UPDATED GENERAL INFORMATION — DECEMBER 4, 2019

More study exercises for the second examination

0. Given sets A and B, prove the cardinal number inequality $|A \cap B| \leq |A|$.

1. (a) Let $f : A \to B$ and $g : B \to C$ be functions such that $g \circ f$ is 1–1 and onto. Prove that f is 1–1 and g is onto.

(b) Let \mathcal{V} and \mathcal{W} be equivalence relations on a set S, and define a new relation \mathcal{Y} on S such that $a \mathcal{Y} b$ if and only if $a \mathcal{V} b$ and $a \mathcal{W} b$. Prove that \mathcal{Y} defines an equivalence relation on S.

2. Let \mathbb{N}_{-} be the set of all **negative** integers with the usual linear ordering. Is \mathbb{N}_{-} well-ordered? Either prove this is true or explain why it is false.

3. Determine the cardinality of the set of all open intervals $(a,b) \subset \mathbb{R}$, where $a,b \in \mathbb{R} \cup \{-\infty, +\infty\}$.

4. Prove the following formula for all $n \ge 2$ by mathematical induction:

$$\sum_{k=2}^{n} \frac{1}{k^2 - k} = 1 - \frac{1}{n}$$

5. Let $f: X \to Y$ be a function, and let C + D denote the symmetric difference of the subsets $C, D \subset Y$. Show that $f^{-1}[C + D] = f^{-1}[C] + f^{-1}[D]$.