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Mathematics 144, Winter 2019, Examination 2

Answer Key
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1. [30 points] (a) Let S denote the set of real valued sequences {xn} where n ≥ 0
and xn ∈ R, and define a binary relation {xn}A{yn} if and only if there are only finitely
many values of n such that xn 6= yn. Show that A defines an equivalence relation on S.

(b) Let X be a set, and let f : X → X be a map such that f of is 1–1 and onto. Prove
that f is 1–1 and onto.

SOLUTION

(a) The relation is reflexive, for if {xn} is a sequence then {xn}A{xn} because xn = xn

for all n.

The relation is symmetric, for if {xn} and {yn} are sequences such that xn 6= yn for
only finitely many values of n, then yn 6= xn for only the same finitely many values or n.

The relation is transitive. If {xn}, {yn} and {zn} are sequences such that xn 6= yn for
only the values of n in the finite set F , and yn 6= zn for only the values of n in the finite
set F ′, then xn 6= zn for only values of n in the finite set F ∪ F ′. There might be values
of n in the latter set such that xn = zn, but if xn 6= zn then n ∈ F ∪ F ′.

(b) The function f is 1–1 because f(u) = f(v) implies f of(u) = f of(v), and since
f of is 1–1 this implies u = v. The function f is also onto. Since f of is onto, for each
x ∈ X we have x = f of(y) for some y ∈ X . If z = f(y), it follows that x = f(z), and
since x is arbitrary it follows that f is onto.
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2. [20 points] Prove the following formula; this can be done by mathematical
induction:

n∑

k=1

1

k(k + 1)
= 1 −

1

n+ 1

SOLUTION

Let P(n) be the summation formula for each n ≥ 1. Then one can check directly that
if n = 1 both sides of the equation simplify to 1

2
. Suppose now that P(n) is known to be

true for n ≥ 1. Then we have

n+1∑

k=1

1

k(k + 1)
=

n∑

k=1

1

k(k + 1)
+

1

(n+ 1)(n+ 2)
= (by P(n) )

1 −
1

n+ 1
+

1

(n+ 1)(n+ 2)
= 1 −

n+ 2

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)
= 1 −

1

n+ 2

which is exactly the equation in the formula P(n + 1). Therefore P(n) implies P(n + 1)
for all n ≥ 1, and by the Weak Principle of Finite Induction the statements P(n) are true
for all n ≥ 1.
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3. [25 points] (a) Suppose that A and B are sets. Show that their cardinalities
satisfy |A ∪B| ≤ |A|+ |B|.

(b) Give two examples of infinite sets A,B such that |A| 6= |B| but |A|, |B| > ℵ0.

SOLUTION

(a) The right hand side equals the cardinality of the disjoint union A×{1}∪B×{2},
so it suffices to define a 1–1 map h from A ∪B to the latter. One way of doing this is to
set h(x) = (x, 1) if x ∈ A and h(x) = (x, 2) if x ∈ B −A.

Alternate solution. Define a map k : A×{1}∪B×{2} −→ A∪B by k(x, t) = x, where
x ∈ A ∪ B and t ∈ {1, 2}. This map is onto; if x ∈ A then x = k(x, 1), while if x ∈ B

then x = k(x, 2). By a proposition on cardinal numbers (which is related to the Axiom of
Choice for uncountable sets) it follows that |A|+ |B| ≥ |A ∩B|.

(b) If A = R, then |A| = 2ℵ0 > ℵ0, and if B is the set of all subsets of R then
|B| = 2|A| > |A| > ℵ0.
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4. [25 points] (a) Explain why the set Q+ of positive rational numbers is not
well-ordered.

(b) State the Axiom of Choice.

SOLUTION

(a) In a well-ordered set every nonempty subset has a least element. However Q+

itself has no least element, for if a > 0 is a positive rational number then so is 1

2
a, and we

have 0 < 1

2
a < a. Therefore Q+ is not well-ordered.

(b) Let X be a set, and let P0(X) denote the set of nonempty subsets of X . Then
there is a function c : P0(X) −→ X such that c(A) ∈ A for each nonempty subset A ⊂ X .
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