ADDITIONAL EXERCISES FOR

$$
\text { MATHEMATICS } 144 \text { - PART } 4
$$

Fall 2017

V. Number systems and set theory

V.2. Finite induction and recursion

Additional problems
113. Let $\mathbb{Q}\left[t_{1}, \cdots, t_{n}\right]$ denote the set of all polynomials in the n indeterminates t_{1}, \cdots, t_{n} with rational coefficients. The degree of a nonzero polynomial $p \in \mathbb{Q}\left[t_{1}, \cdots, t_{n}\right]$ is defined (as usual) to be the largest n such that p has a summand which is a nonzero multiple of some monomial $t_{1}^{a(1)} \cdots t_{n}^{a(n)}$ such that $\sum a(k)=n$. A polynomial p of positive degree is said to be irreducible if it cannot be written as a product of two polynomials $q_{1} q_{2}$ where both q_{1} and q_{2} have positive degree. Prove that every positive degree polynomial in $\mathbb{Q}\left[t_{1}, \cdots, t_{n}\right]$ is a product of irreducible polynomials. [Note: A result of C. F. Gauss implies that the irreducible factors are unique up to multiplication by a nonzero constant.]
114. Let $\mathbb{Z}[\sqrt{5}]$ be the set of all real numbers expressible as $a+b \sqrt{5}$ where a and b are integers. Define the absolute norm of $a+b \sqrt{5}$ to be $\mid N\left(a+b \sqrt{5}\left|=\left|a^{2}-5 b^{2}\right|\right.\right.$. If $a+b \sqrt{5}$ is nonzero, then the irrationality of $\sqrt{5}$ implies that $0<\mid N(a+b \sqrt{5} \mid \in \mathbb{Z}$.
(i) If $x, y \in \mathbb{Z}[\sqrt{5}]$ prove that $|N(x \cdot y)|=|N(x)| \cdot|N(y)|$.
(ii) If $x \in \mathbb{Z}[\sqrt{5}]$ prove that $x^{-1} \in \mathbb{Z}[\sqrt{5}]$ if and only if $|N(x)|=1$.
(iii) An element of $\mathbb{Z}[\sqrt{5}]$ whose absolute norm is greater than 1 is said to be irreducible if it cannot be written as a product of two elements in that set whose norms are both greater than 1. Prove that every element in $\mathbb{Z}[\sqrt{5}]$ with absolute norm greater than 1 is equal to a product of irreducible elements. [Note: In this case one does NOT have a unique factorization result. In particular, we have $-4=2 \cdot(-2)=(1+\sqrt{5})(1-\sqrt{5})$ but neither $1+\sqrt{5}$ nor $1-\sqrt{5}$ can be written as $2 u$ where $u \in \mathbb{Z}[\sqrt{5}]$ has absolute norm equal to 1.]

VI. Infinite constructions in set theory

VI.2. Infinite Cartesian products

101. Suppose that A is a set and $\left\{X_{\alpha}\right\}_{\alpha \in A}$ is an indexed family of sets with indexing set A. Prove that if X_{β} is empty for some $\beta \in A$, and X_{γ} is nonempty for some $\gamma \in A$, then the product $\prod_{\alpha} X_{\alpha}$ is also empty. [Hint: If x belongs to the product, what can we say about x_{β} ?]

VI.3. Transfinite cardinal numbers

101. Strictly speaking, our definition of cardinal number depends upon choosing a large set containing everything else of interest. The purpose of this exercise is to show that the statement $|A|=|B|$ (i.e., A and B have the same cardinality, does not depend upon the choice of the large universal set.

Let \mathcal{U} be a large family of sets such that $A, B \in \mathcal{U}$, and let \mathcal{W} be another family of sets with the same property. Explain why the statements

$$
\begin{aligned}
& |A|=|B| \text { viewed as members of } \mathcal{U} \\
& |A|=|B| \text { viewed as members of } \mathcal{W}
\end{aligned}
$$

are logically equivalent.
102. Suppose that A, B, C are sets such that $|A| \leq|B| \leq|C|$ and $|A|=|C|$. Prove that $|A=|B|=|C|$.
103. Let A and B be sets such that $|A|<|B|$. Prove that there is a subset $A^{\prime} \subset B$ such that $\left|A^{\prime}\right|=|B|$.

VI.4. Countable and uncountable sets

101. Let A be a finite set (our "alphabet"). Then the set $\operatorname{String}(A)$ of finite strings over A is given by the union

$$
\bigcup_{n=1}^{\infty} A^{n} \times\{n\}
$$

where A^{n} denotes the n-fold product of A with itself and $\{n\}$ is appended to ensure that the copies of A^{m} and A^{n} are disjoint if $m \neq n$. Prove that $\operatorname{String}(A)$ is countably infinite.

VII. The Axiom of Choice and related topics

VII.1. Nonconstructive existence statements

101. Show that the set $\mathbb{R}-\mathbb{Q}$ of irrational numbers has the same cardinality as \mathbb{R}. [Hint: What is $\beta+\aleph_{0}$ if β is a transfinite cardinal?]
102. Given two positive integers $m<n$, let $G_{m}\left(\mathbb{R}^{n}\right)$ denote the set of vector subspaces $W \subset \mathbb{R}^{n}$ such that $\operatorname{dim} W=m$. Prove that $\left|G_{m}\left(\mathbb{R}^{n}\right)\right|=\left|\mathbb{R}^{n}\right|$.
103. Define an algebraic hypersurface in \mathbb{R}^{n} to be the set of all points $\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ such that $F\left(x_{1}, \cdots, x_{n}\right)=0$ for some polynomial $F\left[t_{1}, \cdots, t_{n}\right]$ in n indeterminates (hence $\left.F \in \mathbb{R}\left[t_{1}, \cdots, t_{n}\right]\right)$. Prove that the cardinality of the set \mathbf{H} of algebraic hypersurfaces in \mathbb{R}^{n} is equal to \mathbb{R}.
