UPDATED GENERAL INFORMATION - DECEMBER 5, 2019

Solutions to quizzes

Quiz 2 Problem. Prove by induction that $3^{n+7}<(n+7)$! for all nonnegative integers n.
You may use the identities $3^{6}=729$ and $6!=720$ without verifying them. Also, recall that if $n>0$ then n ! is the product of all the positive integers from 1 to n (so the recursive definition is $(n+1)!=n!(n+1))$.
Solution. Let $\mathbf{P}(n)$ denote the statement $3^{n+7}<(n+7)$!. We first verify that $\mathbf{P}(0)$ is true; it is only necessary to note that $3^{7}=3^{6} \cdot 3=729 \cdot 3=2187$ and $7!=6!\cdot 7=720 \cdot 7=5040$. Suppose now that $\mathbf{P}(n)$ is true for some $n \geq 0$. Then we can derive $\mathbf{P}(n+1)$ from the following chain of equations and inequalities:

$$
3^{n+8}=3 \cdot 3^{n+7}<(\text { by } \mathbf{P}(n)) 3 \cdot(n+7)!<(n+8) \cdot(n+7)!=(n+8)!
$$

Therefore the Weak Principle of Finite Induction implies that each statement $\mathbf{P}(n)$ is true.

Quiz 3 Problem. Let α, β, γ be nonzero cardinal numbers such that α is infinite and $\beta<\gamma$. Show that $\alpha \cdot \beta \leq \alpha \cdot \gamma$ and give an example to show that $\alpha \cdot \beta$ is not necessarily (strictly) less than $\alpha \cdot \gamma$.
Solution. Let A, B, C be sets such that $|A|=\alpha,|B|=\beta$ and $|C|=\gamma$. Then $\beta<\gamma$ implies that there is a $1-1$ mapping $g: B \rightarrow C$ (which cannot be onto since the inequality is strict). If we define $G: A \times B \rightarrow A \times C$ by $G(a, b)=(a, g(b))$, then one can check directly that G is $1-1$; specifically, $G(a, b)=G\left(a^{\prime}, b^{\prime}\right)$ implies $a=a^{\prime}$ and $g(b)=g\left(b^{\prime}\right)$, and since g is $1-1$ it follows that $b=b^{\prime}$. This means that

$$
\alpha \cdot \beta=|A \times B| \leq|A \times C|=\alpha \cdot \gamma
$$

To show that the inequality need not be strict, let $\alpha=\aleph_{0}=\gamma$ and $\beta=1$. Then clearly $\beta<\gamma$, but $\alpha \cdot \beta=\aleph_{0}=\aleph_{0} \cdot 1=\aleph_{0} \cdot \aleph_{0}=\beta \cdot \gamma$, and since $\aleph_{0} \cdot \aleph_{0}=\aleph_{0}$ it follows that in this example we have $\alpha \cdot \beta=\alpha \cdot \gamma$.■

