Mathematics 144, Fall 2017, Examination 2

Answer Key

(This incorporates the changes given in exam2af 17.pdf)

1. [20 points] Let $\mathbb{R}[t]$ denote the set of polynomials in one ideterminate (namely, t). If we define a binary relation \leq on $\mathbb{R}[t]$ by the condition $f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in \mathbb{R}$, show that this defines a partial ordering of $\mathbb{R}[t]$ which is not a linear ordering.

SOLUTION

The relation is reflexive, for $f \leq f$ because $f(x) \leq f(x)$ for all x.
The relation is antisymmetric, for $f \leq g$ and $g \leq f$ imply $f(x) \leq g(x)$ and $g(x) \leq f(x)$ for all x. Therefore $f(x)=g(x)$ for all x because \mathbb{R} is partially ordered.

The relation is transitive, for $f \leq g$ and $g \leq h$ imply $f(x) \leq g(x)$ and $g(x) \leq h(x)$, so that $f(x) \leq h(x)$ for all x and hence $f \leq h$. Combining the first three paragraphs, we see that the relation on polynomials is a partial ordering.

To see it is not a linear ordering, we need to find f and g so that neither $f \leq g$ nor $g \leq f$. We can do this if we find f and g such that $f(a)<g(a)$ but $g(b)<f(b)$ for some $a \neq b$ in \mathbb{R}. One simple example is $f(x)=x$ and $g(x)=1-x$ for $a=0$ and $b=1$.
2. [30 points] (a) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow A$ are functions such that the composite $g \circ f$ is the identity function on A. Prove that f is $1-1$ and g is onto, and give examples f, g such that f is not onto and g is not $1-1$. [Hint: For the second part, let $A \neq \emptyset$ be as small as possible.]
(b) Suppose that A is a finite set with $n>0$ elements. Prove that there are $2^{n^{2}}$ distinct binary relations on A (i.e., relating A to itself).

SOLUTION

(a) f is $1-1$, for $f(a)=f\left(a^{\prime}\right)$ implies $a=g(f(a))=g\left(f\left(a^{\prime}\right)\right)=a^{\prime}$, and g is onto because $a \in A$ implies $a=g(b)$ where $b=f(a)$. The easiest negative examples are $A=\{0\}$ and $B=\{0,1\}$ with $f(0)=0$ (hence 1 is not in the image of f, so f is not onto) and $g(b)=0$ for $b=0,1$ (hence g is not $1-1$).
(b) A binary relation is given by a subset of $A \times A$. If A has n elements, then $A \times A$ has n^{2} elements and hence there are $2^{n^{2}}$ binary relations corresponding to the subsets in $A \times A$.
3. [30 points] (a) Let n ! denote the product of the first n positive integers. Prove that $2^{n}<n$! for all $n \geq 4$. [Note: The inequality fails for $n \leq 3$ but there is no need to prove this.]
(b) Suppose that $\left\{a_{n}\right\}$ is a sequence defined recursively by $a_{1}=1$ and $a_{k}=2 a_{[k / 2]}$ for all $k \geq 2$, where $[x]$ denotes the greatest integer $\leq x$. Prove that $a_{n} \leq n$ for all integers $n \geq 1$.

SOLUTION

(a) If $n=4$ this is true because $2^{4}=16<24=4$!. Suppose the result is valid for $n=m \geq 4$, and consider the stated inequality when $n=m+1$. We then have $2^{m+1}=2^{m} \cdot 2<m!\cdot(m+1)=(m+1)$!, so the inequality for $n=m+1$ is also valid, completing a proof by the Weak Principle of Finite Induction.
(b) It is straightforward to verify the inequality for $n=1$ and $n=2$. Suppose that the inequality is valid for all $n<m$, where $m \geq 3$, so that $m>[m / 2] \geq 1$. We then have $a_{[m / 2]} \leq[m / 2] \leq m / 2$, so that $2 \cdot a_{[m / 2]} \leq m$, which is the inequality for $n=m$. Therefore the validity of the conjecture for $1 \leq n<m$ implies its validity for $n=m$, proving the result by the Strong Principle of Finite Induction.
4. [20 points] Let \mathcal{F}_{2} denote the family of all subsets in \mathbb{R}^{2} which contain exactly TWO elements. Show that \mathcal{F}_{2} and \mathbb{R} have the same cardinality. [Hint: If $n \geq 2$ is an integer, how are the cardinalities of \mathbb{R}^{n} and \mathbb{R} related?]

SOLUTION

Given a subset $\{a, b\}$ in \mathcal{F}_{2}, write $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ and choose a linear ordering of $\{a, b\}$; reversing the roles of a and b if necessary, we might as well assume that a comes first. Using this ordering, define a $1-1$ mapping $\mathcal{F}_{2} \rightarrow \mathbb{R}^{4}$ sending $\{a, b\}$ to $\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$. We then have $\left|\mathcal{F}_{2}\right| \leq\left|\mathbb{R}^{4}\right|=|\mathbb{R}|$.

To prove the reverse inequality, given $t \in \mathbb{R}$ send it to the two point set $\{(t, 0),(0,1)\} \subset$ \mathbb{R}^{2}. This construction defines a $1-1$ mapping from \mathbb{R} to \mathcal{F}_{2}, so that $|\mathbb{R}| \leq\left|\mathcal{F}_{2}\right|$. We can now apply the Schröder-Bernstein Theorem to conclude that \mathbb{R} and \mathcal{F}_{2} have the same cardinality.■

