Mathematics 144, Winter 2019, Examination 2

Answer Key

1. [30 points] (a) Let S denote the set of real valued sequences $\left\{x_{n}\right\}$ where $n \geq 0$ and $x_{n} \in \mathbb{R}$, and define a binary relation $\left\{x_{n}\right\} \mathcal{A}\left\{y_{n}\right\}$ if and only if there are only finitely many values of n such that $x_{n} \neq y_{n}$. Show that \mathcal{A} defines an equivalence relation on S.
(b) Let X be a set, and let $f: X \rightarrow X$ be a map such that $f \circ f$ is $1-1$ and onto. Prove that f is $1-1$ and onto.

SOLUTION

(a) The relation is reflexive, for if $\left\{x_{n}\right\}$ is a sequence then $\left\{x_{n}\right\} \mathcal{A}\left\{x_{n}\right\}$ because $x_{n}=x_{n}$ for all n.

The relation is symmetric, for if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences such that $x_{n} \neq y_{n}$ for only finitely many values of n, then $y_{n} \neq x_{n}$ for only the same finitely many values or n.

The relation is transitive. If $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are sequences such that $x_{n} \neq y_{n}$ for only the values of n in the finite set F, and $y_{n} \neq z_{n}$ for only the values of n in the finite set F^{\prime}, then $x_{n} \neq z_{n}$ for only values of n in the finite set $F \cup F^{\prime}$. There might be values of n in the latter set such that $x_{n}=z_{n}$, but if $x_{n} \neq z_{n}$ then $n \in F \cup F^{\prime}$.
(b) The function f is $1-1$ because $f(u)=f(v)$ implies $f \circ f(u)=f \circ f(v)$, and since $f \circ f$ is $1-1$ this implies $u=v$. The function f is also onto. Since $f \circ f$ is onto, for each $x \in X$ we have $x=f \circ f(y)$ for some $y \in X$. If $z=f(y)$, it follows that $x=f(z)$, and since x is arbitrary it follows that f is onto. -
2. [20 points] Prove the following formula; this can be done by mathematical induction:

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=1-\frac{1}{n+1}
$$

SOLUTION

Let $\mathbf{P}(n)$ be the summation formula for each $n \geq 1$. Then one can check directly that if $n=1$ both sides of the equation simplify to $\frac{1}{2}$. Suppose now that $\mathbf{P}(n)$ is known to be true for $n \geq 1$. Then we have

$$
\begin{gathered}
\sum_{k=1}^{n+1} \frac{1}{k(k+1)}=\sum_{k=1}^{n} \frac{1}{k(k+1)}+\frac{1}{(n+1)(n+2)}=(\operatorname{by} \mathbf{P}(n)) \\
1-\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}=1-\frac{n+2}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)}=1-\frac{1}{n+2}
\end{gathered}
$$

which is exactly the equation in the formula $\mathbf{P}(n+1)$. Therefore $\mathbf{P}(n)$ implies $\mathbf{P}(n+1)$ for all $n \geq 1$, and by the Weak Principle of Finite Induction the statements $\mathbf{P}(n)$ are true for all $n \geq 1$.
3. [25 points] (a) Suppose that A and B are sets. Show that their cardinalities satisfy $|A \cup B| \leq|A|+|B|$.
(b) Give two examples of infinite sets A, B such that $|A| \neq|B|$ but $|A|,|B|>\aleph_{0}$.

SOLUTION

(a) The right hand side equals the cardinality of the disjoint union $A \times\{1\} \cup B \times\{2\}$, so it suffices to define a $1-1$ map h from $A \cup B$ to the latter. One way of doing this is to set $h(x)=(x, 1)$ if $x \in A$ and $h(x)=(x, 2)$ if $x \in B-A . ■$
Alternate solution. Define a map $k: A \times\{1\} \cup B \times\{2\} \longrightarrow A \cup B$ by $k(x, t)=x$, where $x \in A \cup B$ and $t \in\{1,2\}$. This map is onto; if $x \in A$ then $x=k(x, 1)$, while if $x \in B$ then $x=k(x, 2)$. By a proposition on cardinal numbers (which is related to the Axiom of Choice for uncountable sets) it follows that $|A|+|B| \geq|A \cap B|$.■
(b) If $A=\mathbb{R}$, then $|A|=2^{\aleph_{0}}>\aleph_{0}$, and if B is the set of all subsets of \mathbb{R} then $|B|=2^{|A|}>|A|>\aleph_{0}$.
4. [25 points] (a) Explain why the set \mathbb{Q}_{+}of positive rational numbers is not well-ordered.
(b) State the Axiom of Choice.

SOLUTION

(a) In a well-ordered set every nonempty subset has a least element. However \mathbb{Q}_{+} itself has no least element, for if $a>0$ is a positive rational number then so is $\frac{1}{2} a$, and we have $0<\frac{1}{2} a<a$. Therefore \mathbb{Q}_{+}is not well-ordered.
(b) Let X be a set, and let $\mathbf{P}_{0}(X)$ denote the set of nonempty subsets of X. Then there is a function $c: \mathbf{P}_{0}(X) \longrightarrow X$ such that $c(A) \in A$ for each nonempty subset $A \subset X . ■$

