
ADDITIONAL EXERCISES FOR

MATHEMATICS 144 — PART 4

Fall 2017

V. Number systems and set theory

V.2. Finite induction and recursion

Additional problems

113. Let Q[t1, · · · , tn] denote the set of all polynomials in the n indeterminates t1, · · · , tnwith
rational coefficients. The degree of a nonzero polynomial p ∈ Q[t1, · · · , tn] is defined (as usual)
to be the largest n such that p has a summand which is a nonzero multiple of some monomial

t
a(1)
1 · · · t

a(n)
n such that

∑
a(k) = n. A polynomial p of positive degree is said to be irreducible

if it cannot be written as a product of two polynomials q1q2 where both q1 and q2 have positive
degree. Prove that every positive degree polynomial in Q[t1, · · · , tn] is a product of irreducible
polynomials. [Note: A result of C. F. Gauss implies that the irreducible factors are unique up to
multiplication by a nonzero constant.]

114. Let Z[
√

5] be the set of all real numbers expressible as a + b
√

5 where a and b are integers.
Define the absolute norm of a + b

√
5 to be |N(a + b

√
5| = |a2 − 5b2|. If a + b

√
5 is nonzero, then

the irrationality of
√

5 implies that 0 < |N(a + b
√

5| ∈ Z.

(i) If x, y ∈ Z[
√

5] prove that |N(x · y)| = |N(x)| · |N(y)|.
(ii) If x ∈ Z[

√
5] prove that x−1 ∈ Z[

√
5] if and only if |N(x)| = 1.

(iii) An element of Z[
√

5] whose absolute norm is greater than 1 is said to be irreducible if
it cannot be written as a product of two elements in that set whose norms are both greater than
1. Prove that every element in Z[

√
5] with absolute norm greater than 1 is equal to a product of

irreducible elements. [Note: In this case one does NOT have a unique factorization result. In
particular, we have −4 = 2 · (−2) = (1+

√
5)(1−

√
5) but neither 1+

√
5 nor 1−

√
5 can be written

as 2u where u ∈ Z[
√

5] has absolute norm equal to 1.]

VI. Infinite constructions in set theory

VI.2. Infinite Cartesian products

101. Suppose that A is a set and {Xα}α∈A is an indexed family of sets with indexing set A.
Prove that if Xβ is empty for some β ∈ A, and Xγ is nonempty for some γ ∈ A, then the product∏

α Xα is also empty. [Hint: If x belongs to the product, what can we say about xβ?]
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VI.3. Transfinite cardinal numbers

101. Strictly speaking, our definition of cardinal number depends upon choosing a large set
containing everything else of interest. The purpose of this exercise is to show that the statement
|A| = |B| (i.e., A and B have the same cardinality, does not depend upon the choice of the large
universal set.

Let U be a large family of sets such that A,B ∈ U , and let W be another family of sets with the
same property. Explain why the statements

|A| = |B| viewed as members of U
,

|A| = |B| viewed as members of W
are logically equivalent.

102. Suppose that A,B,C are sets such that |A| ≤ |B| ≤ |C| and |A| = |C|. Prove that
|A = |B| = |C|.
103. Let A and B be sets such that |A| < |B|. Prove that there is a subset A′ ⊂ B such that
|A′| = |B|.

VI.4. Countable and uncountable sets

101. Let A be a finite set (our “alphabet”). Then the set String (A) of finite strings over A is
given by the union

∞⋃

n=1

An × {n}

where An denotes the n-fold product of A with itself and {n} is appended to ensure that the copies
of Am and An are disjoint if m 6= n. Prove that String (A) is countably infinite.

VII . The Axiom of Choice and related topics

VII.1. Nonconstructive existence statements

101. Show that the set R−Q of irrational numbers has the same cardinality as R. [Hint: What
is β + ℵ0 if β is a transfinite cardinal?]

102. Given two positive integers m < n, let Gm(Rn) denote the set of vector subspaces W ⊂ Rn

such that dimW = m. Prove that |Gm(Rn)| = |Rn|.
103. Define an algebraic hypersurface in Rn to be the set of all points (x1, · · · , xn) ∈ Rn

such that F (x1, · · · , xn) = 0 for some polynomial F [t1, · · · , tn] in n indeterminates (hence
F ∈ R[t1, · · · , tn]). Prove that the cardinality of the set H of algebraic hypersurfaces in Rn is
equal to R.
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