
Practice for Exam 2

Problems from aabUpdate09.144.f17.pdf

1. Let E be a relation which is both a partial ordering and an equivalence relation. Since we
have an equivalence relation, a E b implies b E a. However, since E is also a partial ordering these
conditions imply that a = b. This is almost but not quite enough, for we need to check that a E a
for all a in the set. But the latter property holds because both partial orderings and equivalence
relations are reflexive.

2. The relation is reflexive because a = 1 · a. If a|b and b|a then there are positive integers x
and y so that b = xa and a = yb; combining these, we have a = (yx)a = 1 · a. The latter implies
that xy = 1, which in turn implies that x = y = 1 since both x and y are positive integers. Hence
a = b, showing that the relation is symmetric. To prove transitivity, note that a|b and b|c imply
b = xa and c = yb, so that c = (xy)b; but the latter implies a|c and hence shows that the relation
is transitive.

To see that the ordering is not linear, it suffices to note that 2 does not (evenly) divide 3 and
3 does not (evenly) divide 2.

3. The number of equivalence relations of {1, 2, 3, 4} is equal to the number of partitions of
that set. We can classify the partitions into types, listed in order of the sizes of the largest subset:

(1) 4

(2) 3+1

(3) 2+2

(4) 2+1+1

(5) 1+1+1+1

There is only one partition of the first type, there are four of the second type (depending upon
which element is in the one element partition), there are three of the third type (each subset of
{1, 2, 3, 4} with two elements determines a partition, complementary subsets determine the same
partition, and there are six subsets with two elements), there are six partitions of the fourth type
(one for each subset with two elements; the choice of this set dictates the remaining possibilities),
and there is only one partition of the fifth type. Therefore there are a total of 1+4+3+6+1 = 15
partitions for the set {1, 2, 3, 4}.

The number of binary relations on a set A is the number of elements in A × A (if A is finite),

and hence is
(

2|A|2
)

. If |A| = 4, then this number is 216 = 65, 536.

4. The binary relation is not symmetric, for |x|2 ≤ |y|2 and |y|2 ≤ |x|2 implies |x|2 = |y|2,
which is true if and only if y = ±x. Hence we have −1 R 1 and 1 R − 1 even though −1 6= 1.

5. (a) Let B consist of a single point p, and let A consist of more than one point. Take
g : B → A so that g(a) = b ∈ B is the unique point and f(b) = a, where a is an arbitrary point.
Then f is not onto and g is not 1–1; both of these follow because |B| > 1.
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(b) Let f : {1, 2} → {1, 2} send everything to 1, and let g also be the map sending everything
to 1. Then f is neither 1–1 nor onto, and the same is true for g, but we have f og of(n) = 1 = f(n)
for n = 1, 2.

6. If n = 6 then the result is true because n2 = 36 > 26 = 4n + 2. Suppose the inequality is
true for n = m ≥ 6. To prove the result when n = m + 1, we shall show that (m + 1)2 − m2 >
(4(m + 1) + 2) − (4m + 2) if m ≥ 6; if the latter is true then we can add it to the inductive
hypothesis m2 > 4m + 2, and this will prove the validity of the inequality for n = m + 1. Now
(4(m + 1) + 2) − (4m + 2) = 4, and we have (m + 1)2 − m2 = 2m + 1, which is greater than 12
since m ≥ 6. Therefore we have established the inequality when n = m + 1, completing the proof
by induction.

7. The inequality is valid when n = 1 because 31 = 3 > 2 = 12 + 1. Now suppose that the
inequality is valid when n = m, where m ≥ 1. As in the preceding exercise, the verification of the
inequality when n = m + 1 reduces to showing 3m+1 − 3m > ((m + 1)2 + 1) − (m2 + 1) = 2m + 1.
Now the left hand side equals 2 · 3m. By the validity of the inequality when n = m, this is greater
than 2 · (m2 + 1) = 2m2 + 2 ≥ 2m + 1 because m ≥ 1. Therefore the validity of the inequality for
n = m implies its validity for n = m + 1, completing the proof by induction.

8. Direct computation implies that a2 = 2. Suppose now that the formula is valid for all
n = m − 1, where m ≥ 3. We now need to verify the inequality for n = m ≥ 3; in this case
m− 1 ≥ 1 so the induction hypothesis implies that am−1 = 1 if m− 1 is even and 2 if m− 1 is odd.
It follows that am = 3− am−1 is equal to 2 if m− 1 is even and 1 if m− 1 is odd. Since am is even
if and only if am−1 is odd, and similarly if odd and even are switched, it follows that am = 1 if m
is even and 2 if m is odd. This completes the proof of the inductive step.

9. The result is true if n = 1, 2 by assumption. Assume it is true for n < m. Then am = 3a[m/3]

by definition, and by the induction hypothesis we know that the right hand side is ≤ 3 · [m/3] ≤
3 · (m/3) ≤ m. This verifies the inductive step, and it follows that the result is true by the Strong
Principle of Finite Induction.

10. Follow the hints. Since {0, 1, } ⊂ R it follows that there is a 1–1 correspondence between
F(R, {0, 1}) and a subset of F(R, R), and therefore we have 2c ≤ |F(R, R)|. If we can also prove
the reverse inequality, then the cardinalities will be the same by the Schröder-Bernstein Theorem.

A function from R to itself is completely determined by its graph, which is a subset of R ×R.
Therefore if c = |R| we have |F(R, R)| ≤ 2c×c. But we have seen that c× c = c, so the right hand
side is just 2c. Hence 2c = |F(R, R)| by the Schröder-Bernstein Theorem.

11. If |X| = α and A ⊂ X has n elements, pick an ordering for the elements of A having
the form a1, · · · , an, and send A to (a1, · · · , an;n) ∈ Xn × {n}. This gives a 1–1 map from
the set Pn(X) of subsets with n elements to the set An × {n}; since α · α = α, BY induction
we also have αn = α for all positive integers n, and thus we have a 1–1 mapping from Pn(X) to
X × {n}. These maps piece together to yield a 1–1 mapping from E to N × X. This implies that
|E| ≤ ℵ0 · α ≤ α · α = α. The reverse inequality α ≤ |E| follows because the map sending x ∈ X to
{x} is a 1–1 map from X to E .

12. The laws of exponents for transfinite cardinal numbers implies that 2α+β = 2α · 2β . If
α = β = c, then this specializes to 2c = 2c+c = 2c · 2c.
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