Mathematics 144, Winter 2017, Examination 1

Answer Key

1. [20 points] Suppose that we are given sets A, B, C such that $C \subset B \subset A$. Prove that $A-(B-C)=(A-B) \cup C$.

SOLUTION

. Suppose that $x \in A-(B-C)$. Then $x \in A$ but $x \notin B-C=B \cap A-C$. Since $C \subset A$, the second statement about x is equivalent to saying that x lies in the complement of $B-C=B \cap A-C$, which is $(A-B) \cup C$. Conversely, if x belongs to the latter set, the preceding reasoning implies that $x \in A$ but $x \notin B-C=B \cap A-C . ■$
2. [30 points] For each positive integer n let A_{n} denote the closed interval $[0,1 / n]$ and let B_{n} denote the open interval $(0,1 / n)$. Describe the sets

$$
\bigcup_{n} A_{n}, \quad \bigcup_{n} B_{n}, \quad \bigcap_{n} A_{n}, \quad \bigcap_{n} B_{n}
$$

as intervals, one point sets, or the empty set.
SOLUTION
We have $\bigcup_{n} A_{n}=[0,1], \bigcup_{n} B_{n}=(0,1), \bigcap_{n} A_{n}=\{0\}, \bigcap_{n} B_{n}=\emptyset . ■$
3. [25 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the linear function $f(x)=5 x+8$, and let A denote the closed interval $[0,2]$. Find the image $f[A]$ and the inverse image $f^{-1}[A]$.

SOLUTION

The image $f[A]$ is the interval with endpoints $f(0)=8$ and $f(2)=18$.
The inverse image $f^{-1}[A]$ is the interval with endpoints a and b such that $f(a)=0$ and $f(b)=2$. Solving the equation $5 x+8=C$ for $C=0,2$ we see that $a=-8 / 5$ and $b=-6 / 5 .$.
4. [25 points] Let P be the set $\{a, b, c\}$ and suppose we are given some linear ordering on P (not necessarily the alphabetical ordering!). Prove that the ordering has a minimal element. [Hint: Since the ordering is linear, every two point subset has a minimal element.]

SOLUTION

Follow the hint. Consider the two point subset $\{a, b\}$. This has a minimal element, say x, such that $x \leq a, b$. Similarly, the set $\{x, c\}$ has a minimal element y for which $y \leq x, c$. It follows that $y \in\{a, b, c\}$ and $y \leq c, b, a . ■$

