Mathematics 144, Fall 2017, Examination 2

~

Answer Key

(This incorporates the changes given in exam2af17.pdf)

1. [20 points] Let $\mathbb{R}[t]$ denote the set of polynomials in one ideterminate (namely, t). If we define a binary relation \leq on $\mathbb{R}[t]$ by the condition $f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in \mathbb{R}$, show that this defines a partial ordering of $\mathbb{R}[t]$ which is not a linear ordering.

SOLUTION

The relation is reflexive, for $f \leq f$ because $f(x) \leq f(x)$ for all x.

The relation is antisymmetric, for $f \leq g$ and $g \leq f$ imply $f(x) \leq g(x)$ and $g(x) \leq f(x)$ for all x. Therefore f(x) = g(x) for all x because \mathbb{R} is partially ordered.

The relation is transitive, for $f \leq g$ and $g \leq h$ imply $f(x) \leq g(x)$ and $g(x) \leq h(x)$, so that $f(x) \leq h(x)$ for all x and hence $f \leq h$. Combining the first three paragraphs, we see that the relation on polynomials is a partial ordering.

To see it is not a linear ordering, we need to find f and g so that neither $f \leq g$ nor $g \leq f$. We can do this if we find f and g such that f(a) < g(a) but g(b) < f(b) for some $a \neq b$ in \mathbb{R} . One simple example is f(x) = x and g(x) = 1 - x for a = 0 and b = 1.

2. [30 points] (a) Suppose that $f : A \to B$ and $g : B \to A$ are functions such that the composite $g \circ f$ is the identity function on A. Prove that f is 1–1 and g is onto, and give examples f, g such that f is not onto and g is not 1–1. [*Hint:* For the second part, let $A \neq \emptyset$ be as small as possible.]

(b) Suppose that A is a finite set with n > 0 elements. Prove that there are 2^{n^2} distinct binary relations on A (*i.e.*, relating A to itself).

SOLUTION

(a) f is 1–1, for f(a) = f(a') implies a = g(f(a)) = g(f(a')) = a', and g is onto because $a \in A$ implies a = g(b) where b = f(a). The easiest negative examples are $A = \{0\}$ and $B = \{0, 1\}$ with f(0) = 0 (hence 1 is not in the image of f, so f is not onto) and g(b) = 0 for b = 0, 1 (hence g is not 1–1).

(b) A binary relation is given by a subset of $A \times A$. If A has n elements, then $A \times A$ has n^2 elements and hence there are 2^{n^2} binary relations corresponding to the subsets in $A \times A$.

3. [30 points] (a) Let n! denote the product of the first n positive integers. Prove that $2^n < n!$ for all $n \ge 4$. [Note: The inequality fails for $n \le 3$ but there is no need to prove this.]

(b) Suppose that $\{a_n\}$ is a sequence defined recursively by $a_1 = 1$ and $a_k = 2a_{[k/2]}$ for all $k \ge 2$, where [x] denotes the greatest integer $\le x$. Prove that $a_n \le n$ for all integers $n \ge 1$.

SOLUTION

(a) If n = 4 this is true because $2^4 = 16 < 24 = 4!$. Suppose the result is valid for $n = m \ge 4$, and consider the stated inequality when n = m + 1. We then have $2^{m+1} = 2^m \cdot 2 < m! \cdot (m+1) = (m+1)!$, so the inequality for n = m + 1 is also valid, completing a proof by the Weak Principle of Finite Induction.

(b) It is straightforward to verify the inequality for n = 1 and n = 2. Suppose that the inequality is valid for all n < m, where $m \ge 3$, so that $m > [m/2] \ge 1$. We then have $a_{[m/2]} \le [m/2] \le m/2$, so that $2 \cdot a_{[m/2]} \le m$, which is the inequality for n = m. Therefore the validity of the conjecture for $1 \le n < m$ implies its validity for n = m, proving the result by the Strong Principle of Finite Induction.

4. [20 points] Let \mathcal{F}_2 denote the family of all subsets in \mathbb{R}^2 which contain exactly TWO elements. Show that \mathcal{F}_2 and \mathbb{R} have the same cardinality. [*Hint:* If $n \geq 2$ is an integer, how are the cardinalities of \mathbb{R}^n and \mathbb{R} related?]

SOLUTION

Given a subset $\{a, b\}$ in \mathcal{F}_2 , write $a = (a_1, a_2)$ and $b = (b_1, b_2)$ and choose a linear ordering of $\{a, b\}$; reversing the roles of a and b if necessary, we might as well assume that a comes first. Using this ordering, define a 1–1 mapping $\mathcal{F}_2 \to \mathbb{R}^4$ sending $\{a, b\}$ to (a_1, a_2, b_1, b_2) . We then have $|\mathcal{F}_2| \leq |\mathbb{R}^4| = |\mathbb{R}|$.

To prove the reverse inequality, given $t \in \mathbb{R}$ send it to the two point set $\{(t, 0), (0, 1)\} \subset \mathbb{R}^2$. This construction defines a 1–1 mapping from \mathbb{R} to \mathcal{F}_2 , so that $|\mathbb{R}| \leq |\mathcal{F}_2|$. We can now apply the Schröder-Bernstein Theorem to conclude that \mathbb{R} and \mathcal{F}_2 have the same cardinality.