UPDATED GENERAL INFORMATION — DECEMBER 4, 2019

More study exercises for the second examination

0. Given sets A and B, prove the cardinal number inequality $|A \cap B| \leq|A|$.
1. (a) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions such that $g \circ f$ is $1-1$ and onto. Prove that f is $1-1$ and g is onto.
(b) Let \mathcal{V} and \mathcal{W} be equivalence relations on a set S, and define a new relation \mathcal{Y} on S such that $a \mathcal{Y} b$ if and only if $a \mathcal{V} b$ and $a \mathcal{W} b$. Prove that \mathcal{Y} defines an equivalence relation on S.
2. Let \mathbb{N}_{-}be the set of all negative integers with the usual linear ordering. Is \mathbb{N}_{-}well-ordered? Either prove this is true or explain why it is false.
3. Determine the cardinality of the set of all open intervals $(a, b) \subset \mathbb{R}$, where $a, b \in \mathbb{R} \cup$ $\{-\infty,+\infty\}$.
4. Prove the following formula for all $n \geq 2$ by mathematical induction:

$$
\sum_{k=2}^{n} \frac{1}{k^{2}-k}=1-\frac{1}{n}
$$

5. Let $f: X \rightarrow Y$ be a function, and let $C+D$ denote the symmetric difference of the subsets $C, D \subset Y$. Show that $f^{-1}[C+D]=f^{-1}[C]+f^{-1}[D]$.
