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Mathematics 144, Fall 2017, Examination 2

Answer Key

(This incorporates the changes given in exam2af17.pdf)
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1. [20 points] Let R[t] denote the set of polynomials in one ideterminate (namely, t).
If we define a binary relation ≤ on R[t] by the condition f ≤ g if and only if f(x) ≤ g(x)
for all x ∈ R, show that this defines a partial ordering of R[t] which is not a linear ordering.

SOLUTION

The relation is reflexive, for f ≤ f because f(x) ≤ f(x) for all x.

The relation is antisymmetric, for f ≤ g and g ≤ f imply f(x) ≤ g(x) and g(x) ≤ f(x)
for all x. Therefore f(x) = g(x) for all x because R is partially ordered.

The relation is transitive, for f ≤ g and g ≤ h imply f(x) ≤ g(x) and g(x) ≤ h(x), so
that f(x) ≤ h(x) for all x and hence f ≤ h. Combining the first three paragraphs, we see
that the relation on polynomials is a partial ordering.

To see it is not a linear ordering, we need to find f and g so that neither f ≤ g nor
g ≤ f . We can do this if we find f and g such that f(a) < g(a) but g(b) < f(b) for some
a 6= b in R. One simple example is f(x) = x and g(x) = 1 − x for a = 0 and b = 1.
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2. [30 points] (a) Suppose that f : A → B and g : B → A are functions such that
the composite g of is the identity function on A. Prove that f is 1–1 and g is onto, and
give examples f, g such that f is not onto and g is not 1–1. [Hint: For the second part,
let A 6= ∅ be as small as possible.]

(b) Suppose that A is a finite set with n > 0 elements. Prove that there are 2n2

distinct binary relations on A (i.e., relating A to itself).

SOLUTION

(a) f is 1–1, for f(a) = f(a′) implies a = g(f(a)) = g(f(a′)) = a′, and g is onto
because a ∈ A implies a = g(b) where b = f(a). The easiest negative examples are
A = {0} and B = {0, 1} with f(0) = 0 (hence 1 is not in the image of f , so f is not onto)
and g(b) = 0 for b = 0, 1 (hence g is not 1–1).

(b) A binary relation is given by a subset of A × A. If A has n elements, then A × A

has n2 elements and hence there are 2n2

binary relations corresponding to the subsets in
A × A.
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3. [30 points] (a) Let n! denote the product of the first n positive integers. Prove
that 2n < n! for all n ≥ 4. [Note: The inequality fails for n ≤ 3 but there is no need to
prove this.]

(b) Suppose that {an} is a sequence defined recursively by a1 = 1 and ak = 2a[k/2] for
all k ≥ 2, where [x] denotes the greatest integer ≤ x. Prove that an ≤ n for all integers
n ≥ 1.

SOLUTION

(a) If n = 4 this is true because 24 = 16 < 24 = 4!. Suppose the result is valid
for n = m ≥ 4, and consider the stated inequality when n = m + 1. We then have
2m+1 = 2m · 2 < m! · (m + 1) = (m + 1)!, so the inequality for n = m + 1 is also valid,
completing a proof by the Weak Principle of Finite Induction.

(b) It is straightforward to verify the inequality for n = 1 and n = 2. Suppose that
the inequality is valid for all n < m, where m ≥ 3, so that m > [m/2] ≥ 1. We then have
a[m/2] ≤ [m/2] ≤ m/2, so that 2 ·a[m/2] ≤ m, which is the inequality for n = m. Therefore
the validity of the conjecture for 1 ≤ n < m implies its validity for n = m, proving the
result by the Strong Principle of Finite Induction.
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4. [20 points] Let F2 denote the family of all subsets in R
2 which contain exactly

TWO elements. Show that F2 and R have the same cardinality. [Hint: If n ≥ 2 is an
integer, how are the cardinalities of R

n and R related?]

SOLUTION

Given a subset {a, b} in F2, write a = (a1, a2) and b = (b1, b2) and choose a linear
ordering of {a, b}; reversing the roles of a and b if necessary, we might as well assume
that a comes first. Using this ordering, define a 1–1 mapping F2 → R

4 sending {a, b} to
(a1, a2, b1, b2). We then have |F2| ≤ |R4| = |R|.

To prove the reverse inequality, given t ∈ R send it to the two point set {(t, 0), (0, 1)} ⊂
R

2. This construction defines a 1–1 mapping from R to F2, so that |R| ≤ |F2|. We can
now apply the Schröder-Bernstein Theorem to conclude that R and F2 have the same
cardinality.
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