SOLUTIONS TO THE MIDTERM PRACTICE PROBLEMS

1. (a) For the first identity, note that by definition

$$
A+\emptyset=(A-\emptyset) \cup(\emptyset-A)
$$

and the latter is equal to A because $A-\emptyset=A$ and $\emptyset-A=\emptyset$. The second one follows because

$$
A+A=(A-A) \cup(A-A)=\emptyset \cup \emptyset
$$

which is just the empty set.
(b) The suggestion in the hint is to look at the 8 mutually exclusive possibities, indexed by the binary expansions of 0 through 7 :

(000)	$x \notin A, x \notin B, x \notin C$
(001)	$x \notin A, x \notin B, x \in C$
(010)	$x \notin A, x \in B, x \notin C$
(011)	$x \notin A, x \in B, x \in C$
(100)	$x \in A, x \notin B, x \notin C$
(101)	$x \in A, x \notin B, x \in C$
(110)	$x \in A, x \in B, x \notin C$
(111)	$x \in A, x \in B, x \in C$

In the cases where there are either two or no zeros, one checks that x belongs to both $A+(B+C)$ and $(A+B)+C$, and in the cases where the number of zeros is 1 or 3 , one checks that x belongs to neither of these sets. The Venn diagram in aabNewUpdate05a.144.f17.pdf may be helpful for seeing this.■
(c) Follow the hint: If $A+C=B+C$ then $(A+C)+C=(B+C)+C$. By (b) the preceding is equivalent to $A+(C+C)=B+(C+C)$. But now (a) implies that this is equivalent to $A+\emptyset=B+\emptyset$, and by (a) the latter is equivalent to $A=B . ■$
2. We shall first verify that $A \subset \bigcup_{a \in A}\{a\}$. If $a \in A$, then by definition we have $\{a\} \subset A$; since this is true for all $a \in A$, it follows that A is contained in the union. Conversely, suppose that $x \in \bigcup_{a \in A}\{a\}$. Then $x \in\{a\}$ for some $a \in A$, and by definition this implies that $x=a \in A . ■$

If $A=\left\{a_{0}\right\}$, then the intersection is just $\left\{a_{0}\right\}$. On the other hand, if A has more than one element, let x, y be distinct members of A. Then $\cap_{a \in A}\{a\}$ is contained in the intersection $\{x\} \cap\{y\}$, and this is empty because $x \neq y$.■
3.
(a) The relation is reflexive and symmetric but not transitive. To see that it is not transitive, consider the related pairs $(a, b) \sim(b, c)$ and $(b, c) \sim(c, d)$ where different letters represent different elementsof the set. By the latter condition we knowthat (a, b) and (c, d) are not related..
(b) Denote the original relation by \sim and the equivalence relation by \equiv. If (a, b) and (x, y) are distinct elements of $A \times A$ then we have $(a, b) \sim(x, b)$ and $(x, b) \sim(x, y)$. By hypothesis we also have $(a, b) \equiv(x, b)$ and $(x, b) \equiv(x, y)$, and by transitivity these imply that $(a, b) \equiv(x, y)$.
4. The interval J is order-isomorphic to $[1,2]$ because the map $f(x)=x+1$ defines a $1-1$, onto and (strictly) order-preserving map from $[0,1]$ to $[1,2]$. However, J is not order-isomorphic to any of the others. We can see this using Theorem IV.6.2 because J has a minimal element and a maximal element, but
(a) the interval $[0,1)$ has no maximal element,
(b) the interval $(0,1]$ has no minimal element,
(c) the interval $(0,1)$ has neither a maximal element nor a minimal element.■
5. (i) For $f(x)=1 /\left(x^{2}+1\right)$ the function is $1-1$ on the intervals $(-\infty, 0]$ and $[0, \infty)$. For $f(x)=1 /(2+\sin x)$ the function is $1-1$ on every interval of the form $\left[\left(k-\frac{1}{2}\right) \pi,\left(k+\frac{1}{2}\right) \pi\right]$. For $f(x)=1 /\left(e^{x}+3\right)$ the function is $1-1$ on the entire real line, so it is $1-1$ on every closed interval $[a, b]$.■
(ii) (i) For $f(x)=1 /\left(x^{2}+1\right)$ the image of the function is $(0,1]$, so its image contains every closed interval $[h, 1]$ such that $0<h<1$. For $f(x)=1 /(2+\sin x)$ the image of the is $\left[\frac{1}{3}, 1\right]$, so its image contains this interval. For $f(x)=1 /\left(e^{x}+3\right)$ the image of the function is $\left(0, \frac{1}{3}\right]$, so its image contains every closed interval $\left[h, \frac{1}{3}\right]$ such that $0<h<\frac{1}{3}$.
6. If n is even, then every $y \in[0,1]$ is x^{n} for a unique value of x such that $x \in(0,1], x=0$ or $x \in(-1,0]$, and also $(-x)^{n}=x^{n}$. Furthermore, if $|x|>1$ then $x^{n}>1$. Therefore the inverse image is $[-1,1]$.

If n is odd, then every real number y is x^{n} for some unique value of n, and furthermore $x \in[0,1]$ if and only if $y \in[0,1]$. Therefore the inverse image in this case is $[0,1] . \square$
7. (a) If $f(x)=x^{2}$, then f maps the interval $A=[1,2]$ onto the interval $[1,4]$. To find $f^{-1}[A]$, we need to find all x so that $1 \leq x^{2} \leq 2$. The latter is equivalent to $1 \leq|x| \leq \sqrt{2}$, and therefore the inverse image is $[-\sqrt{2},-1] \cup[1, \sqrt{2}]$.
(b) If $f(x)=3 x+4$, then f maps the interval $A=[0,1]$ onto the interval $[4,7]$. To find the inverse image, we need to find all x such that $3 x+4 \in[0,1]$. The function $3 x+4$ is strictly increasing, so if we can solve $3 a+4=0$ and $3 b+4=1$, then the inverse image will be the interval $[a, b]$. Standard algebra implies that $a=-\frac{4}{3}$ and $b=-\frac{1}{3}$, so the inverse image is the interval $\left[-\frac{4}{3},-\frac{1}{3}\right]$.

