elementary calculations show that the
first partial of G is also nonzero at (z,y, 2), while if the first partial is nonzero and z # 0, then
the third partial of G is also nonzero at (z,y,z). Since u > a > 0 by hypothesis we know that
z2 4+ 22 > a? > 0, and therefore at least one of z and z is always zero; this proves that the gradient
of GG is nonzero at every point of the zero set.

RULED SURFACES. More generally, one can define another important generalization of cylin-
drical surfaces that also includes the cone that are ruled in the sense that one has parametrizations
for the entire surface of the form

X(u,v) = a(u)+v-b(u)

where a’(u) is never zero and the vectors a’(u) and b(u) are always linearly independent. Here are
some basic examples that are not cylindrical in the sense described above:

e A hyperbolic paraboloid. Consider the surface of this type defined by the equation
z = 12 + y2. The right hand side factors as a product (z — ) (z + y), so the intersection
of the surface with the plane x —y = C is just the line at which the planes x —y = C and
z = C(z+vy) intersect. This leads to the definition of parameters u = z —y and v = z + v,
and one can use these to parametrize the surface as

X(u,v) = (3(u+v), (u—v), uv).

Here the curves defined by holding either u or v constant are straight lines, and one can
rewrite the parametrization in the form y(u) + vg(u) where

y(u) = Lu(e; +ey)
and

g(u) = %(e1+e2) + ues .

¢ A hyperboloid of one sheet. Consider the surface of this type defined by the equation
z2 + 32 — 22 = 1. One can check directly that this surface can be parametrized using the
function
(cosu, sinu) + wv-(—sinu, cosu,l)

and that a(u) = (coswu, sinu) and b(u) = (—sinu, cosu, 1) satisfy the basic conditions
described above.

e A cone. We shall only consider the nonsingular piece of the cone z2 + y? — 22 = 0 in
the upper half plane where z > 0. In this case the parametrization is given by

X(u,v) = (vcosu, vsinu, v)

where u € R and v > 0. One can give ruled parametric equations by the alternate
formulas
(cosu, sinu, 1) + v - (cos u, sinu, 1)
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where again u € R but this time v > —1.

e The Mdbius strip. Intuitively, this is formed by taking a rectangle A B C' D for which
the length |[AB| = |CD| is much greater than the width |BC| = |AD| and gluing sides
BC and AD so that B corresponds to D and A corresponds to C. One can model this
using the parametric equations

X(u,v) = (cosu,sinu,0) + v- (cosucos(u/Z), sinu cos(u/2), sin(u/2))

where u € R and v € (—3, 1) (or one can take |v| < ¢ for some arbitrary ¢ that is positive
but less than 1).

In order to show this satisfies the condition for a surface, it will suffice to find a set of open
domains U; such that every point in the image of the parametrization X lies in one of the domains
U; and that on each set U; the intersection of the Mobius strip with the zero set of some well
behaved smooth function on U;. Geometrically, the key to doing this is to look at the intersection
of the surface with the planes containing the z-axis, which are defined in cylindrical coordinates
by equations of the form 8 = (. In such planes one sees that the points of the Mobius strip are
the points satisfying (r — 1)2 + 22 < €2 and either z = (1 —r)tan 1C if C is not an odd multiple
of w or else by 1 — r = zcot %C’ if C' is not an even multiple of 2w. Therefore, on the set of
points in R3 satisfying (r — 1)? 4 22 < €2 and either z > 0 or y # 0, the intersection with the
Mobius strip is given by the equation z = (1 — r) tan %0, while on the set of points satisfying
(r —1)2 + 22 < €2 and either = < 0 or y # 0, the intersection with the Mobius strip is given by
the equation (1 —r) = zcot 20.m

Here are some online references, including some with animations showing the one-sidedness of
the Mbius strip.

http://www.worldofescher.com/gallery/A29.html

http://www.mikejwilson.com/solidworks/ (continue with next line)
files/mobius_II__animation.zip (This requires RealOne Player.)
http://www.physlink.com/Education/AskExperts/ae401.cfm
http://www.uta.edu/optics/sudduth/4d/ (continue with next line)

nonorientable/moebius_strip/math/mathematics.htm
http://www.mapleapps.com/categories/animations/gallery/anim pg3.shtml
http://www.tattva.com/vladi/director .html#6 (Scroll down the Movie List to the
last entry, which is called "Mobius strip.” There are QuickTime and RealOne Player
versions of this loop.)

http://mathworld.wolfram.com/MoebiusStrip.html (This is a curious animation.)

Significant counterezamples

On the basis of our examples thus far, it is natural to ask whether the image of a parametrized
surface is always a geometric surface. It turns out that the answer is negative, even if one restricts
attentions to simple parametrizations that are globally 1-1. Here is one counterexample: Consider
the figure 8 curve ¢(t) = (sin2t,sint) for ¢t € (0, 27). One then has an associated cylindrical surface
with regular smooth parametrization (¢, w) = (sin2t¢, sint, w) for ¢t € (0,27) and w € R. This
parametrization is also 1-1, but its image fails to satisfy the definition of a geometric surface when
P = 0. The key to seeing this is the following simple observation:
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PROPOSITION. Let ¥ be a geometric reqular smooth surface in R3, and let p € . Define K,
to be the set of all vectors in R> that are realizable as tangent vectors y'(0), where y is a smooth
curve entirely contained in ¥ such that y(0) = p. Then Ky is a 2-dimensional vector subspace of

R3.

Proof. Let 9 be a smooth 1-1 map 1) defined on some open disk centered at 0 in R3 such that
() it sends O to p, its Jacobian is nowhere zero, and its image W is an open connected domain
containing p, (i¢) if r is the radius of the disk on which 1 is defined, then the set W N X is the set
of all points of the form v (u,v,0) where u? + v? < r2.

Let ¢ be the inverse mapping to 1, and suppose that y is a curve of the type described in
the conclusion of the proposition. By restricting to a small interval centered at 0, we may as well
assume that the image of y is contained in the image of 9 so that ¢°y is defined. This is a curve
in the uv-plane, so its tangent vector at 0 also lies in this plane. By the Chain Rule, the tangent
vector to y = 1p°(p°y) lies in the subspace of R® spanned by D1(0)e; and D1)(0)ey. Conversely,
every vector in this subspace is the tangent vector of a curve in the surface of the form (¢ v) where
v lies in the subspace of R? spanned by the first two unit vectors.m

Returning to the example, we now consider all curves of the form
(sin2at, sina(t —cm),bt)

where a and b are arbitrary real numbers and ¢ = 0 or 1. Each of these curves lies entirely in the
image of the parametrized surface, and at parameter value ¢t each curve passes through 0. What
are the tangent vectors to these curves? They are equal to (2a,ta,b). We claim there is no
2-dimensional vector subspace W of R? that contains this set. To see this, note that the set of all
tangent vectors described above contains the 2-dimensional subspace Wy spanned by (2,1,0) and
(0,0,1), and if W is a 2-dimensional subspace containing these and possibly other tangent vectors,
then W = W;. On the other hand, the given set of tangent vectors includes (2. — 1.0), which is
definitely not in Wy. — It follows that the image of the 1-1 parametrization map is not a geometric
regular smooth surface in this case.n

The cylindrical surface in Exercise 19 on pages 68-69 of do Carmo illustrates another way
in which the image of a 1-1 parametrization may fail to be a smooth surface. According to the
defining conditions, for every point p of a geometric surface 3, for every connected domain W
containing p there is a connected subdomain U C W containing p such that every other point in
3> NU can be joined to p by a smooth curve lying entirely in 3 NU. This property fails to hold for
the surface described in the exercise; specifically, consider the disk W of radius % about the origin
and the points q,, with coordinates

(50 -
npi

We claim that there are no smooth curves in 3N W joining the origin to such points. If there were,
then by the Intermediate Value Theorem for each value of ¢ between 0 and 1/nm there would be
points on these curves, and hence on the surface X, whose first coordinates are equal to t. However,
examination of the graph of sin(1/z) shows that the only point with first coordinate 2/( (2n+ 1) m)
on this curve have second coordinates with absolute values > 1 and therefore such points do not
lie in W. If U is an arbitrary connected domain containing the origin, then it contains a disk of
some positive radius, and this disk contains all but finitely many of the points q,,. Since one cannot
join these points to 0 in X N W by smooth curves lying completely within the latter intersection,
one certainly cannot find such curves in the even smaller intersection ¥ N U. Therefore 3 does not
satisfy the second condition required for a geometric surface.

64



IT1.3: Tangent planes

(do Carmo, §2-4)

Special cases of tangent planes are introduced in multivariable calculus courses, particular in
the case of surfaces that are graphs. In order to specify a plane, it is enough to specify a point on
the plane and a line that is perpendicular — or normal — to that plane; the latter can be given
by vector that determines the perpendicular direction. For graphs, the point is supposed to have
the form (z, y, f(x,y) ), and the the direction vector is equal to

B
oz’ Oy’
which we have seen before in another context. Accordingly, the first degree equation defining the
tangent plane at (a,b,, f(a,b)) is given by

z—fla,b) = fola,b)-(z—a) + fy(a,b)-(y—b)
where f, and f, denote the partial derivatives with respect to = and y respectively.
There is an important characterization of tangent planes in terms of tangent lines.

PROPOSITION. If x is a regular smooth curve in the graph of a smooth function f, and
x(0) = (a,b, f(a,b)), then the tangent line to x at parameter value t = 0 lies in the tangent plane.
Conversely, if L is a line through (a,b, f(a,b)) that lies in the tangent plane, then there is a regular

smooth curve x in the graph of f such that x(0) = (a,b, f(a,b)) and the tangent line to the curve
at (a,b, f(a,b)) is L.

Proof. Suppose that x is a regular smooth curve with parametric equations given by
x(t) = (u(t), v(t), w(t)) .

Then the relation w = f(u,v) and the chain rule imply that w’(0) = f,(a,b)-u'(0) + f,(a,b)-v'(0),
and it follows immediately by substitution that the tangent line to x at parameter value 0 lies in
the tangent plane to the graph at (a,b, f(a,b) ).

Conversely, every line L of the given type has a parametrization of the form
(a,b,f(a,b)) +t- (Ma Na P)

where —M f(a,b) =N f,(a,b)+P = 0. Choose r > 0 so that the open disk of radius r is contained
in the domain U on which f is defined. If we let

. r T
T mm{ M+ 17 [NT+1 }
then for |t| < ro the parametrized segment (a + ¢ M, b+t N) lies in U, and the curve
x(t) = (a+tM,b+tN, fla+tM,b+tN))
lies on the graph of f. Furthermore, we know that
x'(0) = (M,N, fu(a,b)M + f,(a,b)N)
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and by the first sentence of this paragraph the third coordinate is equal to P. Therefore the tangent
line to x at parameter value ¢ = 0 is equal to L.m

One can also define tangent planes for regular parametrizations by a similar formula. Specif-
ically, if X is a parametrization for the surface that is defined on the connected domain U and
(a,b) € U, then the tangent plane at parameter value (a,b) is the unique plane through X(a,b)
whose normal direction is given by

0X 0X
a—u(a,b) X %(G;,b) .
If X is a graph parametrization with z given as a function f(z,y), then the the cross product above
reduces to the familiar vector
_f z (aa b)

_fy (aa b)
1

and therefore the definition of tangent plane for parametrizations reduces to the previous definition
if X is a graph parametrization.

The previous characterization of tangent planes generalizes as follows: If L is a line through
X(a,b) in the tangent plane, then every direction for vector for L is perpendicular to the cross
product of x,(a,b) and x,(a, b) and hence is a linear combination of these two vectors; for the sake
of definiteness, express a direction vector for L in the form M x,(a,b) + N x,(a,b). It follows that
the curve y(t) = X(a +t M, b+ t N) has tangent vector y'(0) = M x,(a,b) + N x,(a,b). Thus L
is the tangent line to a curve through X(a,b) that lies in the image of the parametrized surface.
Conversely, if we are given a curve in the image of X, whose value at ¢ = 0 is equal to (a,b), by the
Inverse Function Theorem we know that for |¢| sufficiently small we may write the curve as

y(t) = X(u(t), v(t))
and therefore we have

0X oX
YO = S(@b)-w0) + 5@ (0).
Since this vector is perpendicular to the normal direction for the tangent plane, it follows that the
tangent line to y at parameter value £ = 0 lies in the tangent plane.n

The tangent planes described above may be described as all vectors of the form p + w, where
w is the tangent vector to a curve that goes through p and lies completely in the parametrized
surface. If P is an arbitrary plane containing the point p and its normal direction is N, then the
set of all vectors having the form bfy — p is merely the set of all vectors that are perpendicular
to N, and hence they form a 2-dimensional subspace of R? that we shall call the space of tangent
vectors at p for the parametrization of the surface. By construction this subspace is either equal
to the tangent plane at p or else it is the unique plane through the origin that is parallel to the
tangent space; the first holds if 0 lies in the tangent plane, and the second holds if it does not.

ALTERNATE CHARACTERIZATION OF TANGENT PLANES. The tangent plane to
the parametrized surface X at parameter value (a,b) is the unique plane through p = X(a,b) that
is parallel or equal to the 2-dimensional subspace spanned by [D X(a,b)]e; fori=1,2.

This is essentially contained in earlier results, the point being that the direction vectors for lines
L in the tangent plane containing p all have the form [D X(a,b)]v;, where v is a linear combination
of e; and ey.m
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SPECIALIZATION TO LEVEL SETS. Suppose we have a surface that is defined as the set of
all solutions to the equation f(z,y,z) = 0, where f is a smooth function such that Vf(z,y,2z) # 0
whenever f(z,y,z) = 0. The following result provides a very simple description of the normal
direction to the tangent plane.

GRADIENTS ARE THE NORMALS TO LEVEL SETS. Let f be as above, and suppose
that f(a,b,c) = 0. Then there is a local parametrization of the surface near (a,b,c) such that the
normal direction for the tangent plane at (a,b,c) is equal to V f(a,b,c).

Proof. In principle, it suffices to do this when the third coordinate of V f(a, b, ¢) is nonzero; the
other cases follow by interchanging the roles of the three coordinates.

If the third coordinate is zero, then there is a small connected domain V' containing (a, b, ¢)
such that the set of solutions for f(a,b,c) = 0 is given by the graph of some smooth function
z = g(u,v). Therefore the normal direction of the plane at (a,b,c) is given by the familiar vector
(—gu(a,b),—gy(a,b),1) . On the other hand, the implicit function theorem implies that g, =
—fu/f~ and g, = —f,/f., and therefore the gradient is equal to the scalar product of the partial
derivative f,(a,b,c) with (—g,(a,b),—g,(a,b),1) =

IMPORTANT SPECIAL CASE. For the sphere defined by the equation z2? + y? + 22 — r2 = 0,
the gradient of f(z,y,z) = 2 + y? + 22 — r2 is equal to 2 (z,y, z), and this confirms a well known
property for the tangent planes to points on a sphere: They are perpendicular to the radial line at
the point of contact.

This preceding result describes the tangent plane in a manner that is independent of the choice
of parametrization; in particular, if all three coordinates of V f(a, b, c) are nonzero, then one gets
three distinct parametrizations locally by viewing each coordinate as the graph of a function in
the other two near (a,b,c). For an arbitrary geometric regular smooth surface X, it is natural to
expect that all regular local smooth parametrizations for the surface near a point p yield the same
tangent plane at p. The following result proves this is always the case.

COMPATIBILITY THEOREM. Let XY be a geometric reqular smooth surface, let p € X, and
let 1 and 1), be thickened reqular smooth parametrizations at p. Let Q be the subspace of R3
spanned by the first two unit vectors. Then the images of Q under the maps D1(0) and D2(0)
are equal.

It follows that the common image is the natural candidate for the 2-dimensional space of
tangent vectors to X at p.

Proof. Suppose that 1); is defined on an open disk D(r;) of radius r; > 0 centered at 0. By
the continuity of the mappings 1; and their inverses, we can find a real number s5 > 0 such that
89 < 19 and 1o maps the open disk D(s3) into 91 (D(ry)). It follows that there is a smooth map

G: D(Sz) — D(’f‘l)

defined by G(w) = ¢ (92(w). By construction it follows that 11 °G = 1. Furthermore, by
the conditions on thickened parametrizations we know that the Jacobian of G is always nonzero,
G(0) =0, and

G(u,v,0) = (z(u,v), y(u,v), 0)
for suitable smooth functions z and y. The last formula shows that if q lies in Q, then [D G(0)](q)
also lies in Q; the converse also holds because [D G(0)](q) is invertible (hence the image of Q is a

2-dimensional subspace that we know is contained in Q, and therefore it must be equal to Q —
since the derivative is 1-1 nothing else can map into Q).
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If we apply the Chain Rule to 11 °G = 1), it follows that
Dy1(0) - DG(0) = D2(0) .

Let q be an arbitrary vector in the subspace Q spanned by the first two unit vectors as above.
Since we have seen that q € Q implies [D G(0)](q) € Q, it follows that D2(0)q lies in the image
of Q under D1, (0). Conversely, suppose that we are given a vector of the form D1, (0)p for some
p € Q. Then by the preceding paragraph we may write p = [D G(0)](q) for some q in Q, and
by the formula displayed at the beginning of this paragraph it follows that D) (0)p = D12(0)q.
Therefore the two subspaces in question are equal as required.m

68



I11.4: The First Fundamental Form

(do Carmo, §§2-5)

The First and Second Fundamental Forms are comparable to the curvature and torsion of a
curve in that surfaces are locally characterized up to geometric congruence by these forms just as
curves are so characterized by their curvatures and torsions. The two fundamental forms are also
important for numerous other reasons as well, and in particular, the First Fundamental Form is
crucial to virtually all work in the differential geometry of surfaces and their higher dimensional
generalizations.

There are two definitions of the fundamental form, one for parametrizations and one for ge-
ometric surfaces. We shall begin with the latter and then indicate how it is given in terms of
parametrizations.

The definitions of the First and Second Fundamental Forms for a geometric surface both involve
an object that is generally called the tangent space in differential geometry.

Definition. Let S be a geometric surface in R3, and for each p € S let T,(S) denote the 2-
dimensional vector space of tangent vectors to S at p; in the previous section we showed that this
2-dimensional subspace did not depend upon the choice of local parametrization. The tangent
space of S, denoted by T(S), is the defined to be the set

{(p,q)€R3xR3|p€S and q € T,(9) }

In some sense this consists of all the tangent planes to points in R2, but we have spread things
out over six dimensions so that the analogs of tangent planes at different points do not have any
vectors in common (in contrast, note that every point on the unit sphere z2 + y2 + 22 = 1 lies on
more than one tangent plane; in elementary plane geometry, this corresponds to showing that there
are two tangents to a circle going through a given external point). Projection onto the first factor
defines a map 75 from T(S) to S, which corresponds geometrically to sending each tangent vector
to the “point of application.” Similarly, one can view projection ® onto the last three coordinates
as defining a map from T(M) to R? that sends a tangent vector to its associated “free vector” (no
point of application) in R3.

EXAMPLES. If S is the (regular) level set of of zeros for some smooth function f(z,y, z), then
T(S) is the set of all points
(x,y,z, X,Y,Z) e R*xR3

such that f(z,y,z) =0 and (X,Y, Z) is perpendicular to V f(z,y, z). If we specialize further to a
sphere defined by z2 + y? + 22 — r2 = 0 we see that the tangent space consists of all 6-tuples such
that (z,y, z) lies on the sphere and is perpendicular to (X,Y, Z).

Definition. Let T(2)(M) be the set of all ordered pairs of points (v, v3) in T(M) x T(M) such
that 7s(vy) = 75(va). The First Fundamental Form of S is the map Is ending (vi, va) to the
usual inner product (®(vy), ®(vz)) of two vectors in R3.

Perhaps the simples motivation for the First Fundamental Form is that it can be used to
describe arc lengths. In particular, if x is a parametrized smooth curve lying entirely on S and we
define a tangent lifting 7'L(x) of x to T(M) by the formula



then the length of the curve is given by

1/2

/ ’ (IS(TLx(t), TLx(t)) dt |

In fact, this formula motivates the definition of the First Fundamental Form for parametrized
surfaces as follows:

Definition. Let X be a regular smooth surface parametrization defined on some connected
domain U. Then the First Fundamental Form of X is the function defined on U x R? x R? by the
formula

Ix(p;y, z) = ([DX(w)|(y), [DX(u)](2))
where the right hand side denotes the inner product of two vectors in R3.

It follows immediately that if we have a curve c defined in U, then the length of X°c can
be computed either by means of the first fundamental form as defined here or by the previous
definition of the first fundamental form. For the sake of completeness, if the curve c is given in
parametric form by ¢(t) = (u(t),v(t) ), then by the Chain Rule then the tangent vectors to Xe°c

are equal to
0X du X dv

udt " v di
and the length of the curve is given by to the following integral:

/” 0X du 0X dv
“—| at

0 dt T oo dt

Classical references use somewhat different notation that we shall now describe. Consider the
square of the expression inside the length integral given above. Using the bilinear nature of the

inner product we may write this as follows:
2 2
du
— dt dt
(dt) )

(

Using the standard formal convention of setting

0X

ou

C(dw) o, (90X 9X) dudv o |OX
dt Oou Ov dt dt ov

we may rewrite this expression in the form
E(u,v)dudu + 2F(u,v)dudv + G(u,v)dvdv
where the smooth functions F, F' and G are defined by

o0X 00X o0X 00X oX 90X
E = 50 F = 50 o G = o

This is the classical formula for the First Fundamental Form.
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Abstract Riemannian metrics

In the middle of the nineteenth century G. F. B. Riemann observed that certain generalizations
of the First Fundamental Form had were strongly connected to other central problems in geometry
including the subject of Noneuclidean Geometry. In simplified form, his insight was to consider
arbitrary expressions of the form

g(u,v) = E(u,v)dudu + 2F(u,v)dudv + G(u,v)dvdv

where F, F' and G are smooth functions on some connected domain U such that the real symmetric
matrix

M) = (Forn) Gen))

is positive definite in one of the following equivalent senses:
(1) For every nonzero vector x the inner product (M(u,v)x, x) is positive.
(2) The eigenvalues of M(u,v) are all positive real numbers.
(3) The diagonal entries and determinant of M(u,v) are all positive.
This type of structure is called a riemannian metric.

Given a riemannian metric defined on a connected domain U and a regular smooth curve
x(t) = (u(t), v(t)) in U, then one can define the length of x with respect to this riemannian metric
by the formula

b
/ \/(M(U(t),v(t))x’(t), x/(t)) dt

because positive definiteness implies that the expression inside the square root sign is always posi-
tive. The classical Noneuclidean Geometry developed by Bdélyai, Lobachevsky and others can then
be described by taking U to be the open unit disk about the origin in R? and the riemannian
metric equal to the so-called Poincaré metric:

drdr + dydy
(1— 22— y2)?

In this and other systems involving riemannian metrics, one basic question is to determine the
shortest smooth, or piecewise smooth, curve joining two points. For the Poincaré metric there are
two cases.

(I) If one has points x and y in U such that the line joining them contains the origin, then
the shortest curve is the ordinary line segment joining them. However, the length of this
curve with respect to the Poincaré metric will NOT be equal to its Euclidean length.

(IT) If 0 is not on the line joining x and y, then the shortest curve is a circular arc whose
endpoints are x and y, where the circle K containing the arc meets the unit circle z2+y? =
1 orthogonally; i.e., for each of the two points where K and the unit circle meet, the tangent
lines to K and the unit circle at the common point are perpendicular to each other. Proving
this is definitely not a trivial matter and requires methods beyond the scope of this course.
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Here are some online references regarding Noneuclidean Geometry:
http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
http://mathworld.wolfram.com/HyperbolicGeometry.html

Incidentally, relativity theory uses a generalization of riemannian metric in which the positive
definiteness condition is replaced by something weaker. Perhaps the most basic example is the
Lorentz metric given by

dtdt — drdr — dydy — dzdz .
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IT1.5: Surface area

(do Carmo, §§2-5, 2-8)

This is mainly a review of material covered in multivariable calculus courses. Two textbook
references are to Sections 13.5 and 14.5 on pages 971-977 and 1051-1060 of Calculus (Seventh
Edition), by Larson, Hostetler and Edwards, and also Section 6.3 on pages 382-395 of Basic Mul-
tivariable Calculus, by Marsden, Tromba and Weinstein.

The basic idea behind surface area formulas is to find approximations using areas of pieces
of various tangent planes. For example, suppose we have the graph of a function z = f(z,y) and
we want to compute the area of the portion of the surface lying over some rectangle in the plane
whose sides lie on lines that are parallel or equal to the coordinate axes. One first cuts the large
rectangle into many smaller rectangles, then chooses a point (z,y) in each rectangle, and next for
each point one finds the area of the portion of the tangent plane (z,y, f(z,y)) which lies above
the small rectangle containing the original point (z,y), and finally one adds up all these areas
to get an approximation to the surface area we wish to compute. If we take increasingly larger
decompositions into smaller and smaller rectangles and let the maximum lengths and widths go to
zero, the one expects the limit to be the surface area, and this is indeed the case. A more detailed
discussion of this appears in Section 2—-8 of do Carmo.

Important note. In view of the standard description of arc length of a “reasonable” curve I'
as the limit of broken line curves that are inscribed in I, it is natural to ask is surface area could be
defined more simply by considering polyhedral pieces that are inscribed in surface and defining the
area of the surface to be the limit of the areas of such polyhedral approximations. However, this
approach does not always yield the expected answer, even in simple cases like the lateral portion
of the cylinder defined by 22 +y? = 1 and 0 < z < 1. A discussion of this issue, including some
pictures, is given in pages 2-4 of the following online document:

http://www.math.tau.ac.il/~schuss/infi3/infil8.pdf

Standard special cases. For a surface parametrization given as the graph of a smooth
function f, the area of the portion of the surface over a reasonable subset A in the plane is given
by the integral

[ VTR R dsdy
A
where f; and f2 denote the partial derivatives with respect to the first and second variables. If we

are given a regular 1-1 surface parametrization X and A is a reasonable subset of the connected
domain U on which X is defined, then the standard formula for the area is given by

/ | X, X X,| dudv
A

where X, and X, denote the partial derivatives of X. The area can also be expressed in terms of
the coefficients of the First Fundamental Form as follows:

Area = /\/EG—F2dudv
A

The derivation of this formula from the preceding one is an elementary exercise (for example, see
page 98 of do Carmo).
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The preceding discussion shows how to find the areas of portions of a surface but it does
not directly address the question of finding the area of the entire surface. In order to do this,
one needs to decompose the surface into disjoint or nonoverlapping pieces, find the areas of the
different pieces separately, and then add the results together. In many cases one can also simplify
the computations by using parametrizations that are well behaved almost everywhere; making this
term precise mathematically is beyond the scope of this course, but some simple examples include
cases where the bad behavior is limited to some finite set of points or some finite collection of
regular smooth curves. For example, if one wants to compute the surface area of the unit sphere,
one can take the spherical coordinate parametrization defined for 6 € [0,27] and ¢ € [0,7]. This
parametrization is not 1-1 on boundary points and Xy X X4 vanishes at some boundary points,
but it is a regular smooth 1-1 parametrization away from these boundary points and thus gives the
area for, say, the portion of the sphere not including the semicircular meridian through the north
and south pole and the point (1,0,0). The meridian by itself has no area, and this is why there is
no problem using the formula even though things do not work well on the boundary.
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II1.6 : Curves as surface intersections

(do Carmo, §2-3)

Given two distinct planes in R3 that have one point in common, standard axiom or theorem
in 3-dimensional Euclidean geometry states that their intersection is a line. Specifically, if x lies on
both planes P and Q and normal vectors to these planes are given by p and q respectively, then
the line in question consists of all vectors expressible as a sum a + ¢t (p x q), where ¢ is some real
number; examples are discused on page 755 of Larson, Hostetler and Edwards). There are many
familiar situations in which the intersection of more general surfaces are also curves, and some of
these will play a key role in the definition of curvature for surfaces. Therefore we shall spend some
time discussing the realizations of curves as intersections of surfaces.

If ¥ is a sphere and p is a point on 3, then for almost every plane Q passing through p the
intersection of ¥ and Q is a circle, the only exception being when Q is the tangent plane atp.

Consider next the intersection of a sphere whose radius is b > 0 and whose center is the origin
with a cylinder H whose axis is the z-axis. If the radius a of this cylinder is less than b, then the
intersection consists of the two circles with parametric equations

(a cos t, asint, +/b>—a?)

which are the latitude lines on X that lie cos~'(a/b) radians above the equatorial circle formed
by the intersection of 3 with the zy-plane. The point of this example is that the intersection is
not one curve but two curves, and it is meant to suggest that in general we should first consider
the intersection of two surfaces locally. In fact, we shall generally restrict attention to the local
situation.

Returning to the intersection of a sphere and a plane, or the intersection of two distinct planes,
elementary calculations show that the normal lines for two such surfaces at points of intersection
are always distinct (except when one has the tangent plane to a point on a sphere). Furthermore,
the same thing happens at the intersection points of the sphere and cylinder that were discussed
above. Alll these examples serve as motivation for the following general result, which shows that
the intersection of two level surfaces 3; and i 5 is locally a curve near a point provided the
tangent planes to 3; and Y5 and the common points are distinct.

TRANSVERSE INTERSECTIONS OF LEVEL SURFACES. Let f and g be smooth
functions defined on a connected domain U, let X(f) and X(g) denote their zero sets, and suppose
that Vf and Vg are nonzero at all points of £(f) and X(g) respectively. Suppose that p lies on
Y(f)NX(g) and that V f(p) and Vg(p) are linearly independent (i.e., the intersection is transverse
at p). Then there is an open domain U containing p such that UNX(f)NE(g) is a reqular smooth
curve.

Another example. Consider the surfaces of revolution formed by rotating the circle z2 +

y? = 4 and ellipse
g "V 7

about the y-axis. The intersection of these surfaces splits into two pieces, one of which consists of
the point (0,0,2) and the other of which is the circle parametrized by (cos#, %, sinf). At points
of the latter the tangent planes to the two surfaces are distinct, but at (0,0,2) they are not.
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This illustrates that the intersection of two surfaces might be transverse at some points but not
necessarily at others.

Proof of transverse intersection property. This will be a consequence of the Implicit Function
Theorem. Let

H(z,y,z) = (f(xayaz)a g(m,y,z))

so that H is a smooth function and D H is the 2 x 3 matrix whose rows are the gradients of f and
g. Since the gradients are linearly independent at p, it follows that D H(p) has rank 2. Therefore
there is a 2 x 2 submatrix of DH(p) whose determinant is nonzero. It will suffice to consider
the case where the determinant of the square submatrix constructed from the last two columns is
nonzero; the other cases can be handles similarly by interchanging the roles of the variables.

Express p in coordinates as (a,b,c). We then know there is an open interval U, containing a
and a smooth 2-dimensional vector valued function k on Uy such that k(a) = (b, ¢) and for all z € Uy
and (y, z) close to (b, c), say in some connected domain Vj containing (b, c) we have H(z,y,z) =0
if and only if (y,z) = k(z). It follows that the intersection of the surfaces with Uy x Vp, which
is just the intersection of the latter with the zero set of H, is equal to the image of the regular
parametrized curve whose first coordinate is given by ¢ and whose second and third coordinates are
given by k(t).m

Note. One can describe the tangent line to this curve at p in terms of f and g; specifically, it
is the line through p whose direction is given by V f(p) x Vg(p). This follows because the tangent
vector at p is perpendicular to both gradients.s

COMPLEMENT. The same result holds for arbitrary surfaces X1 and ¥o provided the tangent
planes at a common point p are distinct.

The proof of this depends upon the following observation.

LEMMA. IfX is a geometric surface and p € X, then there is a connected domain U containing
P and a smooth real valued function f : U — R such that the gradient of f is nonzero at all points
in the zero set of f, and this zero set is equal to X NU.

Proof of Lemma. By the definition of a geometric surface there is a smooth 1-1 map 1 defined
on some open disk centered at 0 in R3 such that (i) the map % sends 0 to p, its Jacobian is
nowhere zero, and its image W is an open connected domain containing p, (i4) if r is the radius
of the disk on which % is defined, then the set W N X is the set of all points of the form % (u, v, 0)
where u? 4+ v2 < r2. Let ¢ be the inverse to 1, and let c3 be the smooth map on R? which sends
each point to its third coordinate. Then the zero set of the function c3°¢p is equal to X N U, so it
is only necessary to verify that the gradient is nonzero at all such points. However, the gradient of
this map is given by the third column of the matrix Dg(x), and since we know that this matrix is
invertible for all x € W (by the corresponding fact for D), it follows that the gradient is indeed
nonzero as required.m

Proof of Complement. Since the conclusion is local, it suffices to take the intersections of the
surfaces with some open disk containing p, and by the preceding result we can choose the radius of
this disk small enough so that the two surfaces are level sets. Furthermore, the conditions on the
tangent planes imply that the gradients of the associated functions must be linearly independent at
P- Therefore we may apply the transverse intersection property to show that locally the intersection
of the two surfaces is given by a regular smooth curve.n

The preceding results yield the following ”intuitively obvious” fact:
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COROLLARY. Let % be a geometric surface, let p € 3, and suppose that Q is a plane through
P that is not the tangent plane to the surface at p. Then there is a connected domain U containing
P such that XN QNU is a reqular smooth curve through p.m

Finally, we shall show that every regular smooth curve can be realized locally as the inter-
section of two surfaces. There are corresponding global statements, but their proofs require more
mathematical tools than we currently have or wish to develop in this course.

REALIZATION PRINCIPLE. Letx denote a reqular smooth curve defined on a closed interval
[—h, h)such that x(0) = p. Then there is a connected domain U containing p and two geometric
surfaces X1 and Yo such that 31 N Yo NU s equal to the intersection of U with the image of p.

Proof. A regular smooth curve is locally 1-1, so we can assume that A > 0 is so small that x is
globally 1-1 on the interval [—h, h].

Since x’(0) is nonzero, one can find vectors y and z such that x’(0), y and z form a basis for
R3. Consider the smooth map F defined by

F(t,u,v) = x(t) + vy + vz.

By construction D F(0,0,0) is the matrix whose columns are given by the basis x’(0), y and z and
therefore this derivative matrix is invertible. Applying the inverse function theorem, we can find
an open disk U centered at 0 on which F has a smooth inverse and nonzero Jacobian; let » > 0 be
the radius of this disk, where we choose r < h. By construction, if L denotes the z-axis, then the
image of LN U is a piece of the curve x.

We claim that if we shrink the radius sufficiently we can find a subdisk Uy C U such that
F(Up) does not contain any other points on the curve aside from those that lie in the image of
LN Uy. Consider the images of the closed intervals [—h, —r] and [r, h]. Neither image contains 0,
and by continuity the distance from points on these curves to 0 assumes some positive minimum
value, say m. If we take Uy to be the disk of radius s centered at 0, where 0 < s < m, then it will
follow that F(Uy N L) is equal to the intersection of Uy with the image of the original curve defined
by x.

Finally, if we let 3; and X5 be the images of the intersections of the zy-plane and zz-plane
under F and set W = F(U), then it follows that ¥; and ¥, are surfaces and the intersection
o1 N Y5 N Uy is just the portion of x that lies in Uy.u
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IV. Oriented surfaces

Given a surface ¥ and a point bf p on ¥, it is meaningful to talk about the normal line to 3 at
P which is simply the unique line that is perpendicular to the tangent plane at p. Each such line
may be viewed as having two distinct sense of direction, and an orientation is basically a way of
specifying a sense of direction for every normal line to the surface. The theory of surface integrals
in multivariable calculus requires the use of orientations, and Stokes’ Theorem is a basic result
for which orientations of surfaces are absolutely necessary; this is particularly reflected by the fact
that the result does not hold for the Mobius strip. Orientations also play an important role in
describing the curvature properties of a surface. Historically curvature was first defined for surfaces
using orientations. Although many basic curvature properties do not depend upon orientations,
the original approach to curvature using orientations provides numerous important insights that
are often difficult at best to understand from other approaches.

IV.1: Normal directions and Gauss maps

(do Carmo, §§2-6, 3-2)

If ¥ is a surface and p is a point of 3, then the space of tangent vectors to ¥ at p is a
2-dimensional subspace of R3. The orthogonal complement of this subspace is the 1-dimensional
space of normal vectors. At each point p there are precisely two normal vectors that have unit
length.

Definition. If 3 is a surface, then an orientation of 3 is a continuous map N : & — R? (i) such
that for each p € 3 the vector N(p) is a normal vector to p with unit length, (i7) for each p there
is an open disk D centered at p on which N extends to a smooth map from D to R3. A surface
3. is orientable if one can define an orientation for 3, and if N is an orientation for > we say that
(2,N) is an oriented surface (or surface with orientation).

Clearly orientations are not unique; in particular, if N is an orientation for 3 then so is —N.
Furthermore, if one considers the pair of parallel planes defined by the equation 22 = 1, then one
clearly has at least two choices for the orientation on each plane (namely, take N = + ez, where
the signs can be chosed independently on each of the planes). However, the following result shows
that locally there are only two possible orientations for a surface.

PROPOSITION. Let X be a surface, let p be a point of 33, and let A and B be orientations of
3.. Then there is an open disk U containing p such that B=+A on U NX.

Proof. For each point q € ¥ we know that B(q) = + A(q). In particular, for each q this means
that either |B(q) + A(q)| = 0 or else |B(q) + A(q)| = 2. Suppose that B(q) = A(q). Then by
continuity we know there is some small disk D containing p such that |B(q) ¥ A(q)| < 1 for all
q in ¥ N D. Since there are only two choices for the distance |B(q) ¥ A(q)| and one of them is
greater than 1, it follows that the distance must be zero on all such points, so that B is equal to A
on ¥ N D. Similarly, if B(q) = —A(q), then there is an open disk V centered at p such that B is
equal to —A on X NDua
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There are two fundamental examples of orientable surfaces for which orientations are easy to
construct.

LEVEL SURFACES. Suppose that ¥ is the zero set of a smooth function f defined on a
connected domain U, where as usual we assume that V f is always nonzero on Y. In this case we
know that the gradient of f is perpendicular to the 2-dimensional space of tangent vectors, and
therefore we may define an orientation by the formula

1
N(p) = V7o) -Vf(p) -

The condition that N extend to a smooth disk about each point is automatically satisfied because
one can use the formula to define N on some open disk containing p on which the gradient is
nonzero.m

SURFACES WITH GOOD GLOBAL PARAMETRIZATIONS. Suppose now that there is a 1-1
regular parametrization X for 3 that is defined on some connected domain U. Let

Ap) = () x (s

where (s,t) € U is the unique point such that X(s,t) = p, so that Q(p) is a nonzero vector that is
perpendicular to the tangent plane at p. Then we may define an orientation by the formula

To verify the extension condition, let ® be the normal thickening described in Section II1.2, take

0® 0P

=3 X

note that ) is nonzero on an open disk containing p, and as before take IN to be ) divided by its
length.

A nonorientable example. The standard example is the Mobius strip; the usual way of
explaining nonorientability is by studying the behavior of a unit normal vector to the surface as
it travels around the central circle in the surface; as one goes around this circle once, the normal
vector moves continuously from itself to minus itself. We can make this mathematically precise
using the parametrization at the end of Section II1.2. The central circle in the M6bius strip is just
the circle in the zy-plane with parametric equations (cost,sint,0) for ¢ € [0, 27|, and the curve
with parametric equations

(— cosusin(u/2), — sinusin(u/2), cos(u/2))

defines a unit normal to the surface at z(t) for every choice of ¢. Direct computation shows that
y(0) = (0,0,1) and y(27) = (0,0,—1). In order to prove that the Mobius strip is not orientable,
it suffices to show that this sort of thing cannot happen if one has an orientation for a surface.

PROPOSITION. Let 3,N) be an oriented surface, let z be a regular smooth closed curve defined
on [0, 271] and taking values in ¥, and let y be another smooth closed curve such that y(t) is a
multiple of N(z(t)) for all t, with y(0) = N(z(0) ) and y(27) = —N(z(27)). Then there is a point
a € [0, 27] such that y(a) = 0.
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Proof. The hypothesis that that y(¢) is a multiple of N(z(¢)) for all ¢ and a standard inner
product formula imply that

and therefore the coefficient
f@) = (y(), N(=z(t)))

is a continuous function of ¢. By construction we have f(0) =1 and f(27) = —1, and therefore the
Intermediate Value Theorem implies the existence of some a € (0,27) such that f(a) = 0=

The Gauss map

The orientation map for an oriented surface is also known as the Gauss map. This map will
play an important role in the rest of the course.

It is instructive to look at some examples. First of all, if ¥ is a plane, then the normal lines at
different points are all parallel to each other, and in fact if one views a plane as the set of points
satisfying an equation of the form

Ax + By + Cz = D

where (A, B, C) # (0,0,0), then the natural choice for the Gauss map is the normalized gradient

1

and accordingly the Gauss map is constant in this case. On the other hand, if one takes the sphere
defined by the equation 22 +5?+22—1 = 0, then the normalized gradient of the function at (z,, 2)
is simply (z,y,2). In this case the image of the Gauss map is the entire sphere. Frequently the
image of the Gauss map is somewhere between these two extremes. For example, if we consider
the circular cylinder defined by the equation z? + 32 — 1 = 0 then the normalized gradient at an
arbitrary point (z,y, z) of the cylinder is (z,y,0), and the image of the Gauss map is the circle in
the zy-plane defined by the equation z? 4+ y2 — 1 = 0. As a final example consider the parabolic
cylinder y — 22 = 0. The gradient at a typical point of this surface has the form (—2z, 1,0), and
the corresponding set of unit vectors consists of all points on the unit circle in the zy-plane defined
by the equation z? + y? — 1 = 0 except the point (1,0,0).
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IV.2: The Second Fundamental Form

(do Carmo, §§3-2, 3-3)

The First Fundamental Form carries an enormous amount of information about the geometry
of a surface. However, it does not completely characterize surfaces up to rigid motions in the sense
of Section 1.5 (i.e, the existence of a map ® as in that section such that one of the surfaces is locally
the image of the other under ®). To see this, consider the plane defined by the equation z = 1 and
the cylinder defined by z2 + 2 = 1 at the point (1,0,0). Clearly these surfaces are not equivalent
under a rigid motion. However, if one takes parametrizations near (1,0,0) for surfaces of the forms
A(u,v) = (1,u, v) and B(u,v) = (coswu, sinu, v) one obtains the same First Fundamental Form
in terms of u and v; in each case one has I = dudu + dvdv. Physically, this reflects the fact
that we can roll a flat piece of paper onto a portion of a cylinder without stretching or tearing
it. Thus it is clear that we need additional data in order to characterize surfaces locally up to
rigid motions. The objective of this unit is to investigate the classical description of this additional
information using the Second Fundamental Form. As the name indicates, this is similar to the First
Fundamental Form in some key respects, but as one might expect from the organization of these
notes, its formulation requires an orientation for the surface and its definition involves the Gauss
map.

Suppose that (X, N) is an oriented surface in R3. We would like to define a derivative for this
map D N such that for each p € ¥ we have a linear transformation D N(p) on the tangent space
Tp(X) and in an appropriate sense D N(p) is a smooth function of p. Formally, one can achieve
many of these goals by taking a smooth extension N# of N on some open disk U containing p;
given a vector v in T, (3) we can then provisonally define

[DN(p)I(v) = [DN#(p)](v).

The smoothness of this map is immediate, but it is necessary to check that the right hand side
does not depend upon the choice of extension N# and that it sends tangent vectors at p to tangent
vectors at p. We shall verify these in order.

LEMMA 1. The right hand side of the defining equation for [D N(p)] (v) does not depend upon
the choice of extension N#.

Proof. Let y be a regular smooth curve in ¥ such that y(0) = p and y’(0) = v. Then the Chain
Rule shows that the curve
a(t) = Ney(t) = N#oy(t)

is also a smooth curve and [N°y]’(0) is equal to the right hand side of the defining equation for
[DN(p)](v). Since z'(0) = [Ney]’(0) does not depend upon the choice of extension, this proves
that the definition for [D N(p)] (v) also does not depend upon the choice of extension.s

LEMMA 2. Ifv eT,(X) then [DN(p)](v) also lies in Tp(X).
Proof. We shall use the notation of the preceding lemma, so that

[DN(p)l(v) = 2'(0)

where z = Ney. It suffices to show that z’(0) is perpendicular to N(p). For each q € ¥ the
normal vector N(q) has unit length by construction, and therefore we know that |z'(¢)|> = 1. If
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we differentiate this and apply the Leibniz Rule for dot products of vector valued functions, we see

that d
= ZEOF = 20, 7®)

and if we evaluate the inner product on the right hand side at ¢ = 0 we see that it is equal to

(N(p), [DN(p)] (v))

and therefore we conclude that this inner product vanishes; i.e., the vector [D N(p)] (v) is perpen-
dicular to N(p).=

If we are given a local parametrization of ¥ near p by some regular smooth parametrization
X, defined on some connected domain U, then we can use the local formula for N to describe the
map

[D (N°X)] (u,v)

as a linear transformation on R? using the identity

1 X 0X
NeX = (Iength) - (8—u) % ( %)

but we shall find a better way to compute this map in terms of local coordinates.

In textbooks and elsewhere the map D N(p) is often called the Weingarten map or the shape
operator for the oriented surface (X, N).

Definition. Let T(?)(X) be the set of all ordered pairs of points (v, v3) in T(X) x T(Z) such
that 7=(v1) = 7s(v2), and let x; be the second coordinate of v;. The Second Fundamental Form
of ¥ is the map Iy on T(® (%) sending (v1, v3) to

— ([DN(p)] (x1), x2)

(note the sign!!!) where as usual (..., ...) denotes the usual inner product of two vectors in R3.

At this point it is helpful to understand what this means for the basic examples we discussed
in the previous section. If ¥ is a plane and N is some orientation, then N is parallel to the normal
direction for the plane at all points and therefore N is at least locally constant by the observations
in Section IV.1. In fact, one can take the extension N also to be constant, and it follows that in
this case D N(p) = 0 for all points p on the plane, and therefore the Second Fundamental Form is
also zero at every point of the plane.. On the other hand, if 3 is the sphere and N is the standard
outward pointing orientation then N(p) = p and therefore DN(p) = I for all points p on the
sphere; in this case the Second Fundamental Form is the negative of the First Fundamental Form.
Of course, if we would replace N by its negative, then the Second and First Fundamental Forms
would be equal. Finally, suppose that X is the cylinder defined by z? + 2 = 1. In this case
N(z,y,z) = (z,y,0) and the tangent space at (z,y, z) has an orthonormal basis given by (-, z, 0),
which is the tangent vector to the circle a(6) = (cos 0, sin8, z) at (z,y, z), and (0.0.1), which is the
tangent vector to the vertical line b(t) = (z,y,t) at (z,y, z). Direct computation shows that these
two vectors are eigenvectors for D N(z,y, z) and the associated eigenvalues are 1 and 0 respectively.
It follows that the Second Fundamental Form is given by

— ((DN(p)] (pa’ + ¢b'),ra’ + sb’)
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and by the observations in the preceding sentences this is equal to — pr. In particular, the Second
Fundamental Form vanishes for some but not all pairs of vectors. At the beginning of this section
we mentioned that the First Fundamental Forms for the plane and the cylinder were the same, but
we have now seen that their Second Fundamental Forms are different.

We would also like to understand the behavior of the Second Fundamental Form for the
hyperboloid of one sheet given by the equation z2 — 42 — 22 — 1 = 0, and in order to do this we
need to follow through on our earlier comment about developing a way of computing DN and
the Second Fundamental Form in a efficiently using a regular smooth parametrization X. The first
point is to observe that the Second Fundamental Form is completely determined by its values for
pairs of tangent vectors such that each is either X,, and X, (this includes cases where both vectors
in the pair are the same and where the two vectors are different). This is true because

II(pX, + ¢X,), 7X, + sX,) =

priII (X, X,) + psII (X, X,) + qrIl (X,, X,) + ¢sII (X,,X,) .
We then have the following important formulas:

BASIC VALUES FOR SECOND FUNDAMENTAL FORMS. Suppose we are given a
reqularly parametrized smooth surface 2 with parametrization X, and assume that the normal vector
function is given by N. Then the following identities hold for the second fundamental form:

[1] I1 (Xua Xua) = <N7 Xu,u)
[2] IT (X,, X,,) = (N, Xu,v> = (N, Xv’u) =1II (X,, X,,)
[3] IT (Xva Xva) = <Na Xv,v)

Proof. All the derivations are of a similar nature, so we start with the first one. Since N is
perpendicular to the tangent plane at every point we know that

(N,X,) = 0.

Next, observe that D N(p) X,, is merely the partial derivative D, (N°X), and we shall stretch our
conventions to write this as D, N. Taking partial derivatives of the equation above with respect
to u and applying the Leibniz Rule for dot products of vector valued functions, we see that

0 = (D,N,X,) + (N, X,.)

and since the first summand on the right hand side is the negative of IT (X,,, X,,,) it follows that
the latter is equal to (N, X,, ,, ) as required. The derivation of the third identity is nearly identical,
the only difference being that w is replaced by v in each equation.

Similarly, if we take partial derivatives of both sides of the equation
(N, X,) =0

with respect to v we conclude that II (X,, X,) = (N, X, , ). Furthermore, if we interchange
the roles of u and v in this argument we also see that II (X,, X,) = (N, X, ). Under the
assumption that the regular surface parametrization has continuous second partial derivatives, we
know that X, , = X, , and using this we see that IT (X,, X,) = IT (X,, X,,). This completes
the derivation.m
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Notational conventions. In the literature and textbooks the quantities II (X,,, X, ),
II (X,, X,) =1II (X,, X, ) and IT (X,, X, ) are often denoted by e, f and g respectively or by
L, M and N respectively; in these notes we shall use the first notation in order to avoid confusion
between N and N. If one writes a typical tangent vector in the form X, du 4+ X, dv where du and
dv are viewed as scalars, then this yields the classical expression for the Second Fundamental Form:

IT (X, du+ X, dv, Xy du+ X, dv) =
e(u,v)dudu + 2 f(u,v)dudv + g(u,v)dvdv
Example. We shall apply all this to describe the Second Fundamental Form for the hy-

perboloid of one sheet described above. If we let h(z,y,z) = 22 + y? — 22 — 1 then Vh(z,y,2) =
2 (z,y,—z) and therefore the unit normal is given by

1
> > 5 (J), Y, _Z) :
Vzety:+z
This can be simplified slightly by noting that 2 + y2? + 22 = 1 + 2 22 for points on the surface, but

it will also be useful for us to let Q(z,y,z) = (x,y, —z), so that Q(zx,y, z) is a positive multiple of
the unit normal N described above.

N(z,y,z) =

We shall use the following standard parametrization for the hyperboloid of one sheet:
X(u,v) = (cosu coshv, sinu coshwv, sinhv)
One can then describe the normal vector €2 by the following formula:
Qu,v) = (cosu coshwv, sinu coshv, — sinhv)

One can compute the second partial derivatives of X in a very direct manner, and if one takes inner
products with 2 one obtains the following results:

(Q, Xyu)=— cosh? v

<Qa Xu,v) = <Q, XU,u) =0

(Q, X,p)=1

Therefore it follows that the coefficients e(u,v) are always negative, the coefficients f(u,v) are
always zero and the coefficients g(u,v) are always positive. Thus the Second Fundamental Form in
this case looks quite different from those in the cases previously described.

Since many surfaces are expressed as graphs of functions of two variables, we shall describe
the First and Second Fundamental Forms for a surface defined as the graph of a smooth function

z = h(z,y). In order to state these formulas concisely we shall let «(z,y) = /1 + h2 + h2.

E=1+h2
F =hgh,

G=1+h;
e=hyy/c
f=hey/a
g=hyy/a

All of these formulas may be verified directly using the identities established above and the
fact that the regular smooth parametrization of the surface is given by X(z,y) = (z,y, h(z,y) ).
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IV.3: Quadratic forms and adjoint transformations

(do Carmo, §3—-Appendix)

The First and Second Fundamental Forms are examples of quadratic forms on a real vector
space with an inner product. It is particularly useful to study some aspects of the Second Funda-
mental Form using a few basic algebraic facts about such quadratic forms, so we shall summarize
what is needed here. For our purposes it will suffice to restrict our attention to quadratic forms on
2-dimensional real inner product spaces.

The following result is an easy algebraic exercise:

PROPOSITION. Let V be a 2-dimensional real inner product space with basis vectors x and
y, and let T : V — V be a linear transformation from V to itself. If (T'(x), y) = (x, T(y)), then
(T'(w), z) =(w, T(z)) forallw,z e V.

Proof. Express w and z as linear combinations of x and y:
W = pxX + qy Z = rX + sy

We then have

and similarly we have

(w,T(z)) = prix, T(x)) = qr{xT(y)) = ps(y,Tx)) = qs{y,T(y)) -

We always have
(T(x), x) = (x, T(x))

and similarly if y replaces x, so the hypothesis (T'(x), y) = (x, T'(y) ) combines with these to show
that (T'(w), z) = (w, T(z)) forallw,z € V.m

Linear transformations satisfying the conclusion of the preceding result are said to be self-
adjoint. If we are given an orthonormal basis u and v for our inner product space V and we
construct the 2 X 2 matrix representing 7" with this orthonormal basis

T(u) = au + bv T(v) = cu + dv
then T is self adjoint if and only if
c=(u,T(v)) = (T(u),v) = b

or in other words the matrix representing 7" is symmetric.

Every real symmetric matrix has an orthonormal basis of eigenvectors; this is a standard result
on matrices, and in the 2 X 2 case one can see this very easily by computing the characteristic poly-
nomial and noting that it has real roots. Other basic results in linear algebra imply a corresonding
result of this sort for self-adjoint linear transformations.
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Let V and T be as above. In the next section we shall be interested in finding the maximum
and minimum values of the quotient

(T'(x), x)
{x, x)

k(x) =

where x ranges over all nonzero vectors in V. Let u and v be an orthonormal basis of eigenvectors
for T', and let o and 8 be the eigenvalues associated to u and v respectively. One of these eigenvalues
is greater than or equal to the other, and we shall assume that we have labeled everything so that
a<p.

RAYLEIGH’S PRINCIPLE. The mazimum and minimum values of the above expression are

the eigenvalues B and o, and these values are attained and the eigenvectors v and u respectively.

Proof. If x is an arbitrary nonzero vector in V we may write
x = rcosfx + rsinfy
for some r > 0 and 6 € R. It follows that
k(x) = a cos®> 6 + B sin’ @ .
Since a < g it follows that
a = acoslf+asin?d < acos?f4Bsin? < Bcos’f+Bsin’h = B

and it also follows that k(u) = o while k(v) = .=

Trace and determinant formulas

Recall that the trace of a square matrix is equal to the sum of its diagonal entries, and if a
matrix is diagonalizable then the trace is equal to the weighted sum of the eigenvalues

> n)A

A

(one way to see this is by means of the characteristic polynomial — both numbers are (—1)"~!
times the coefficient of ¢t"~! if the matrix in question is » x n). One can then define the trace
of a diagonalizable linear transformation on a finite-dimensional vector space by means of the
corresponding weighted sum of eigenvalues. This is entirely analogous to the situation for the
determinant. For diagonalizable matrices the latter is equal to the weighted product of eigenvalues

> n()A

A

and one can define the determinant of a diagonalizable linear transformation on a finite dimensional
vector space using this formula.

We shall need information about the following purely algebraic question:
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Problem. Suppose that we are given a 2-dimensional real inner product space V, a basis z;
and z, for V, and a self-adjoint linear transformation 7" : V' — V. Suppose that

a c
)
is the matrix whose entries are defined by the formulas
T(z1) = ax; + bzz and T(z1) = axy + bzsy.

Express the entries of A in terms of the inner products (z;, z; ) and (T'(z;), z; ) where 1 <¢,j < 2.

Motivated by our terminology for the First and Second Fundamental Forms, we shall denote
the various inner products as indicated in the matrices below:

(omd om) = (F o) (Fenm o) -G

Direct calculuation then yields the following equations:

e = (T(z1),z21) = (T(azy + bzz,21) = aE + bF
f = (T(z2),21) = (T(cz1 +dz2,21) = cE + dF
f = (T(z1),22) = (T(az1 + bz2,29) = aF + bG
g = (T(z2),22) = (T(cz1 +dzz,21) = cF + dG

These equations are equivalent to the following matrix equation:

(54) =G a)(Fe)

If we now assume that the matrix with entries F, F' and G is invertible (as it is in the case of the
First Fundamental Form), then one can solve for A and obtain descriptions of its entries in terms
of the entries of the other two matrices. These lead directly to the identities we want:

TRACE AND DETERMINANT FORMULAS. The determinant of A is equal to
eg—f?
EG — F?
and the trace of A is equal to
eG—-2fF+gFE
EG - F?

Derivation. The first of these follows from the matrix equation and the fact that det(B1Bs) =
det B; - det Bs. For the second formula we need to compute

e f\ (E F\™
f g F G
and take the sum of its diagonal entries. By Cramer’s Rule the inverse is given by
1 (G -F
EG — F? -F FE
and if substitute this into the preceding formula, compute the product, and add the diagonal entries
then we obtain the expression for the trace in the formula.m
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IV.4: Normal, Gaussian and mean curvature

(do Carmo, §§3-2, 3-3)

One approach to studying the curvature properties of surfaces is to consider the curvature
properties curves formed by the intersection of a surface with some plane containing a point on
the surface. In particular, if one wants to study the curvature properties of an oriented surface
(3, N) at some point p € ¥, one might consider the curves formed by intersecting ¥ with all planes
containing the normal line to p and attempt to describe their curvatures. In fact, this approach
leads directly to the basic notions of curvature for oriented surfaces in R3.

It will be convenient to review some concepts from the first unit of the course. If we are given
a regular smooth curve y in R3 such that y(0) = p, then we shall let s denote the modified arc
length parametrization such that s(0) = 0 and s’(¢) = |y’(¢)|. Then one has the unit tangent vector

function p ,
T - v _ Y@
ds s'(t)
and the associated curvature vector function
dT T'(t)
k = — =
(5) ds s'(t)

that is perpendicular to T and whose magnitude is equal to the curvature of of y at a given
parameter value.

Definition. Let y be a smooth curve in ¥ such that y(0) = p; if X is a regular smooth
parametrization of ¥ at p then we may write y(¢) = X(u(t), v(t)) for suitable smooth functions u
and v, at least if ¢ is sufficiently close to 0. The normal curvature vector k,, for the curve is then
given by

kn(s) = (k(s), N(y(s))) - N(y(s))

and the normal curvature of y with respect to X is given by
kn = (k,N).

The normal curvature vector and the normal curvature are related by the equation k,, = x,, - N.

IMPORTANT SPECIAL CASE. Suppose that we are given a curve y defined as the intersection
of ¥ with the plane through p that contains the normal line to ¥ and the tangent line through p
that is parallel to the nonzero vector v € T,(X). Then the curvature vector for y at parameter
value is perpendicular to v and lies in the plane containing this vector and N(p), and accordingly
k(0) is a scalar multiple of N(p). In this case the absolute value of the normal curvature is the
ordinary curvature of y at parameter value 0.

The following crucial result allows us to describe the normal curvature in relatively familiar
terms.

MEUSNIER’S THEOREM. The normal curvature vector k,, and the normal curvature x,, at
p only depend upon y'(0) = w, and in fact we have the formula

II(w, w)

T I(w, w)
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Of course, this is just the sort of expression that we considered at the end of the previous
section.

Historical footnote.  Born on June 19, 1754, at Tours, France, JEAN BAPTISTE MARIE
MEUSNIER is known for his ideas on designing airships and his career as a military officer as well as
his results on the differential geometry of surfaces. He was a student of G. Monge at the Ecole Royale
du Génie in Mézieres, and he was the first person to envision an elongated airship as an alternative to a
spherical balloon. His suggestion of an elliptical-shaped airship was advanced in 1784, just weeks after
the first flights of hot air balloons by the Montgolfier brothers. Henri Giffard adopted much of Meusnier’s
design in his first successful powered airship. Meusnier also played a key role in the organization of the
army of the First French Republic; he was severely wounded during a battle between the French and
Prussians at Cassel (near Mainz, Germany), and died on June 13, 1793.

Proof of Meusnier’s Theorem. We know that the unit tangent vector T to the curve is
perpendicular to the unit normal vector N to the surface because the curve lies in the surface.
Differentiating both sides of the expression 0 = T - N and applying the Leibniz Rule, we see that

dT dT

= =~ .N + N.—
0 dt + dt

This leads to the following string of equations:

dT 1 dT 1 dN
:-:—-N: -—.N = - .T._:
fin k-N ds s'(t) ( dt ) s'(2) ( dt )
_1(dy 4N _ 1 (dy dN
s'(t)2 \dt dt ) — |y'@®)2 \dt dt

and by the Chain Rule the last expression is equal to

(WX, +vX,) (N, + v'N,)
lu' X, + v X,[? )

The denominator of this expression is equal to the First Fundamental Form at (w, w). Furthermore,
the numerator is equal to the inner product of w and [D N(p)](w), or equivalently the negative
of the value of the Second Fundamental Form at (w, w). It follows that «, is the quotient of the
Second Fundamental Form by the First evaluated at (w, w).m

By the results of the preceding section, the normal curvatures attain maximum and minimum
values, these are realized at the eigenvectors of —D N(p), and the values are equal to the eigenvalues
of DIN(p). The average of these eigenvalues is called the mean curvature and the product is called
the Gaussian curvature. Classically these quantities are denoted by H and K respectively.

LOCAL FORMULAS. If the oriented surface (2, N) is given by a regular smooth parametriza-
tion X, then the mean and Gaussian curvatures H and K are given by the following formulas:

eG—2fF+gE

B = —wEe—m
eg— f?
K EG—-F?
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Proof. These are immediate consequences of the trace and determinant formulas at the end of
the previous section.m

Once again we shall consider our standard examples and describe their mean and Gaussian
curvatures. For the plane, we know that the Second Fundamental Form is identically zero, and
therefore it follows that both the mean and Gaussian curvatures are zero everywhere. Suppose now
that we consider the sphere defined by the equation 22+ y? 4 22 — 2 = 0 where r > 0. In this case
the unit normal is given by (z/r, y/r, z/r), so the Second Fundamental Form is just —1/7 times
the First Fundamental Form. It follows that the normal curvature of every smooth curve through
a point on the sphere is equal to —1/r, which in turn means that the mean curvature is equal to
—1/(2r) at each point and the Gaussian curvature is equal to 1/72 at each point. Consider next
the cylinder defined by z2? 4+ 32 = 1. We noted that the eigenvalues of the map D N in this case
were equal to 0 and 1, and therefore the mean and Gaussian curvatures in this case are equal to
% and 0 respectively. Finally, one can use our previous discussion for the hyperbolic paraboloid
to find its mean and Gaussian curvatures at each point. One important new feature is that these
quantities are no longer constants. We shall not go through all the details of this case but simply
note that the mean and Gaussian curvatures for the hyperbolic paraboloid are negative at every

point.

Note. The Gaussian curvature can in fact be defined for nonorientable surfaces. This is
based upon the following observations:

(1) Locally the surface is given by a regular parametrization.

(13) Surfaces given by a single regular parametrization are orientable, and locally they have
exactly two orientations, one of which is the negative of the other.

(747) One can use the preceding methods to compute the Gaussian curvature near a point p,
and the value is the same for both orientations near p essentially because the product of
the eigenvalues for a diagonalizable 2 X 2 matrix A is the same as the product for —A.

In particular, this means that we may define the Gaussian curvature on the Md6bius strip even
though there is no globally defined smooth unit normal. These considerations also show that if
Y. has an orientation, then the Gaussian curvature does not depend upon the specific choice of
orientation.

Interpreting the sign of Gaussian curvature

As a first step to understanding the meaning of curvature for surfaces, it is important to
consider the implications for the shape of the surface ¥ if the Gaussian curvature is positive,
negative or zero at a point. Since Gaussian curvature is continuous, if it is positive or negative at p
then it is also positive or negative at all points close to p, but if the Gaussian curvature is zero at
p then one does not expect to draw any conclusion at all about the nonnegativity or nonpositivity
of the Gaussian curvature near p, and in fact we shall give examples to show that the shape of a
surface near a point can vary significantly if the Gaussian curvature at p is zero.

The first step in using Gaussian curvature to obtain a rough idea of the shape near a point p
is to consider the curves formed by intersection the surface with a plane Q containing the normal
line M through p. Let L be the tangent line to the intersection curve at p, let v be a unit vector
parallel to L, and let Q4 be the “positive” side of L in Q consisting of all points x € Q such that

(x—p)-N(p) > 0.
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If the curve through p determined by 3 N Q has positive normal curvature at p, this means that
the center of the osculating circle at p is a point of M that lies on Q4, and in fact it follows that
all points on the curve that are close to p, except for p itself, also lie on Q4. Similarly, let Q_
denote the other side of L in Q consisting of all points for which (x — p) - N(p) is negative, and
suppose that the Gaussian curvature of the curve through p determined by >N Q is negative. Then
it follows that the center of the osculating circle at p is a point of M that lies on Q_, and in fact
it follows that all points on the curve that are close to p, except for p itself, also lie on Q_.

Suppose now that the Gaussian curvature at p is positive. This means that the maximum
and minimum values for the normal curvatures of the intersection curves are nonzero and have
the same sign. In this case it follows that all points of the intersection curves that are sufficiently
close to p lie on one of the closed sides of the tangent plane that are determined by one of the
inequalities (x — p) - N(p) > 0 or (x — p) - N(p) < 0. Furthermore, with the exception of p itself,
all of the nearby points on such curves lie on the open sides defined by replacing < and > with
strict inequalities. This corresponds to the notion of strict local convexity that was discussed in
the exercises.

Before proceeding, it will be useful to set some notation. Given a nonzero tangent vector w at
p, let B(w) be equal to w x N(p); since w and N(p) are nonzero vectors that are perpendicular
to each other, it follows that their cross product is nonzero and perpendicular to both of these
vectors. The plane containing p with normal direction corresponding to B(w) will be denoted by
Q(w), and its two open sides Q4 (w) may then be defined as in the previous paragraph.

Suppose now that the Gaussian curvature at p is negative. In this case one can choose nonzero
tangent vectors vi; and vs at p such that the normal curvatures of the corresponding plane inter-
sections Q(vy) N X and Q(vy) N'X are positive in the first case and negative in the second. If 5;
is the curve near p determined by the intersection Q(v;) N X, then the centers of the osculating
circles for 8; and (5 lie on Q(vy)4 and Q(vsz)_ respectively, and similar statements hold for all
points of 1 and (B, that are close to p except for p itself. A good model for this is the saddle
surface defined by the equation

z = y? — 22
near the origin. The tangent plane of this surface at the origin is the zy-plane, and the standard
upward normal for the surface at the origin is the vector (0,0, 1). Direct calculation shows that the
First Fundamental Form is

(1 + 42%)dedr + 1622y> + (1 + 4¢y?)dydy .
Furthermore, the intersections of this surface with the yz- and zz-planes are the parabolas z = 32
and z = —x2 respectively. Away from the origin, these intersection curves lie in the open half
planes determined by the strict inequalities z > 0 and z < 0 respectively. Incidentally, one can
show directly that the saddle surface has negative Gaussian curvature at the origin using the
formulas from Section IV.2 and this section as follows: By the formulas at the end of Section IV.2
we know that the Second Fundamental form is given by

2(dydy — drdx)
V1 + 422 + 4y2

and therefore the formula for the Gaussian curvature in terms of the Second Fundamental Form

shows that
—4

(1 + 422 + 4y?)?
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Thus the Gaussian curvature is negative at all points of this surface.

Note that the mean curvature must be nonzero if the Gaussian curvature is positive because the
latter implies that the maximum and minimum values of the sectional curvature are both positive
or both negative.

If the Gaussian curvature at p is zero, then one cannot draw many conclusions about the
shape of the surface near p. This is best seen using examples. There are two basic cases depending
on whether the Second Fundamental Form is zero or nonzero. We shall begin by considering the
second possibility. In this case the map D N(p) is not invertible but also nonzero, and therefore
it has two eigenvalues, one of which is zero and one of which is nonzero. The cylinder defined by
22 +y? = 1 is one example of this sort. A typical point of this surface is the unit vector (1,0,0), and
its tangent plane is defined by the equation z = 1. In this case all the curves formed by intersecting
the surface with planes containing the normal line at (1,0,0), which is the z-axis, lie on the sides of
the tangent plane determined by the inequality z < 1, and in fact all points on these curves except
(1,0,0) itself lie in the set determined by the strict inequality = > 1. However, it is also possible to
describe other examples where D N(p) has rank 1 but the surface has points on both sides of the
tangent plane. The graph of the function z = z2 + 3 at the origin is a specific example (look at
the intersection with the yz-plane).

If the Gaussian curvature is zero and D N(p) = 0 then the mean curvature is also zero and
the local behavior of the surface near p also cannot be determined without additional information.
A plane is the simplest example of this type. However, there are also examples for which the
surface is strictly locally convex near the point p and examples where the surface has points on
both open sides of the tangent plane near p. An example where strict local convexity holds is given
by the graph of f(z,y) = z* + y* at the origin, where the tangent plane to the surface is merely
the zy-plane. One can use the methods employed for the saddle surface to show that the Second
Fundamental Form is zero at the origin. If one intersects this surface with a plane containing the
normal line at the origin, which is the z-axis, then the resulting curves all lie on the side of the
tangent plane defined by the inequality z > 0, and except for the origin itself all points of the
curve lie on the open side where the strict inequality z > 0 holds. On the other hand, consider the
Monkey Saddle Surface defined by the equation

z = x° — 32y
at the origin. Once again the tangent plane is the zy-plane and the Second Fundamental Form is
zero. Using cylindrical coordinates and simple trigonometric identities, one can rewrite the equation
of the surface as z = 73 cos 30, and from this one sees that the intersection of the surface with a
plane containing a normal line has a parametrization of the form

(t cos 36y, t sin3 6, t3)

for some fixed real number 6). These curves are line in the zy-plane if 6y is an integral multiple
of 7/3. On the other hand, for other choices of 8, the points on this curve corresponding to ¢ > 0
and ¢t < 0 lie on the two opposite open sides of the tangent plane defined by z > 0 and z < 0. In
some cases the points corresponding to parameter values ¢ > 0 lie on the side defined by z > 0,
while in other cases these points lie on the side defined by z < 0. The following online sites contain
excellent (and in the second case interactive) pictures of the Monkey Saddle:

http://astronomy.swin.edu.au/~pbourke/surfaces/monkey/
http://www.ma.umist.ac.uk/kd/geomview/monkeysad.html

http://www.ag.jku.at/digpics_en.html
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IV.5: Special classes of surfaces

(do Carmo, §3-5)

In these notes particular attention has been given to understanding the main concepts in the
differential geometry of surfaces for the objects encountered in analytic geometry and calculus,
including quadric surfaces, surfaces of revolution and certain examples of ruled surfaces. Needless
to say, mathematicians and scientists in related fields have also found numerous other examples
of surfaces that are curious, interesting or important for one reason or another. The purpose of
this section is to discuss a few additional examples beyond the usual ones from analytic geometry
and calculus and also to comment further on the geometric interpretation of mean and Gaussian
curvature for some standard examples that have not yet been considered. These and other examples
are particularly useful in illustrating the sorts of geometric insights one can obtain by means of
methods from ordinary and multivariable calculus.

Here are some online references that have particularly good collections of surface graphics:
http://www.uib.no/People/nfytn/mathgal.htm
http://www.uta.edu/optics/sudduth/4d/the_main_ gallery.htm
http://mathworld.wolfram.com/SurfaceofRevolution.html
http://www.math.arizona.edu/~models/Ruled_Surfaces/

Of course, there are also many very good illustrations in do Carmo, but the impact advances
in computer technology since the publication of this book is clear (and the previously cited book
by Gray goes into the uses of such technology for differential geometry in great detail).

Ruled surfaces

We begin with a very simple observation.

GAUSSIAN CURVATURE OF A RULED SURFACE. If the surface X is given by a ruled
parametrization in the sense of Section 111.2, then its Gaussian curvature is nonpositive.

The cylinder and plane are examples of ruled surfaces for which the Gaussian curvature is
identically zero, and both the hyperboloid of one sheet and the hyperbolic paraboloid (saddle
surface) are examples of ruled surfaces for which the Gaussian curvature is always negative.

Proof. We can do this without computing the Gaussian curvature explicitly. Suppose that we

have a ruled parametrization
X(u,v) = a(u)+v-b(u)

where a’(u) is never zero and the vectors a’(u) and b(u) are always linearly independent. Then the
space of tangent vectors at X(u,v) is spanned by the linearly independent vectors a’(u) and b(u).

Consider the curve through p = X(u,v) formed by intersecting the tangent plane to p at
that point with the unique plane that contains X(u,v) and whose normal line is parallel to the
vector N(p) x b(u). This intersection is locally given by the line through p that is parallel to
b(u). Of course the curvature of this curve is equal to zero and therefore we know that there is
one tangent direction at p for which the sectional curvature is zero. If the Gaussian curvature were
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either positive or negative, then the sectional curvature would be nonzero in every direction, and
therefore the Gaussian curvature cannot be positive at p.m

Derivation of formulas for the mean and Gaussian curvature of a ruled surface are left to the
reader as an exercise.

Ruled surfaces for which the Gaussian curvature is identically zero are called developable sur-
faces, and they have many significant properties. Further information on this topic may be found
on pages 194 and 210 of do Carmo.

Surfaces of revolution

We shall derive formulas for the Gaussian curvature of a surface of revolution obtained by
rotating a curve in the zy-plane about the z- and y-axes. In the first case we need to assume
that the z-coordinates for all points on the curve are positive, and in the second we need to make
a similar assumption regarding the y-coordinates. Our ultimate goal is to describe a surface of
revolution whose Gaussian curvature is equal to —1 at each point.

Before setting up the computations it is worthwhile to consider some examples in order to have
a rough idea about what the general formulas for Gaussian curvature can be expected to yield. If
we take h(z) = v/1 — 2 and rotate it around the r=axis we obtain a portion of the unit sphere
centered at the origin. This surface has Gaussian curvature equal to +1 at each point, and the
second derivative of h is negative for —1 < £ < 1. On the other hand, if we take h(z) = v/1 + x2
and rotate it around the z=axis we obtain a portion of the hyperboloid of one sheet defined by the
equation y2 + 22 — 22 = 1, which has negative Gaussian curvature; in this case the second derivative
of h is positive everywhere. This and further experimentation suggest that the signs of the second
derivative and the Gaussian curvature should be the opposites of each other.

Suppose now that we are given a regular smooth curve c(t) = (p(t), q(t) ) where ¢(t) > 0 for
all t. Then the regular surface formed by rotating this curve about the z-axis may be given using
the parametrization

X(u,v) = (p(u), g(u) cosv, p(u) sinv) .

In order to compute the coefficients of the fundamental forms we need to find the partial derivatives
X; and X5 and the unit normal associated to the parametrization, which has the form

1
N = —.Q
€|

where Q = X; x X,. Here are the relevant formulas:

X; = (p',4q cosv, q sinv)
Xy = (p, —gsinv, g cosv)
Q = (qq, —p' qcosv, —p'qsinv)

9 = qv(®)® + (¢)?
Given these formulas we see that the First Fundamental Form has coefficients E = (p')? + (¢')?,
F=0and G = ¢

Similarly, the second partial derivatives of X are given as follows:
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— /1 " o3
Xi,1 = (p”,q" cosv, ¢" sinv)

Xi2 = X31 = (0, —¢ sinv, —¢' cosv)
X2 = (0, —gcosv, —gsinv)

The corresponding inner products with (2 are given by
0-Xy1 = plad — plad”
Q-X12 = 0
Q-Xop = p'¢?

and therefore the coefficients of the Second Fundamental Form are given as follows:
p'q — p'q"
@) + (¢)?
f =20
P'q
) + (¢)?

These computations yield the following formula for the Gaussian curvature:

9

_ eg—f* _ eg

K = EG-F2 EG
( pII q _ pl qll) pl q _ ( pII q _ pl qll) pl
(@)% + (¢')?]% ¢? (@) + (¢')?)2¢q

SPECIAL CASES. Suppose first that p(t) = ¢ so that the curve is simply the graph of a smooth
function. Then the formula reduces to
o
K = q/ 272
[T+ (¢)]q

and therefore the signs of K and ¢” are opposite, exactly as our examples suggested.

Suppose now that we assume that |¢’(¢)| = 1, so that (p')? + (¢')? = 1. If we differentiate this
with respect to u we obtain the equation p’ p” + ¢’ ¢” = 0, and thus we may use these equations
to rewrite the Gaussian curvature as —¢q”’/q. When c gives the standard parametrization of the
unit circle with p(t) = cost and ¢(t) = sint, this gives another proof that the Gaussian curvature

of the unit sphere is equal to 1, at least at all points except perhaps (+1,0,0).

Gaussian curvature of the torus.  The preceding also allows us to compute the Gaussian
curvature of the torus given given by revolving the circle with equation

2+ (y-2)7?% =1

about the z-axis. In this case parametric equations for the circle are given by p(t) = cost and
q(t) = 2 + sint, and by the formula given above the Gaussian curvature is equal to

—q"'(t) sin ¢
q(t) 2 + sint



This quantity is positive if ¢ € (0,7), zero if ¢ = 0, m, 27, and negative if ¢ € (w, 27). Visually,
it is positive on the piece of the surface obtained by revolving the upper semicircle about the z-
axis, negative on the piece obtained by revolving the lower semicircle about the z-axis, and zero
on the circles obtained by revolving the points (+,1, 1) about the z-axis. Note that the Second
Fundamental Form is nonzero at all points where the Gaussian Curvature is equal to zero.

The tractriz and pseudosphere

We shall now apply the preceding calculuations to find a surface of revolution whose Gaussian
curvature is equal to a negative constant. The standard example of this sort is the pseudosphere,
and it is obtained by revolving a curve known as the tractrix around the z-axis.

From a physical perspective the tractrix is given as follows: Suppose that a person is initially
standing at the origin in R? and is holding a tightly stretched leash with a dog on the other end at
(0,a) where a > 0. Now suppose that the person begins walking in the positive direction along the
z-axis and the dog’s path is such that the leash is tightly stretched at each point. If D(¢) and P(¢)
denote the positions of the dog and person at time ¢, these conditions translate into the following
mathematical conditions:

(1) The line of the leash is the tangent line of the path taken by the dog.
(2) The distance between the dog and person is always equal to a.

(3) If parametric equations for the dog’s path are given by (wu(t), v(t)), then both u(¢) and
v(t) are positive while their derivatives satisfy /() > 0 > /().

Here are some online graphics, including one that is animated:
http://mathworld.wolfram.com/Tractrix.html
http://bradley.bradley.edu/~delgado/122/Tractrix.pdf
http://www.amherst.edu/~amcastro/MathMedia/galleries/Curves/Tractrix.html

With the information given above we may derive parametric equations for the tractrix as
follows: The position of the person P(¢) on the z-axis is the intersection of that line with the
tangent line, which may be parametrized as

L(s) = = D(t)+sD'(t)

with the z-axis. If s is the parameter value at which this line meets the z-axis, then the mathe-
matical conditions imply that v(t) + sv’(t) = 0, |s¢/(t)| = a and su/(t) = /a?® — v(t)2. Combining
these equations, we conclude that

v(t)u' (t) = —sv'(®)u'(t) = —v'(t)Va®—v(t)?.
Dividing these by the nonzero number v(¢) yields the differential equation

, vaz —v2 -9

u =
v

As usual, some initial conditions are needed in order to solve such equations uniquely. In our
situation we know that

lim wu(t) = 4+oo0 and lim o(t) = 40.

t—+4o00 t—4occ
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If we make the change of variables 4y = a sin @ then standard antidifferentiation formulas from
integral calculus show that

z = a(Intan(6/2) + cos@) + C

and since the limit of y as 8 — %7‘(‘ is equal to a, it follows that the limit of z as 6 — %7r is equal
to 0. If we substitue this into thre right hand side of the formula for z, we see that the constant of
integration C' must be equal to zero. This means that one can describe the tractrix analytically by
means of the parametrization

(a(lntan(G/Z) + cosf), asinﬁ) .

Note that as 6 goes from 0 to 7/2 this traces out the curve in the reverse direction from the one
considered originally; the limiting values at # = 0 and /2 may be viewed as (+o0, 0) and (0, a)
respectively.

To find the Gaussian curvature of the pseudosphere we may now substitute the coordinates
for this parametrization into the general formulas given before:

p(0) = a(lntan(6/2) + cosf)

q(0) = asinf

If one then simplifies the resulting expression using standard differentiation rules and trigonometric
identities, the conclusion is that K = —1/a? at all points of the pseudosphere. Thus the latter is
indeed the desired surface of revolution with prescribed constant negative Gaussian curvature.

Constant Gaussian curvature

Classical Euclidean and Noneuclidean geometry have a natural interpretation in differential
geometry as spaces of constant curvature. We have already seen that the plane and the sphere
are spaces that have constant curvature, with the constant value equal to zero in the planar case
and a positive number in the spherical case. In classical geometry it is either implicitly or ex-
plicitly assumed that the spaces have translational symmetry — given two points one can find a
rigid motion sending one point to the other. From the perspective of differential geometry, this
corresponds to an assumption that the Gaussian curvatures at every pair of points are the same,
or equivalently that the Gaussian curvature is constant. The structure of surfaces with constant
Gaussian curvature has been a central topic in differential geometry throughout its history, and
there are important results which imply that all surfaces with constant curvature are very closely
related to the fundamental examples; namely, the plane in the case of zero curvature, the sphere in
the case of positive curvature, and the Noneuclidean plane discussed at the end of Section IT1.4. A
fundamental theorem of D. Hilbert shows that one does not have a nice realization of the latter as a
surface in R3, but the pseudosphere provides a good model in R3 for a small portion of this object
(more precisely, if one removes the copy of the tractrix corresponding to v = m, then the remaining
portion of the pseudosphere is metrically equivalent to a region in the Noneuclidean plane).
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Minimal surfaces

A surface is said to be a minimal surface if its mean curvature is identically zero. This condition
is simple and analogous to the conditions for constant Gaussian curvature, but none of this explains
the reason for the name. From the viewpoint of local differential geometry, a minimal surface is is
one that is equally bent in all directions so as to have zero average curvature just like a plane or
the surface z = 22 — y2 at the origin, but in contrast to the latter one wants this property at every
point of the surface. Aside from the plane, two basic examples of such surfaces are the catenoid
and helicoid that are discussed on pages 202-205 of do Carmo.

Minimal surfaces are so named because of their connection to the following natural question:
Given a closed curve I, find the surface of least area that is bounded by T'. This question is known
as Plateau’s Problem and it is named after the physicist who noted that such surfaces may be
realized physically by soap films that are bounded by the given curve.

As noted on page 197-199 of do Carmo, surfaces of least area must have mean curvatures that
are identically zero, and the discussion on those pages provides strong evidence for this, at least
in some relatively elementary situations. However, a precise mathematical formulation of the least
area problem in a reasonably general context turns out to be extremely nontrivial.

Minimal surfaces have important relations to the theory of functions of a complex variable and
partial differential equations; the most basic aspects of this are described on pages 201-202 of do
Carmo. The study of minimal surfaces has had a strong impact on both geometry and analysis,
in may cases leading to results on questions that at first doe not seem to have any relation to the
least area problem.

Numerous examples of minimal surfaces have been discovered or constructed over the past
two hundred years, and advances in computer technology during the past two dozen years have led
to striking new insights, yielding unexpected new types of such surfaces whose existence was first
suggested by computer graphics and later confirmed by rigorous mathematical proofs (but not all
potential examples arising from computer graphics turned out to be minimal surfaces!). Here are
some online references that discuss minimal surfaces, with many illustrations and more information
on advances that have taken place during the past two dozen years:

http://ctouron.freeshell.net/personal/costa/background.html
http://mathworld.wolfram.com/CostaMinimalSurface.html
http://mathworld.wolfram.com/MinimalSurface.html
http://www.indiana.edu/ minimal/toc.html
http://www.zib.de/polthier/booklet/intro.html
http://www.csuohio.edu/math/oprea/soap/soap.html

A book by J. Oprea, Differential Geometry and Its Applications, Second Edition (Prentice-
Hall, 2003, ISBN: 0-13-065246-6), contains a detailed and current account of minimal surfaces at
the undergraduate textbook level.
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IV.6: Compatibility equations, Theorema Egregium

(do Carmo, §4-3)

One of the most far-reaching results on the differential geometry of surfaces is that the Gaussian
curvature of a surface can be expressed entirely in terms of the First Fundamental Form:

GAUSS’ THEOREMA EGREGIUM. IfX is a 1 — 1 regular parametrization such that the
First Fundamental Form is given by

E(u,v)dudu + 2F(u,v)dudv + G(u,v)dvdv

and K (u,v) is the Gaussian curvature function, then the Gaussian curvature depends only upon
the coeffieicnts of the First Fundamental Form of the surface and their partial derivatives.

In contrast, the plane and cylinder have the same First Fundamental Form but different mean
curvatures.

At the end of Section I11.4 we discussed generalizations of the First Fundamental Form known
as Riemannian metrics. One can use the formula above to define Gaussian curvature with respect
to an arbitrary Riemannian metric regardless of whether it comes from a First Fundamental Form.
This is an important step in formulating general notion of curvature in differential geometry that
can be used in many different contexts and for an enormous number of purposes.

Discussion of the proof

The results of this section and the next are based upon an analysis of the second partial
derivatives of a regular parametrization X. In some sense this is analogous to the idea behind the
Frenet-Serret Formulas for curves; one writes out the various derivatives as linear combinations of
simpler objects and looks for useful interrelationships. In the case of curves, the Frenet Trihedron
provided a useful basis for R? at each point of the curve. For surfaces given by regular parametriza-
tions, the corresponding useful basis is given by the partial derivatives X; and X, together with
the unit normal vector N, which may be viewed as X; x X5 normalized to have unit length. One
major difference with the theory for curves is that these bases are usually not orthonormal, but
this turns out to be a relatively minor issue that can be addressed directly using linear algebra as
in the final portion of Section IV.3.

If one writes out the partial derivatives of X;, X5 and N with respect to the u (first) and v
(second) variables and uses the earlier computations involving the First and Second Fundamental
Forms, one obtains the following sorts of formulas in which the quantities F; i are smooth functions
of w and v and are called Christoffel symbols of the second kind; the terminology is chosen to be
consistent with concepts in tensor analysis (see the bottom of page 213 in the Schaum’s Outline
Series book on differential geometry for further information).

99



Xl,l = F%,lxl + P%,IXQ + eN

X2 = F%,2X1 + I‘izXz + fN
X2,2 = F%,le + P%’sz + gN
N1 = BiXi + X

N, = 5Xi + 55Xs
It is convenient to define I‘éyl = I‘im for i =1, 2 so that I‘;k is defined for 1 <14, j, k < 2 and
satisfies T}, ; = T% .

Using the methods described in the last part of Section IV.3 one can solve for ﬂ;- in terms of
the coefficients of the First and Second Fundamental Forms:

_ [F — eG

S T
eF — fE

N T
_ JF - fG
fi2 = pe -
fF—gE

P2 = Fa

If one substitutes these into the equations for N; and Ny one obtains the Weingarten equations.
Computing the Christoffel symbols is more difficult. The following formulas are derived in Problem
10.3 on page 216 of the Schaum’s Outline Series review of differential geometry that was cited

previously:
GE, — 2FF, + FE,

P = 2(EG — F?)

o _ GBE - FG

1,2 2(EG — F?)
o _ 2GFB - GG+ FG
2,2 2(EG — F?)
2 _ 2EBF - EE, + FE
L1 2(EG — F?)

2 _ EG - FE

1.2 2(EG — F?)
2 _ EG —2FF + FG
2,2 2(EG — F?)

It is important to note that the Christoffel symbols depend only upon the coefficients of the First
Fundamental Form and their first partial derivatives.

The most direct approach to proving Gauss’ theorem is to continue by proving that
K(EG - F?)” = [Xi1, Xy, Xo]- [Xop, Xi, Xa] — [Xip2, Xi, Xo]7.

This compuation is carried out in Problem 10.4 on page 217 of the Schaum’s Outline Series on
differential geometry. Further computations using the same methods then yield the identity
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K(EG - F?)? = (Fip — 5E22 — G11) +

0 F-1G 1G 0 1B i1&y
3 By E F |-|3E. E F
Fi — 1 E, F G ;G F G

which implies that K depends only upon the coefficients of the First Fundamental Form and their
partial derivatives. It is an elementary exercise in partial differentiation to show that this equation
is equivalent to the one in the statement of Gauss’ theorem that is given above.n

Another approach to deriving Gauss’ theorem is given on pages 231-235 in Section 4-3 of do
Carmo. This alternate approach also has other implications, and it will be discussed in the final
section of these notes.

Curvature and the First Fundamental Form

We have discussed the geometric significance of Gaussian curvature for a surface in R? in terms
of its First and Second Fundamental Forms. The Theorema Egregium provides a way of defining
the Gaussian curvature entirely in terms of the First Fundamental Form, and consequently for
riemannian metrics that are not necessarily realizable by surfaces in R3. One is therefore led to
natural questions about interpreting the Gaussian curvature entirely in terms of metrical properties
directly given the First Fundamental Form without using auxiliary objects such as normal lines or
osculating circles. We shall describe one interpretation of positive and negative Gaussian curvature
at a point entirely in metric terms; if the Gaussian curvature is equal to zero the situation is
more complicated, but if the Gaussian curvature is identically zero then we shall give a similar
interpretation.

Given a Riemannian metric
E(u,v)dudu + 2F(u,v)dudv + G(u,v)dvdv

and a parametrized regular, piecewise smooth curve in a connected domain U C R? on which the
metric is defined, one can define the length of the curve by the formula

b
/ V E(u,v)u'(t)2 + 2F(u,v)u' (t) v/ (t)v + G(u,v)v(t)2 dt

where the curve is defined on the interval [a,b]. The positivity condition on the coefficients F, F
and G for a Riemannian metric imply that the expression inside the square root sign is always
positive for regular smooth curves. One would like to define the distance between two points with
respect to this metric as the greatest lower bound of the lengths of all regular piecewise smooth
curves joining the points.

Two questions immediately arise. First of all, one needs to show that the lengths of curves
joining two distinct points are bounded from below by a positive constant; in other words, if p
and q are distinct points of a surface then it is not possible to find a sequence of piecewise smooth
regular curves y, joining them such that the length of y,, is less than 1/n. Second, one would like
to know if there is some curve for which the greatest lower bound is actually realized. Such a curve
is called a minimal geodesic.
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It is fairly easy to construct a somewhat artificial example where there is no curve of minimum
length joining two points. Specifically, consider the surface given by removing the origin from the
zy-plane. Then the greatest lower bound of the lengths of all piecewise smooth curves joining
(1,0,0) and (—1,0,0) is equal to 2, which is the ordinary Euclidean distance, but there is no curve
of length 2 joining these points that misses the origin. To see this, let y be a regular piecewise
smooth curve joining the two points in question that is defined on [a,b]. Then there is some point
€ € (a, b) such that the first coordinate of y(£) is equal to some nonzero value, say c. It then follows
by the Intermediate Value Theorem that the arc length of y must be greater than or equal to the
length of the broken line curve joining (1,0,0) to (0, ¢, 0) linearly and (0, ¢,0) to (—1,0,0) linearly.
The length of this broken line curve is 2v/1 + ¢2, which is strictly greater than 1. Therefore there
is no curve of shortest length joining the two points that lies completely inside the surface. One
obvious feature of this example is that one can extend the given surface to a larger one (namely,
the whole plane) in which there is a curve of minimum length joining the two points in question. In
fact, one can construct examples for which one cannot add extra points to ensure that minimizing
geodesics always exist, but such a construction would require a great deal of additional work. A
natural candidate for a bad example is the graph of the function

— rY
f(xay) - x2 4 yz

which is defined for (z,y) # (0,0) and cannot be extended to a function that is continuous at (0, 0).

In contrast to the preceding paragraph, it turns out that one can always find curves of minimum
length joining a given point p to another point q provided q is sufficiently close to p, and this fact
has important implications to showing the the lengths of curves joining two distinct points are
bounded from below by a positive constant.

EXISTENCE OF SHORT GEODESICS. Suppose we are given a riemannian metric M on
a connected domain in R?, and let p € U. Then there is an r > 0 such that |q — p| < r implies
that p and q can be joined by a regular piecewise smooth curve of least length, and this curve is in
fact a regular smooth curve that lies entirely in the open disk with center p and radius r.

Furthermore, given any nonzero vector v € R? there is a unique regular smooth curve curve
T defined on an open interval (—h,h) containing 0 such that T'(0) = p, IV(0) = v and T defines a
curve of minimum length joining p to I'(t) for all t in the given interval (—h,h).

Finally, if 6 € (0,7) and L(q) denotes the length of the shortest curve joining p to q, then the
minimum value m(8) of L(q) over the circle defined by |q| = § is positive.n

The curves of least length in this result are called minimizing geodesics. It turns out
that such curves are defined by second order differential equations, and this is the reason for the
conclusion in the second paragraph.

COROLLARY. IfY is a surface and p and q are two points on o that can be joined by a reqular
piecewise smooth curve on X, then the set of lengths for all such curves is bounded from below by
a positive constant.

Proof. To simplify the discussion we shall choose parametrizations for our regular piecewise
smooth curves over some interval of the form [0, a] such that I'(0) = p and I'(a) = q. We need to
find a positive lower bound for the length that does not depend upon the particular curve I'.

Let X be a regular smooth parametrization for ¥ at p that is 1-1, let X(py) = p, and let
r > 0 be as in the existence theorem stated above. There are two cases, depending upon whether
the point q € ¥ has the form X(qg) for some qq satisfying |qo — po| < 7-

102



FirsT CASE. Suppose that q satisfies the condition in the preceding sentence, and let
s = |qo — po|- If y is an arbitrary point of ¥ having the form X(yo) for some y, satisfying
|yo — Po| < 7, then we shall define go(y) to be equal to |yo — po|; the right hand side is well defined
because the parametrization X is 1-1. This turns out to be a continuous function of y. Likewise, if
we define a real valued function g by setting g(¢) = min{s, go(I'(¢) ) } if I'(¢) has the given special
form, and g(t) = s if I'(¢) does not have this form, then g is continuous on the interval [a, b] over
which T is defined.

Since g(a) = 0 and g(b) = s, there must be a first parameter value ¢, such that g(to) = s. We
claim that the image of the restricted curve I'|[0,%y) lies in the image W of the disk of radius s
centered at pp under X (in fact a stronger statement is true but we shall not need this). This is
true because if I'(¢) does not lie in the image then g(t) > s and we know that g(¢) < s if ¢t € [0, ).

By the Intermediate Value Theorem there is a t; € (0,%y) such that g(¢1) = 3s; we know that
the image of I" restricted to [0,¢;] lies in the set W described above, and therefore this restriction
may be written as a composite X °I'; for some regular piecewise smooth curve I'; which takes values
in the disk of radius r centered at py. We then have

Length (I'|[0,¢1]) = Lengthy(T1) >m(3s) > 0

on one hand and
Length (I'|[0,#1]) < Length(T)

on the other, which implies that the right had side is greater than or equal to the positive quantity
m(%s) This gives us our desired positive lower bound on the length of I' which is independent of
the curve I itself.

SECOND CASE. The argument is similar but not quite identical. We may define the function
g exactly in the first case for an arbitrary s such that 0 < s < r. In this case we know that
g(t) = s for some parameter value ¢ because there is some value ¢ such that I'(¢) does NOT have
the form X(yq) for some yq satisfying |yo — po| < 7. We can now proceed as before to find the
least parameter value ¢y such that g(¢9) = s, and from this point on the argument is identical to
the proof in the first case.n

FUNDAMENTAL PROPERTIES OF DISTANCE FUNCTIONS. Suppose that we have
either a Riemannian metric M defined on a connected domain U in R™ or a geometric surface
in R3 such that each pair of points in ¥ can be joined by a reqular piecewise smooth curve in %,
and let dv(x, y) or ds(x,y) denote the greatest lower bound of the lengths of piecewise smooth
curves joining x and 'y in U or X. Then this distance function d has the following basic properties:

[1] The distance d(x, y) is nonnegative, and it is equal to zero if and only if x =y.

[2] For all x and y we have d(x,y) = d(y, x). and it is equal to zero if and only if x =y.

[3] (TRIANGLE INEQUALITY) For all x, y and z we have

dix,z) < d(x,y) + d(y, z)

Sketch of proofs. The first statement follows from the immediately preceding discussion. To
prove the second, not that if I is a regular piecewise smooth curve defined on [a,b] joining x to
y then I'*(¢) = I'(b — t) defines a similar curve on [a — b,0] joining y to x. This implies that
d(y, x) < d(x, y). Reversing the roles of x and y yields the reverse inequality d(y, x) > d(x, y),
and therefore the two quantities must be equal. Finally, to prove the third statement, let ¢ > 0
and choose suitable curves I'; and I's such that T'; is defined on [0, a;], with Iy joining x to y and
I’ joining y to z, and the lengths of these curves satisfying

Length(T'y) < d(x,y) +

N[ ™
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Length(T2) < d(y,7) + 5 -

Consider the curve formed by concatenating I'; and I's; specifically, let I' be the curve defined on
the interval [0, a1 +az] such that T'(¢) = 'y (¢) for ¢ € [0,a1] and I'(t) = T'(t —aq) for ¢ € [a1, a1 +as).
These piece together to form a regular piecewise smooth curve because the two formulas yield the
same point at parameter value a1. The length of this curve then given by

Length(I';) + Length(I';)
and hence we have the inequality
d((x,z) = Length(') = Length(I'y) + Length(T'2) < d(x,y) + d(y,z) + ¢

for every € > 0. In particular this implies that the expression on the left hand side cannot be
greater than d(x, y) + d(y, z), and this is precisely the assertion in [3].m

A METRIC INTERPRETATION OF CURVATURE. Suppose that we are given three points a,
b, ¢ in R3 that form the vertices of an isosceles triangle with vertex at a; i.e., we have |b — a| =
|c —a| = ¢ > 0. If 0 is the angle between b — a and ¢ — a then it is an elementary exercise in
trigonometry to prove that |¢ — b| = 2 sin %9. Roughly speaking, Gaussian curvature measures
the extent to which this fails for riemannian metrics. The proof of this fact requires a considerable
amount of machinery from Riemannian geometry, so we shall simply state the results here.

Since we are only concerned with metric behavior near a point, it will suffice to look at
Riemannian metrics defined on an open disk centered at some point p in a connected domain
U C R2. Let M be a Riemannian metric, and let 7 > 0 be so small that every point in the open
disk of radius r centered at p can be joined to the later by a smooth curve of minimum length lying
entirely inside this disk. Given two linearly independent vectors v and w in R2, let 6y (p) be the
angle between them computed with respect to the Riemannian metric:

Mp(v, w)
(Mp (v, v))'? (Mp(w, w))"/?

cos (fm(p)) =

Consider now the smooth geodesics which pass through p and have tangent vectors v and w at
pP- We can find points on these geodesics that are some positive distances away from p; if Jp is
the minimum of the two distances, then for every £ € (0,dy] we can find points x and y on the
respective geodesics such that the distances from x and y to p are both equal to ¢ (suppose that
we have geodesics with the given tangent vectors defined on intervals [0,a] and [0, b] respectively;
then by the Intermediate Value Theorem one can find points sy and %y in these intervals so that
the lengths of the restrictions of the geodesics up to parameter values sy and ty are equal to £).
We then have the following relationships between the Gaussian curvature at p and the distance
between x and y with respect to M.

DISTANCE COMPARISON. Suppose we are given everything as in the preceding discussion,
and let K be the Gaussian curvature at p.
(¢) If K > 0 then there is a 61 > 0 such that if £ < §1 we have
dv(x,y) < 24 sinfyv(p) -
(i) If K < 0 then there is a 81 > 0 such that if £ < 61 we have
du(x,y) > 24 sin0uv(p) -
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(131) If the Gaussian curvature is identically zero, then there is a 01 > 0 such that if £ < &1 we
have
dv(x,y) = 2£sinfy(p) =

These may be viewed as generalizations of standard trigonometric formulas from spherical
geometry, Noneuclidean geometry in the sense of Bélyai and Lobachevsky, and classical FEuclidean
geometry respectively. Note that if we only know the Gaussian curvature is zero at p but we know
nothing else about its behavior near p, then these comparison results yield no information.
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IV.7: 7. Fundamental Theorem of Local Surface Theory

(do Carmo, §4-3, 4-Appendix)

The Frenet-Serret Formulas imply that curvature and torsion completely determine a curve
locally provided on gives the initial position and unit tangent vector for the curve. There is a
corresponding theorem for surfaces involving the coefficients E, F, G and e, f, g of the First and
Second Fundamental Forms. However, these coefficient functions must satisfy some nontrivial
restrictions. We have already noted that the matrix for the First Fundamental Form

(Pl Een)

must have positive eigenvalues, or equivalently that E and G as well as the determinant E G — F?
must be positive. However, there are also other conditions that arise naturally from our basic
assumptions that a local parametrizatin X have “sufficiently many” continuous partial derivatives.
In particular, if we want X to have continuous third partial derivatives then we have equations of
the form X 12 = X; 2.1 = X5,1,1 and then we have equations of the form X351 = X3 12 = Xy 22
If we combine these equations with the expansions of the second partial derivatives X, ; in terms of
Christoffel symbols and the Second Fundamental Form coefficients, we obtain the following three
equations:

ez — f1 = eI‘iz + f (F%,z - P%,l) - gril
fo—g1 = eP%,z + f (Pg,z - F%,z) - QP%Q
eg — f*> = F- [(P§,2)1 - (P%,z)Z + Fé,ZP%,l - P%,ZP%,I] +
E-[([32)1 — (Pla)z + Topliy + D300, — TipT1, — Dol

The first two of these are known as the Codazzi-Mainardi Equations. We note in passing
that the third equation provides another demonstration of Gauss’ Theorema Egregium; in fact,
one important advantage of this proof is that it reflects the standard approach to curvature in the
study of differential geometry for objects whose dimensions are greater than two.

The verifications of these formulas are carried out on pages 235-236 of do Carmo and in
Problem 10.28 on page 224 of the Schaum’s Outline Series book on differential geometry.=

FUNDAMENTAL THEOREM OF LOCAL SURFACE THEORY. LetU be a connected
domain in R?, and let E, F, G and e, f, g be smooth functions with sufficiently many continuous
partial derivatives on U such that E, F and G satisfy the positive definiteness conditions given above
and e, f and g satisfy the three compatibility conditions displayed above. Then for each py € U,
p € R3 and plane II containing p, there is a regular surface parametrization X defined on some
open disk N about pg such that the First and Second Fundamental Forms of X have coefficients
equal to E, F, G and e, f, g respectively. This parametrization is locally unique up to a rigid motion
of R3.

The uniqueness proof is essentially a relatively lengthy argument involving the uniqueness of
solutions of certain ordinary differential equations (see pages 236 and 311-314 of do Carmo or the
argument following the statement of Theorem 10.4 on pages 203-204 of the Schaum’s Outline Series
book on differential geometry). On the other hand, the existence proof requires the solution of a
system of partial differential equations.
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In order to prove the existence of a regular smooth surface parametrization it is necessary to
solve partial differential equations of the form Dy = A(z,y) where z and y are vectors and A
is a smooth matrix valued function of x and y. In contrast to the situation for ordinary differen-
tial equations, the partial differential equation given above does not necessarily have a solution;
specifically, the standard mixed partial derivative identities

02 02
8.’1)1' 8.’L‘j N 8.’13j a.’IIZ

imply that the entries of A(z,y) and their partial derivatives must satisfy certain equations. How-
ever, the following result of F. G. Frobenius ensures that solutions always exist provided these
conditions are satisfied:

FROBENIUS INTEGRABILITY THEOREM. Let n =k + d, identify R® with RF x RY,
let U be a connected domain in R™ and Let A be a smooth function defined on U and taking values
in the space of d x k matrices, and let (a.b) € U. Denote the entries of A by A, ;.

Assume in addition that these functions satisfy the compatibility conditions

d

d
0A; 0A; OA; . OA; ,
> 2 As r — E] ] As -
ox, + 32221 oz, ’ 0z + SZZ:I oz, I

Then there exists a unique function ® defined on an open disk V' containing a and taking values in
R¢ such that the following conditions hold:

[1] ®(a) =Db

2] (x,®(x)) €U forallxeV.

3] D(x) = A(x, B(x))

Conversely, if such a function exists then the compatibility condition is satisfied.

Biographical information on Frobenius, and also many other mathematicians, may be found
at the following online site:

http://wwu-gap.cds.st-and.ac.uk/~history/BiogIndex.html

The proof of the existence portion of the Fundamental Theorem of Local Surface Theory is
discussed on pages 311-314 of do Carmo as well as in Appendix 2 on pages 264-265 of the Schaum’s
Outline Series book on differential geometry.=

A generalization of the Fundamental Theorem of Local Surface Theory to hypersurfaces of
dimension (n — 1) in R is established in Section 9.2 of Hicks, Notes on Differential Geometry; the
argument is a direct generalization of the proof for surfaces.n
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