UPDATED GENERAL INFORMATION - NOVEMBER 22, 2019

More exercises on cardinal numbers

0. What is the cardinality of the set \mathbb{Q}^{n} where $n \geq 2$ is an integer? Prove that your answer is correct.
1. Prove the following facts about cardinal numbers α, β, γ :
(a) If $\alpha \cdot \beta=0$ then either $\alpha=0$ or $\beta=0$. [Hint: This is equivalent to showig that if $\alpha \geq 1$ and $\beta \geq 1$, then $\alpha \cdot \beta \geq 1$.]
(b) If $\alpha>0$ then $0^{\alpha}=0$, and if $\alpha=0$ then $0^{\alpha}=1$.
2. Use Corollary VII.4.3 to prove the following case of Additional Exercise VII.4.1: If $\alpha, \alpha^{\prime}, \beta$ and β^{\prime} are infinite cardinal numbers then $\alpha+\beta<\alpha^{\prime} \cdot \beta^{\prime}$.
Note. The cited exercise is also known as the Zermelo-König Theorem.
RECALL that infinite sums and products of cardinal numbers are defined in Section VII. 1 of set-theory-notes.pdf.
3. Prove an infinite distributive law: $\alpha \cdot \sum_{j} \beta_{j}=\sum_{j} \alpha \cdot \beta_{j}$.
4. Prove the following infinite associativity properties for an indexed family of cardinal numbers $\alpha_{i, j}:$

$$
\begin{aligned}
& \sum_{i}\left(\sum_{j} \alpha_{i, j}\right)=\sum_{i, j} \alpha_{i, j}=\sum_{j}\left(\sum_{i} \alpha_{i, j}\right) \\
& \prod_{i}\left(\prod_{j} \alpha_{i, j}\right)=\prod_{i, j} \alpha_{i, j}=\prod_{j}\left(\prod_{i} \alpha_{i, j}\right)
\end{aligned}
$$

5. Determine whether the following statement is true or false. If it is true, give a proof; if not, give an counterexample:

If $\left\{\alpha_{j}\right\}$ is a family of cardinal numbers indexed by J and I is strictly contained in J, then

$$
\sum_{i \in I} \alpha_{i}<\sum_{j \in J} \alpha_{j}
$$

6. Let $\left\{A_{j}\right\}$ be an indexed family of subsets of the set X, where j runs through all values in the indexing set J. Prove the following inequality of cardinal numbers:

$$
\sum_{j}\left|A_{\alpha}\right| \leq|X| \cdot|J|
$$

